355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Альберт Вейник » Термодинамика реальных процессов » Текст книги (страница 4)
Термодинамика реальных процессов
  • Текст добавлен: 24 сентября 2016, 08:03

Текст книги "Термодинамика реальных процессов"


Автор книги: Альберт Вейник



сообщить о нарушении

Текущая страница: 4 (всего у книги 40 страниц)

Как уже упоминалось, согласно основному уравнению ОТ, главенствующая роль всегда принадлежит количеству вещества, .определяемому экстенсором N1, который входит во все уравнения в качестве аргумента. Следовательно, экстенсор может и должен служить ведущим признаком мысленного расчленения Вселенной на более простые промежуточные формы явлений, что крайне упрощает поставленную задачу.

Заранее ясно, что существенно различающимся значениям экстенсора должны отвечать сильно разнящиеся формы явлений и управляющие ими законы (наборы характеристик и связей между ними). Например, бревно и Солнце имеют очень неодинаковые экстенсоры и поэтому по необходимости подчиняются весьма различным законам. В соответствии с этим первая и вполне естественная мысль, возникающая в данной ситуации, состоит в том, чтобы попытаться начать расчленение мироздания с выделения определенных количественных уровней вещества. Все конкретные формы явлений, или объекты, каждого такого уровня должны обладать значениями экстенсоров одного порядка, величины экстенсоров объектов различных уровней должны отличаться друг от друга на много порядков, тогда есть уверенность, что им будут соответствовать и разные законы.

Поскольку экстенсор определяет количество вещества, образующего данный объект, постольку речь может идти, например, о выделении уровней мироздания с объектами различной тонкости или грубости. Одновременно величина экстенсора характеризует сложность организации объекта и законов, которым он подчиняется, поэтому отдельные количественные уровни можно было бы также различать по сложности их устройства и по отвечающим им законам. Однако более простой и наглядной характеристикой все же следует признать тонкость и грубость уровня, а законы можно использовать для уточнения и корректировки расчленения. Например, мы с полным правом можем утверждать, что атомы, бревна, звезды и галактики принадлежат к различным количественным уровням мироздания, ибо перечисленные объекты определяются радикально неодинаковыми значениями экстенсоров. В соответствии с этим все атомы можно отнести к одному из количественных, уровней мироздания, объекты типа бревен – к другому, звезды – к третьему, галактики – к четвертому и т.д.

Атомы, бревна, звезды, галактики и тому подобные объекты различаются своими размерами, массами и другими характеристиками. Указанные характеристики, как будет показано в дальнейшем, суть конкретные виды экстенсоров, например, размер, объем и масса – это частные меры количества метрического вещества (см. гл. XV и XIX). Следовательно, искомые уровни мироздания необходимо и достаточно мысленно выделять по признаку размеров, масс и других экстенсоров, характеризующих объекты этих уровней. При такой постановке вопроса использованные термины – "тонкий" и "грубый" уровни мироздания – наполняются четким содержанием.

Короче говоря, для начала Вселенную предстоит мысленно расчленить на различные по тонкости (или грубости) миры. Экстенсоры объектов выделенных миров должны различаться между собой весьма существенно. Благодаря этому обеспечивается гарантия того, что объекты различных миров будут подчиняться заведомо неодинаковым законам, что и требуется для наших целей. Трудность вопроса заключается в том, что в природе всегда можно обнаружить объекты самых различных размеров и масс, и если всех их расположить по любому из указанных признаков в правильный ряд, то практически не удастся заметить каких-либо существенных разрывов в значениях экстенсоров. Иными словами, естественной группировки объектов не произойдет. В результате может даже сложиться впечатление, что соответствующего расчленения Вселенной сделать невозможно.

Однако более внимательное рассмотрение вопроса показывает, что это не так. Для преодоления возникшей трудности вполне возможно выработать особые правила, которыми целесообразно руководствоваться при раскладке миров по количественным полочкам. В свое время соответствующие правила были сформулированы и названы мною принципами (правилами) проницаемости и отторжения [18, с.131; 20, с.268; 21, с.24]. Эти правила существенно упрощают рассуждения, делают их конкретными и предельно наглядными [ТРП, стр.43-45].

2. Правила проницаемости и отторжения.

