355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Альберт Вейник » Термодинамика реальных процессов » Текст книги (страница 33)
Термодинамика реальных процессов
  • Текст добавлен: 24 сентября 2016, 08:03

Текст книги "Термодинамика реальных процессов"


Автор книги: Альберт Вейник



сообщить о нарушении

Текущая страница: 33 (всего у книги 40 страниц)

Если электроэнергия, вырабатываемая дифференциальной термопарой, или работа, совершаемая вертушкой, отводится в окружающую среду, то вечный двигатель второго рода несколько охлаждается и в него из окружающей среды поступает эквивалентное количество тепла. В результате даровая теплота окружающей среды (одного источника) преобразуется в полезную электроэнергию или работу с КПД, равным 100%, – это прямо следует из уравнения первого начала (36).

Действительно, на стационарном режиме при неизменной температуре и отсутствии химических, и иных реакций внутренняя энергия ПД не изменяется, то есть dU = 0. Следовательно, если под dQ1 понимать подведенную теплоту, а под dQ2 – отведенную электроэнергию или работу, тогда dQ1 = – dQ2 . Количество подведенного тепла в точности равно отведенной электроэнергии или работе, что соответствует КПД, равному единице (100%). Такая закономерность справедлива для ПД любого типа, основанного на использовании любых термодинамических неоднородностей.

Весьма важно подчеркнуть, что в описанных вечных двигателях второго рода циркуляция жидкости и пара является реальным термодинамическим процессом, сопровождаемым трением, или диссипацией, по существующей терминологии. Теплота трения непрерывно поглощается, утилизируется на мембране, следовательно, диссипация не только не приводит к деградации энергии циркулирующего потока жидкости и пара, как того требует второй закон Клаузиуса, но, наоборот, поддерживает эту циркуляцию, является движущей причиной циркуляции. Так, диссипация из бича Вселенной, по Клаузиусу, превращается в стимул ее существования по ОТ.

Интересно отметить, что в фазовом ПД паровой и жидкостный участки циркуляционного контура представляют собой две ветви термодинамической пары, именуемой поверхностно-фильтрационной [18, с.326; 21, с.334]. Спаями этой пары служат поверхности (мениски) жидкости – искривленный в капиллярах и плоский в стакане. Как уже упоминалось, термодинамическая пара есть первая форма явления в эволюционном ряду, достигающая в своем развитии уровня самофункционирования. Это замечательное свойство встречается затем во всех последующих более сложных явлениях ряда. Как осуществляется это самофункционирование – видно на примере поверхностно-фильтрационной пары.

Для повышения эффективности фазового ПД надо увеличивать рабочее давление и снижать гидродинамическое сопротивление между искривленным и плоским менисками. Максимальное рабочее давление может быть достигнуто, если в ПД сочетаются плоский мениск с идеальным полусферическим, когда критерий конфигурации мениска (см. предыдущий параграф) В = 2. В этих идеальных условиях, например, для воды при Т = 35 К рабочее давление пара равно 5700 Па. Но достичь идеальных условий практически невозможно, поэтому реальное рабочее давление пара всегда ниже идеального.

В реальных условиях мениск жидкости формируется в ПД под действием напора ? (см. рис. 30, в и г). Согласно Лапласу, радиус кривизны мениска определяется этим напором и коэффициентом поверхностного натяжения жидкости, а от радиуса капилляра не зависит. Например, при напоре Н =10 мм радиус водяного мениска, по Лапласу, r = 0,73 мм. Если диаметр капилляра d =15 мкм и Т = 35 К, то критерий конфигурации мениска В = 1,0000264 и рабочее давление пара составляет 0,15 Па, что почти в 40000 раз ниже идеального случая. На рис. 30, г в отличие от в мениск формируется большим напором Н, в то время как гидродинамическое сопротивление пару на пути h снижено до минимума. Мощность ПД растет с увеличением числа капилляров, с этой целью используются капиллярно-пористые тела (мембраны) [ТРП, стр.459-462].

5. Нарушение закона Вольта.

Несколько других типов самофункционирующих термодинамических пар – циркуляционных вечных двигателей второго рода, нарушающих второй закон Клаузиуса и преобразующих теплоту одного источника (окружающей среды) в электроэнергию или работу с КПД 100%, основаны на использовании термоэлектрических явлений. Существует целый комплекс таких явлений; некоторые из них были известны давно (эффекты Вольта, Зеебека, Пельтье и Томсона), другие впервые теоретически предсказаны и экспериментально обнаружены в ОТ [18, с.313; 21, с.307]; все они могут быть применены для создания вечных двигателей второго рода.

В основу осуществления термоэлектрического устройства первого типа (ПД-14) положен эффект возникновения контактной разности потенциалов на границе соприкосновения двух разнородных веществ – металлов, полупроводников и диэлектриков. Этот эффект был открыт Вольта в 1797 г.

Хорошо известен закон Вольта, согласно которому при одной и той же температуре в правильно разомкнутой цепи, на концах которой находится один и тот же проводник первого рода (в проводниках первого рода не происходит химических реакций), суммарная разность потенциалов равна нулю. Другими словами, по Вольта, если составить замкнутую цепь из нескольких разнородных металлов, то в ней при изотермических условиях суммарная электродвижущая сила (ЭДС) и электрический ток должны быть равны нулю – это общеизвестная истина, которая вот уже почти 200 лет переходит из одного учебника физики в другой.

Однако в действительности дело обстоит несколько сложнее и в цепи, составленной из трех и более разнородных проводников, суммарная ЭДС и сила тока могут быть не равны нулю, то есть такая цепь может представлять собой типичный вечный двигатель второго рода. Рассмотрим более подробно теорию этого двигателя, но прежде выведем из ОТ закон Вольта, вникнем в физическую суть этого закона и покажем условия, при которых он нарушается.

Напишем уравнение третьего начала ОТ для вермической (термической) и электрической степеней свободы тела. С этой целью можно воспользоваться укороченными строчками (пятой и шестой) уравнения состояния (308). Имеем

   dT = A55d? + A56d?

   d? = A65d? + A66d?      (334)

Нас будет интересовать вторая строчка этого уравнения. Заменив в ней вермиор ? на температуру Т из первой строчки, приближенно получим

   d?  ? (A65/A55)dT + A66d?     (335)

   ?  ? (A65/A55)T + A66?     (336)

Как видим, потенциал тела ? является некоторой функцией f температуры и электрического заряда (или потенциала). Для нас сейчас важна температурная зависимость потенциала. Согласно уравнению (336), потенциал разнородных тел изменяется с температурой не одинаково, так как у них различны коэффициенты состояния А. Именно это является причиной возникновения разностей потенциалов Вольта и служит основанием для вывода из ОТ закона Вольта. Например, у трех одиночных тел, обозначенных на рис. 38, а буквами А, В и С, зависимость потенциала от температуры условно изображена сплошными линиями (рис. 38, е); при одной и той же температуре Т эти тела имеют некие вполне определенные вольтовские, постоянные при данной температуре потенциалы ?А , ?В  и ?С , никак между собою не связанные и друг от друга не зависящие. Разности потенциалов между телами, обозначенные двойными индексами, как видно из рисунка, в сумме всегда составляют нуль, то есть

   ?АВ + ?ВС + ?СА = ?А – ?В + ?В – ?С + ?С – ?А = 0   (337)

где

   ?АВ = ?А – ?В ;   ?ВС = ?В – ?С ;   ?СА = ?С – ?А   (338)

В этом фактически и заключается суть закона Вольта; соответствующий вывод может быть сделан для любого числа тел.

Однако если тела привести в соприкосновение друг с другом (рис. 38, б), то вольтовская идиллия несколько нарушается. Это объясняется тем, что скачки потенциалов возникают между пристеночными слоями х, имеющими толщину порядка размеров нескольких атомов. Термодинамические свойства каждого такого слоя заметно изменяются в зависимости от того, с каким конкретно другим телом соприкасается данное: вакуумом, воздухом, диэлектриком, полупроводником, металлом и т.п. При этом изменяются коэффициенты состояния А, а значит, и функции f.