Согласно правилу проницаемости, уровни мироздания должны выбираться таким образом, чтобы каждый последующий, более грубый мир, содержащий повышенное количество вещества, был бы при определенных условиях и в определенной мере проницаемым (прозрачным) для всех предыдущих, более тонких миров, содержащих меньшее количество вещества.

Согласно правилу отторжения, каждый последующий, более грубый мир должен быть способным и вынужденным при определенных условиях и в определенной мере отторгать (излучать, рождать) без особого ущерба для себя, а также поглощать вещество из всех предыдущих, более тонких миров.

Предлагаемые правила имеют под собой глубокие опытные основания, они подсказаны самой окружающей действительностью. В принципе не исключены и другие подходы, в которых могут быть использованы иные правила расчленения Вселенной. Однако применение правил проницаемости и отторжения вполне себя оправдывает и оказывается весьма плодотворным. С их помощью удается легко разложить мироздание по полочкам, причем эти полочки кардинально различаются количествами вещества, образующего соответствующие объекты.

Правда, в отдельных конкретных случаях, если данный объект располагается где-то между двумя близлежащими полочками, то подчас бывает трудно предпочесть одну их них. Возможно и такое, когда определенного вида объекты могут существовать в разных вариациях, например микромолекулы и макромолекулы. Однако совершенно ясно, что такого рода затруднения должны быть присущи любым классификациям, которые попытались бы подразделить общую картину мироздания на отдельные характерные уровни. Поэтому подобные затруднения принципиального значения не имеют [ТРП, стр.45-46].

3. Перечень миров.

Можно предположить, что существует неограниченное множество различных количественных уровней вещества, составляющих Вселенную. Это предположение невозможно ни подтвердить, ни опровергнуть. Некоторые основания для такого предположения содержатся в соотношениях (16). Однако этот вопрос для нас не существен: в ОТ по необходимости рассматриваются лишь те из уровней, которые в той или иной форме доступны для изучения.

Если воспользоваться изложенными выше правилами и теми приставками, которые применяются в Международной системе единиц измерений (СИ) для обозначения величин, различающихся в 1000 и т. д. раз, то можно предложить следующие названия для отдельных уровней Вселенной [18, с.64; 20, с.268; 21, с.24]:

1. Аттомир  6. Макромир

2. Фемтомир  7. Мегамир

3. Пикомир  8. Гигамир      (20)

4. Наномир  9. Терамир

5. Микромир  10. Цетамир и т.д.

Начальные ступени этой классификации соответствуют тонким мирам, последующие – более грубым. Приставки из системы СИ применяются чисто символически, поэтому не следует думать, что один мир отличается от другого по размерам, массам и другим характеристикам объектов именно в 1000 раз б этом говорится ниже.

Известные представления об очень тонких мирах (атто-, фемто– и пико-) мы получим при обсуждении сложных форм явлений в гл. XXVII.

К наномиру относятся так называемые поля – электрическое (электростатическое), гравитационное и т.д. Эти поля хорошо известны. Но слово "поле" слишком многозначно, поэтому, чтобы отличить этого рода поля от других, будем именовать их нанополями.

Следующий более грубый мир классификации принадлежит микроскопическим объектам (микромир). К числу таких объектов относятся фотоны; электроны, позитроны, протоны, атомы, молекулы и т.п.

Макромир составляют привычные нам объекты, к которым принадлежим и мы сами.

Мегамир – это наблюдаемые космические объекты типа звезд с планетами, туманностей и т.д.

Гигамиру соответствуют космические образования типа галактик.

Терамир – это совокупности (скопления) галактик, объединенных в сложные системы, о свойствах которых сейчас можно делать лишь самые общие предположения.

Цетамир – сверхскопления галактик.

Не исключено, что Вселенная не ограничена ни в одном из указанных направлений: ни со стороны тонкости объектов, ни со стороны их грубости. Во всяком случае галактики не являют собой предельно грубые образования, равномерно разбросанные в пространстве, как иногда думают, ибо известны крупные скопления галактик, сверхскопления скоплений, а также огромные "дыры" – "пустые" пространства между отдельными галактиками. Таковы последние данные астрономов. Как бы там ни было, но все это должно свидетельствовать в пользу иерархического строения Вселенной, однако для нас этот вопрос не принципиален.