Новые функции f для контактирующих поверхностей (слоев х) изображены на рис. 38, е штриховыми линиями. В условиях контакта при температуре Т тело 1 уже не имеет прежнего потенциала ?А : на поверхности соприкосновения с телом 2 оно обладает потенциалом f12 (первый индекс соответствует номеру данного тела, второй – номеру тела, с которым соприкасается данное), а на поверхности соприкосновения с телом 3 – потенциалом f13. Такие же изменения потенциала наблюдаются и у других тел. В результате получаются новые скачки потенциалов  f12 ,  f23  и  f31 ,  отличные от  вольтовских   ?АВ ,   ?ВС  и   ?СА . Эти новые скачки в сумме могут и не быть равны нулю, что нарушает закон Вольта.

Как видим, причина нарушения закона Вольта кроется во взаимном влиянии, взаимодействии контактирующих тел, которое законом не предусматривается. Благодаря нарушению закона Вольта в замкнутой цепи появляются нескомпенсированная ЭДС и электрический ток, в итоге цепь превращается в вечный двигатель второго рода со всеми вытекающими отсюда последствиями. Остановимся на изложении теории этого вопроса несколько подробнее [7, 8, 10] [ТРП, стр.462-465].

6. Термоэлектрические ПД.

Все потенциалы, обозначенные на рис. 38, е буквой f, имеют переменные значения, зависящие от свойств и условий взаимодействия проводников. При этом переменные разности типа  ?А – f12 ,   ?А – f13 ,   ?В – f21 ,   ?В – f23 ,   ?С – f32 ,   ?С – f31  представляют собой внутренние скачки потенциала, так как возникают в данном теле между слоями х и остальным его веществом. Переменные разности типа  f12 , f23  и  f31 , возникающие на границе раздела, соприкосновения разнородных тел, являются скачками внешними. При определении нескомпенсированной ЭДС надо просуммировать все эти скачки. Однако внутренние скачки обычно бывают заметно меньше внешних, ибо внутренние и поверхностные слои данного тела различаются между собой не так сильно, как сами разнородные тела. Поэтому для простоты и наглядности рассуждений в первом грубом приближении можно пренебречь внутренними скачками по сравнению с внешними. Тогда искомая нескомпенсированная ЭДС, например, для трех тел (?3) может быть выражена только через внешние скачки  ?12 ,  ?23  и ?31 . Находим

   ?3 = ?12 +  ?23  +  ?31 = f12 – f21 + f23 – f32 + f31 – f13 ? 0  (339)

где

   ?12 = f12 – f21 ;   ?23 = f23 – f32 ;   ?31 = f31 – f13    (340)

В рассматриваемых условиях разности типа f12 – f13 ,  f21 – f23   и f31 – f32 , обозначенные на рис. 38, е тройными вертикальными прямыми, представляют собой перепады потенциала вдоль первого, второго и третьего проводников. Если один из них разорвать, то в двух других указанные перепады обращаются в нуль, а разность потенциалов на концах разорванного проводника становится равной нескомпенсированной ЭДС  ?3 , которую можно легко измерить. При этом электрический ток отсутствует, а потенциалы ?А , ?В  и  ?С  приобретают некие новые значения, обусловленные перераспределением заряда в разорванной цепи.

В общем случае при наличии цепи, состоящей из n тел, получается такая же картина (?n  ? 0). В частном случае, когда цепь составлена всего из двух тел (n = 2), формула (339) дает

?2 = ?12 +  ?21 = f12 – f21 + f21 – f12 = 0

что хорошо согласуется с законом Вольта, но при этом суммируются не вольтовские, а искаженные взаимным влиянием тел скачки потенциалов.

Следовательно, при замыкании в цепь трех или более тел (n ? 3) суммарная ЭДС цепи, вопреки закону Вольта, может быть не равна нулю. При этом немаловажное значение приобретает конкретное сочетание и чередование тел в замкнутой цепи. В частности, при симметричном расположении проводников некоторые из них на ЭДС цепи могут не оказать влияния. Например, звено 2, симметрично расположенное относительно проводников 1 (рис. 38, в), из рассмотрения выпадает – это прямо следует из уравнения типа (339). Точно так же на ЭДС не влияют звенья 2 и 3 (рис. 38, г), но при том же составе проводников можно образовать цепь, у которой все звенья вносят свой полноценный вклад в ЭДС (рис. 38, д). Это должно свидетельствовать о том, что в реальных условиях скачки потенциала являются величинами переменными, а вольтовский детерминизм утрачивает свою силу из-за воздействия закона состояния ОТ на электрический интенсиал f. Обсуждаемая картина очень напоминает механическую: в механике железный детерминизм ее законов нарушается благодаря изменению хронального интенсиала ? под управлением закона состояния. Эти примеры весьма наглядно показывают, как уточняются и исправляются хорошо известные законы физики под влиянием начал ОТ; при этом открываются принципиально новые возможности.