Нетрудно видеть, что предлагаемая классификация миров хорошо удовлетворяет правилам проницаемости и отторжения. Например, гигаобъекты (галактики) при определенных условиях и в определенной мере прозрачны для мегамиров (звезд с планетами) и способны их излучать и поглощать. Точно так же мегаобъекты ведут себя по отношению к макрообъектам (обычным телам), макрообъекты – по отношению к микрообъектам (так называемым элементарным частицам, атомам и молекулам), микрообъекты – по отношению к нанообъектам (электрическому, гравитационному и т.п. нанополям).

Если ограничиться очень грубой оценкой, то наиболее характерные объекты миров различаются по размерам примерно десятью порядками, а по массам – тридцатью. К нанополям это относится лишь предположительно, но нам хорошо известен следующий факт: нанополя – электрическое и гравитационное (наномир) – излучаются микрообъектами, например электронами, в течение миллиардов лет без заметного ущерба для электронов, отсюда можно сделать вывод о колоссальной разнице, существующей между размерами и массами нано– и микрообъектов.

Размеры и массы микрообъектов имеют следующий порядок: L = 10-10 м и m = 10-30 кг. Макрообъекты имеют размеры порядка L = 100 м и массы порядка m = 100 кг. Для объектов мегамира характерны следующие значения экстенсоров: L = 1010 м и m = 1030 кг.

Размеры гигаобъектов могут быть приблизительно оценены величиной 1020 м. Но в вопросе об их массе пока еще нет достаточной ясности. Если считать, что средняя галактика содержит около 1010 звезд, как об этом думали совсем недавно, то получится масса порядка 1040 кг. Однако последние астрономические данные заставляют значительно увеличить это число. Например, сейчас уже считается, что наша Галактика имеет более 1,5?1011 звезд. Кроме того, наблюдения Дж. Лейси, Ф. Баасома, Ч. Таунсома и Т. Джебалле (Калифорнийский университет, Беркли и обсерватория им. Хэйла Института Карнеги, США) показали, что в центре Галактики сосредоточено ядро, масса которого превышает 8?106 солнечных масс. К этому надо добавить объекты, излучающие в радио-, рентгеновском и других диапазонах. Все это позволяет высказать довольно реальное предположение, что для галактик характерны аналогичные числа порядка L = 1020 м и m = 1060 кг. Что касается тера– и более грубых объектов, то сейчас о них пока ничего сказать нельзя.

Любопытно отметить, что если характерный линейный размер возвести в куб, то получится некоторый объем  V = L3. Объем и масса дают плотность  p = m/V  кг/м3. Сопоставление полученной таким образом плотности для характерных объектов на различных уровнях мироздания позволяет обнаружить интереснейшее грубо приближенное свойство, заключающееся в приблизительном постоянстве величины р, которая в среднем равна 1 кг/м3. В указанном свойстве повинно и то обстоятельство, что размер, объем и масса – это частные количественные меры одного и того же метрического явления. Все изложенное наводит на мысль о наличии в обсуждаемой череде миров более глубокого смысла, чем кажется на первый взгляд. В частности, высвечивается любопытнейшая закономерность, согласно которой Вселенная оказывается в среднем однородной даже и при иерархическом ее строении.

Разумеется, все приведенные числа весьма приближенны, верен лишь их порядок. Но они очень наглядно выражают идею тонкости и грубости выделенных уровней мироздания. При этом разница между значениями экстенсоров, характеризующих объекты на неодинаковых уровнях, колоссальна. Поскольку количество вещества объекта однозначно определяет его структуру и поведение, постольку объектам на разных уровнях должны отвечать кардинально неодинаковые числовые меры качества вещества, а также количества и качества его поведения. Перечисленные уровни мироздания существуют во Вселенной как один подле другого, так и один внутри другого. В этом смысле расчлененная нами Вселенная напоминает кукол-матрешек, которые вкладываются одна в другую либо располагаются рядом.

Не исключено, что строительным материалом для всех уровней мироздания служит один и тот же наиболее тонкий из миров. Но обнаружить этот мир нам не дано, ибо мы никогда не можем быть до конца уверены, что найденный тонкий мир является последним и не поддается дальнейшему расчленению на еще более тонкие уровни [ТРП, стр.46-49].

4. Множественность форм явлений данного уровня.

Анализ Вселенной привел нас к большому числу уровней мироздания, объекты которых сильно различаются значениями своих экстенсоров. Теперь при выборе конкретных форм явлений мы должны расчленять по признаку величины экстенсора не Вселенную в целом, а только ее определенные интересующие нас количественные уровни. Задача расчленения отдельного уровня оказывается неизмеримо легче, чем общая проблема расчленения необозримой Вселенной, ибо в рамках каждого данного уровня экстенсор может вменяться лишь в некотором ограниченном интервале, определяемом свойствами самого уровня. Одновременно резко сокращается число наиболее важных характеристик явления и связей между ними, то есть число действующих законов. Однако в общем случае в конечном интервале изменения экстенсора может поместиться невообразимое множество его значений и, следовательно, каждый количественный уровень мироздания в принципе может содержать огромное количество разных форм явлений.

Совершенно ясно, что на любом выделенном уровне миро здания существуют свои частные наипростейшая и наисложнейшая формы явлений. Экстенсоры этих форм имеют определенные наименьшие и наибольшие значения. Задавая экстенсору последовательный ряд значений в пределах от минимального до максимального, можно перебрать все множество частных форм явлений данного уровня. Именно такой последовательный ряд усложняющихся форм явлений составляет предмет наших забот и исканий.

В настоящее время мы не знаем ни одного полного ряда ни для одного из уровней мироздания. Нам известны лишь разрозненные конкретные формы явлений, принадлежащие различным уровням и рядам. Например, в микромире отдельными формами явлений служат конкретные элементарные частицы, атомы и молекулы. В макромире можно упомянуть конкретные неорганические тела, растения, животных. В мегамире существуют конкретные звезды различного класса и т. д. Анализ всех известных конкретных форм явлений позволяет сделать еще несколько выводов, которыми фактически исчерпываются возможности метода анализа [ТРП, стр.49-50].

5. Формы разного рода.

Прежде всего мы замечаем, что на любом уровне мироздания все многочисленные конкретные формы явлений могут быть сгруппированы по определенным родовым признакам, существенно отличающим один род от другого. Например, в микромире род элементарных частиц сильно разнится от рода атомов и рода молекул. В макромире можно различать роды минералов, растений, вирусов, бактерий, человекообразных обезьян, обществ и т.д. То же самое можно сказать о звездах и туманностях в мегамире [ТРП, стр.50].

6. Формы разного вида.

В общем случае каждая совокупность форм явлений данного рода распадается на множество одноименных форм разного вида. Например, род элементарных частиц включает в себя электроны, позитроны, протоны, нейтроны и другие частицы. В макромире существуют разные виды минералов, растений, вирусов, бактерий, человекообразных обезьян; обществ. В мегамире есть немало видов звезд и туманностей [ТРП, стр.50].

7. Вариации форм данного вида.

Существует большое множество вариаций любой конкретной формы явления данного вида. Например, электроны могут отличаться один от другого по каким-то своим признакам, что станет ясно из дальнейшего изложения. На свете нет двух совершенно одинаковых людей. Точно так же в пределах своего класса не существует двух абсолютно одинаковых звезд и т.д.

Множественность вариаций индивидуальных признаков на уровне единичной формы явления можно определить термином изменчивость. Именно изменчивость делает природу бесконечно разнообразной и наделяет каждое конкретное явление способностью приспосабливаться ко всевозможным условиям существования, а также свойством устойчивости в определенном диапазоне изменения этих условий.

Из всего сказанного должно быть ясно, что Вселенная бесконечно разнообразна на любом количественном уровне мироздания. Она неисчерпаема даже в пределах любого данного конкретного вида формы явления. Все это невообразимое количество разнообразных реальных форм явлений привести в определенную систему не так-то просто. При желании с этой целью можно было бы воспользоваться, например, достаточно развитыми общими теориями систем (ОТС) М. Месаровича [56], А.И. Уемова [78], Ю.А. Урманцева [72, с.38-130] и т.д.; в частности, много точек соприкосновения с ОТ можно найти в теориях А.И. Уемова и Ю.А. Урманцева, однако в этом нет особой необходимости. Уместно также добавить, что конкретно-научные проработки ОТ неизбежно должны повлечь за собой известную корректировку всех ОТС, в особенности такая потребность возникает в связи с новыми трактовками в ОТ понятий пространства и времени.