Таким образом, цепь, составленная из трех и более проводников, представляет собой вечный двигатель второго рода: под действием нескомпенсированной ЭДС происходит вечная круговая циркуляция электрического заряда. В спаях цепи наблюдаются поглощение и выделение теплоты Пельтье, а вдоль проводников – поглощение и выделение теплоты Томсона и теплоты нового линейного эффекта, описанного в работах [18, с.316; 21, с.312], а также выделение теплоты Джоуля. Алгебраическая сумма теплот Пельтье, Томсона и линейного эффекта равна и противоположна по знаку суммарной джоулевой теплоте – этим балансом обеспечивается циркуляция заряда в условиях изоляции цепи от окружающей среды. Получается самофункционирующая термодинамическая пара, только в данном случае приходится соединять между собой не два, а три и более проводников. В связи с этим должен заметить, что в любой термодинамической паре в общем случае может быть задействовано не обязательно два, но произвольное количество проводников.

Теплота Пельтье, поглощаемая и выделяемая в спаях, приводит к появлению между ними разности температур. Это обстоятельство может быть использовано для повышения эффективности работы ПД-14. С этой целью свойства проводников надо подбирать таким образом, чтобы термоЭДС, возникающая между спаями цепи (эффект Зеебека), усиливала бы нескомпенсированную ЭДС.

Что касается самого эффекта Пельтье, то переменность скачков потенциала сыграла роковую роль в деле правильного понимания физической сути этого эффекта. Эффект Пельтье имеет чисто диссипативную природу и может быть как положительным (экранированная теплота выделяется), так и отрицательным (теплота экранируется, поглощается), причем количество тепла Пельтье в точности равно произведению разности (скачка) потенциалов на силу тока. Но если в качестве скачка взять постоянную вольтовскую разность типа ?АВ , не исправленную на взаимное влияние тел А и В, то результаты опытов по независимому определению количества тепла Пельтье и измерению разности ?АВ и силы тока не совпадут между собой. Из-за этого несовпадения теплоте Пельтье был придан недиссипативный смысл, факт существования отрицательной диссипации был замаскирован, что лишний раз подтверждало идею Клаузиуса об одностороннем развитии мира, то есть о существовании только положительной теплоты диссипации.

Механическое вечное движение можно наблюдать в термоэлектрическом двигателе ПД-17. Для этого надо легкую шелковинку или бузиновый шарик подвесить между пластинами, подключенными к ПД-14 (рис. 38, ж). Шелковинка, попеременно соприкасаясь с пластинами, перезаряжается и совершает таким образом периодические колебательные движения.

Если электроэнергия или механическая работа отводится от термоэлектрического ПД в окружающую среду, то цепь автоматически несколько снижает свою температуру и происходит поглощение из окружающей среды эквивалентного количества тепла. При этом КПД преобразования теплоты одного источника (окружающей среды) в работу равен 100%. Все это успешно и весьма просто нарушает второй закон Клаузиуса [ТРП, стр.465-468].

7. Термоэлектрические ПД, использующие новый

    линейный термоэлектрический эффект.

Термоэлектрические явления позволяют создать также ряд других типов циркуляционных ПД. Для этого можно воспользоваться, например, нашим новым упомянутым выше линейным эффектом поглощения или выделения теплоты вдоль проводника, на концах которого имеются разности температур и электрических потенциалов. Новый эффект имеет иную физическую природу, чем известный эффект Томсона, и определяется поэтому другими количественными законами [18, с.316; 21, с.309]. В частности, количество тепла Томсона пропорционально силе тока в первой степени, а количество тепла в новом линейном эффекте – силе тока в кубе.