На этом можно закончить классификацию миров. Разумеется, эта классификация, подобно классификации Линнея, не является исчерпывающей, но в отличие от линнеевской она базируется на количественных характеристиках, которые входят в состав основного уравнения ОТ. Вместе с тем дальше развивать и углублять предлагаемую классификацию нет смысла, ибо для наших целей вполне достаточно различать миры (и формы явлений) по указанным здесь признакам. Изложенной классификацией фактически исчерпывается излагаемый нами метод анализа Вселенной, начатый в гл. II [ТРП, стр.50-51].









Глава IV. Эволюция явлений.

1. Метод синтеза.

Недостаток метода анализа заключается в том, что о свойствах выделенных частей Вселенной, как правило, мы можем иметь лишь самые общие рассуждения, ибо не знаем точного состава и строения этих частей; мы не знаем также, поддаются ли эти части дальнейшему расчленению и на какие именно составляющие. Другими словами, каждая такая выделенная часть представляет собой «черный ящик». Исключение составляет лишь наипростейшее (элементарное) явление, которое не поддается дальнейшему расчленению; его состав и свойства, вообще говоря, известны (см. уравнения (18) и (19)), поэтому оно уже не есть черный ящик.

Очевидно, что после вычленения наипростейших элементов Вселенной дальше разлагать уже больше нечего. С этого момента метод анализа становится бессильным. Но теперь перед нами открывается новый, единственно возможный в данной ситуации, прямо противоположный путь – путь синтеза. Им мы и воспользуемся.

Метод синтеза, то есть соединения, составления простых частей в более сложное целое, является тем завершающим аккордом, который позволит достроить физическое здание ОТ. При этом главным объектом синтеза, в ходе которого простые части соединяются в более сложное целое, служат наипростейшие элементы, полученные методом анализа; их можно рассматривать как исходный строительный материал Вселенной, первокирпичики мироздания. Эти первокирпичики представляют собой те "первоначала всех вещей", из которых складывается се сущее. Их мечтали найти древние философы, ставя перед собой общие проблемы мироздания" [53].

Поскольку упомянутые первокирпичики не являются черным ящиком, постольку составленное из них более сложное целое (объект) тоже не есть черный ящик: синтезируя данное целое, мы всегда бываем в курсе его состава, а значит, можем судить о его свойствах. Найденные более сложные объекты, в свою очередь, тоже включаются в процесс синтеза, а в результате могут быть получены еще более сложные объекты и т.д. Здесь очень важно обратить внимание на следующее принципиальное обстоятельство: во всех случаях при синтезе сложных объектов исходными конструктивными элементами строительства служат не вещества более простых объектов, как иногда думают, а целиком более простые явления, состоящие из количеств и качеств вещества и количеств и качеств поведения этого вещества. Это в корне меняет всю картину синтеза, в чем мы будем иметь возможность вскоре убедиться.

Таким образом, общая проблема изучения Вселенной фактически распадается на два этапа: первый из них посвящен анализу мироздания, а второй – его синтезу, начиная с наипростейших элементов. Ни один из этих этапов в отдельности не в состоянии послужить основой для успешного решения поставленной задачи, ибо первый этап вплоть до элементарного явления имеет дело только с черными ящиками, то же самое происходит во втором этапе при отсутствии элементарного явления. В свете изложенного очень четко вырисовываются сравнительная роль и решающее значение таких категорий, как анализ и синтез. Неразлучность этих категорий – непременное условие достаточно глубокого проникновения в суть объективной реальности. Без них и их единства невозможны ни общая теория природы, ни теория познания вообще. Известно, что до настоящего времени наука шла в основном по пути анализа. Теперь ей предстоит решительно встать на путь синтеза [ТРП, стр.52-53].


 2. Парадигма ОТ и эволюция.

 Приняв условия игры методом синтеза и разложив Вселенную по полочкам, мы теперь должны научиться выстраивать для любого данного количественного уровня мироздания ряды усложняющихся форм явлений, начиная от наипростейшего и кончая наисложнейшим. Юмор ситуации можно было бы усмотреть в том, что сейчас мы стоим перед проблемой, которая значительно сложнее исходной, когда пытались мысленно расчленить Вселенную на отдельные частные формы явлений. Может даже показаться, что все предыдущие рассуждения ни на йоту не сдвинули нас с места. Это впечатление еще более усиливается, если обратить внимание на следующее чрезвычайно важное обстоятельство, о котором я прежде умышленно умалчивал.

 Суть его заключается в том, что все реальные формы явлений непрерывно изменяются, эволюционируют. Чтобы убедиться в неуклонном изменении количественных и качественных характеристик всех объектов природы, достаточно внимательно оглядеться вокруг себя: в ходе наблюдаемых изменений простейшие формы явлений постоянно трансформируются в более сложные, а сложные, в свою очередь, распадаются на более простые. Подобная калейдоскопическая картина не очень обнадеживает. Однако было бы преждевременным впадать в пессимизм, ибо возникшие осложнения вполне можно обратить себе на пользу. Но для этого надо прежде определить смысл, который мы будем вкладывать в термин  "эволюция".

 В ОТ под эволюцией я буду понимать изменение набора существенных для явления характеристик и связывающих их функций, то есть изменение законов, управляющих конкретными формами явлений. Следовательно, эволюционные – это только такие изменения, которые сопровождаются сменой действующих законов, поэтому не всякие изменения явления могут считаться эволюционными в строгом смысле этого слова; например, на практике слово "эволюция" иногда употребляется для обозначения любых изменений явления, в том числе не входящих за рамки действия определенных законов.

 Фатальная неизбежность эволюции диктуется парадигмой ОТ и заключена в философской концепции необходимости, реализуемой с помощью физической концепции взаимодействия. В ходе эволюции изменяется как основное явление, так и явление взаимодействия, поскольку они представляют собой единое целое, поэтому понятие эволюции охватывает оба эти явления одновременно.

 Таким образом, посредством новой монопарадигмы идеи эволюции с самого начала заложены в основу построения ОТ, они играют в ней ведущую, направляющую роль. Раньше я по возможности избегал говорить об эволюции, дыбы не затруднять осмысливание вводимых понятий. Теперь без понятия эволюции вообще невозможно дальнейшее продвижение вперед: эволюция есть очередное неизбежное, органически вытекающее из всего предыдущего звено в цепи наших логических рассуждений. Именно эволюция явлений дает нам в руки ключ к успешному решению поставленной задачи.

 Очевидно, что наблюдаемый в природе бесконечный набор всевозможных форм явлений – это результат их эволюционного развития на данный момент. Следовательно, проблема построения конкретного ряда усложняющихся форм явлений для данного количественного уровня мироздания может быть сведена к проблеме эволюции вещества и его поведения на этом уровне: зная закон эволюции и ее отправные точки – наипростейшее и наисложнейшее (либо какое-нибудь промежуточное) явления, мы всегда сможем синтезировать искомый ряд и прийти к интересующему нас явлению. Беда заключается в том, что нам не известны ни законы эволюции, ни ее отправные точки для различных уровней мироздания; мы только можем предполагать, что наисложнейших форм на каждом уровне должно быть много, а наипростейшая – всего одна; основанием для такого предположения служит пример расчленения Вселенной. Но мы располагаем основным уравнением ОТ, связывающим главные количественные меры явления, попытаемся реализовать этот аппарат [ТРП, стр.53-55].

 3. Основное уравнение эволюции ОТ.

 Выше уже отмечалось (см. уравнения (14) и (15)), что все свойства Вселенной определяются экстенсором  N1 . Значит, экстенсор можно использовать также и для количественного выражения законов эволюции.

 Само по себе абсолютное значение экстенсора N1  определяет уровень эволюционного развития явления, причем под абсолютным в термодинамике понимается значение, отсчитываемое от некоторого абсолютного начала (абсолютного нуля) отсчета. Нас же в первую очередь должен интересовать не уровень, а изменение этого уровня, ибо эволюция – это изменение законов, управляющих явлением, причем законы могут претерпеть качественное (скачкообразное) изменение только в условиях конечного, скачкообразного изменения величины экстенсора. Следовательно, на роль критерия, однозначно определяющего эволюционное (скачкообразное) изменение всех характеристик  ?Хiэ  явлений, надо избрать не экстенсор  N1 , а его изменение  ?N1э . Но в силу сказанного выше сами эволюционные скачки экстенсора  ?N1э  также определяются экстенсором. Поэтому основное уравнение эволюции ОТ можно записать в виде

    ?Хiэ = Fiэ(?N1э),      (21)

или

    ?Хiэ = Фiэ(?N1).

Здесь  Fiэ  и  Фiэ  – соответствующие функции, где под  ?Хiэ  можно понимать скачки любой из характеристик эволюционирующих явлений, включая количества и качества вещества и его поведения.

 Уравнение (21) характеризует основной закон эволюции ОТ. В нем отражены все интересующие нас конкретные законы эволюции. Они, в свою очередь, определяют все возможные эволюционные ряды на всех количественных уровнях мироздания. Преимущество уравнения (21) по сравнению с прежними уравнениями (14) и (15) заключается в том, что на практике обычно легче находится изменение некоторой величины, чем ее абсолютное значение, ибо тогда данную величину можно отсчитывать уже от любого условного, а не абсолютного нуля отсчета. Например, в термодинамике изменения внутренней энергии, энтропии, температуры и других характеристик определяются значительно проще, чем абсолютные значения этих величин, причем существуют различные условные нули их отсчета. Тем не менее и в данном случае трудность проблемы заключается в том, что непосредственно извлечь законы эволюции из уравнения (21) практически невозможно вследствие предельной общности последнего. Кроме того, оно, как и уравнения (14) и (15), в известном смысле условно, ибо в обобщенной форме выражает лишь принципиальную сторону имеющихся связей (об этом уже говорилось в гл. II) [ТРП, стр.55-56].

 4. Принцип минимальности эволюционного шага.

 Ранее при анализе Вселенной определяющим критерием служило абсолютное значение экстенсора  N1 (см. уравнения (14) и (15)); например, придав ему сильно различающиеся значения, удалось расчленить мироздание на отдельные количественные уровни, что заметно продвинуло нас на пути анализа. Теперь при синтезе явлений мы можем уже пользоваться не абсолютными значениями экстенсора  N1 , а его скачками  ?N1э  (см. уравнение (21)). Это тоже несколько облегчит нашу участь.

 Действительно, согласно определению понятия эволюции, все явления данного эволюционного ряда различаются между собой конечными величинами  ?N1э . Ясно также, что для двух любых рядом расположенных явлений должно соблюдаться условие

    ?N1э = min.       (22)

 Разность значений экстенсора между двумя соседними формами явлений ряда должна быть минимальной из всех возможных, но в то же время она должна обеспечивать смену действующих законов.

 Следовательно, требование (22) выражает идею выбора минимального эволюционного шага, при котором устраняется риск перепрыгнуть через несколько промежуточных форм ряда. Эту идею будем именовать принципом минимальности эволюционного шага, или просто принципом минимальности.

Из основного уравнения эволюции (21) и условия (22), приняв во внимание монотонно возрастающий характер соответствующих функций, можно получить новое требование

    ?Хiэ = min,       (23)

которое говорит о том, что разница между всеми основными характеристиками двух соседних явлений эволюционного ряда должна быть равна минимально возможной величине. Например, это относится к количеству и качеству вещества и количеству и качеству его поведения, включая явление взаимодействия. При этом решающее значение имеют изменения количества вещества (требование (22)), изменения же других характеристик являются следствием изменений экстенсора.

 Попутно отметим, что из общего равенства (22) в качестве наипростейшего частного случая вытекают прежние выражения (17) и (18), в которых величина  N1  представляет собой самую первую минимальную разность (скачок)  ?N1э , отсчитываемую от некоего абсолютного нуля, абсолютного ничто. Поэтому равенства (17) и (18) фактически характеризуют не только конечный шаг на пути анализа, но также и изначальный шаг на пути всякой эволюции; этому шагу предшествует ничто, небытие. Принципиально важно, что этот изначальный шаг является единым и общим для всех количественных уровней мироздания и всех эволюционных рядов на них.


    Ваша оценка произведения:

Популярные книги за неделю