Если учесть, что количество джоулева тепла пропорционально силе тока в квадрате, то станет ясно, что при очень больших силах тока вполне осуществим циркуляционный вечный двигатель второго рода в виде обычной двухпроводниковой термоэлектрической пары (ПД-18). Для этого надо, чтобы количество тепла, поглощаемого в эффектах новом, Томсона и Пельтье, было равно количеству тепла, выделяемого в тех же эффектах, а также в эффекте Джоуля. Такой баланс может иметь место в двух случаях: при нулевой силе тока, что для нас не интересно, а также при силе тока в несколько тысяч ампер (об этом говорится, например, в работе [25, с.8]). При этом кубическая зависимость поглощаемой теплоты от силы тока в новом эффекте будет доминировать над всеми остальными эффектами.

Необходимая для работы термопары разность температур между спаями автоматически поддерживается теплотой Пельтье, выделяемой в одном спае и поглощаемой в другом. Спай, где теплота выделяется, имеет более высокую температуру, чем спай, где теплота поглощается. Начальный запуск ПД-18 осуществляется путем предварительного нагрева или охлаждения одного из спаев; с целью запуска можно также подать в цепь нужный начальный импульс тока.

С помощью ПД-18 можно, например, отапливать и охлаждать помещение за счет окружающей среды, причем устройство будет включаться само автоматически при достижении температурой окружающего воздуха определенного уровня, обеспечивающего необходимую рабочую разность температур между спаями (положительную или отрицательную). Зимой теплота под действием этой разности будет поступать из окружающей среды в помещение, а летом – из помещения в окружающую среду. Спаи и проводники самофункционирующего вечного двигателя второго рода ПД-18 должны быть снабжены соответствующими ребрами, усиливающими теплообмен с помещением и окружающей средой. Если от двигателя часть электроэнергии отбирать, то он немного охладится и в соответствии с изложенными выше принципами начнется 100%-ное преобразование теплоты окружающей среды в электрическую работу [ТРП, стр.468-469].



















Глава ХXIV. Решающие эксперименты ОТ:

   «получение КПД устройств, равного единице».

1. Термофазовые ПД..

Приведу теперь некоторые результаты опытов с конкретными устройствами, изображенными на рис. 30, в и г. Чтобы предотвратить искажающее влияние окружающей среды, ПД помещаются в медную калориметрическую бомбу с толщиной стенок 20 мм, выложенную изнутри легковесным пенопластом; бомба располагается в термостате с заданной температурой. Первый же испытанный простейший вечный двигатель второго рода ПД-1 (см. рис. 30, в) дал положительные результаты. В нем в качестве мембраны использован стеклянный фильтр. Диаметр стеклянной трубки на паровом участке циркуляции равен 30 мм, на жидкостном -10 мм, габариты устройства 30х70х160 мм. При испытании воды (Н = 5 мм) медь-константановая термопара с диаметром электродов 0,3 мм при комнатной температуре дала электродвижущую силу, равную нескольким сотым долям микровольта (мкВ); для медь-константановой термопары 1 мкВ = 0,023 К. В ПД-21 (см. рис. 30, г) использованы две стеклянные мембраны диаметром 32 мм и толщиной 2,4 мм, сосуд и крышки изготовлены из тефлона (фторопласта), стакан 3 – из нержавеющей стали, напор ? = 231 мм, средняя длина парового участка h = 35 мм. Кривая 1 на рис. 30, д показывает зависимость ЭДС медь-константановой термопары от температуры термостата для воды, пары которой работают против силы тяжести. Штриховая кривая 3 учитывает штатив-эффект, найденный путем измерения температуры сухого ПД-21. Кривая тоже получена для воды в опытах с ПД-13, в котором стакан подвешен у самого дна устройства, при этом H = h = 166 мм, мембраны те же, сосуд изготовлен из оргстекла, его внутренняя поверхность покрыта парафином для избежания конденсации влаги на стенках. ЭДС увеличивается в несколько раз, если воду заменить спиртом, ацетоном или эфиром. Например, ПД-13 из стекла при Т = 28 К и Н = 231 мм дает ЭДС для воды 0,26, для спирта 1,03 и для эфира 2,56 мкВ. В статье [23] изображена схема и описаны результаты испытания еще одного фазового двигателя (ПД-3) с двумя горизонтально расположенными друг против друга мембранами с разной степенью смачиваемости.

Необходимо подчеркнуть, что успешная очень длительная работа испарительного ПД возможна только в том случае, если созданы условия для предотвращения конденсации пара на внутренней поверхности устройства вне плоского мениска жидкости. Сконденсировавшиеся на стенках капельки жидкости малого радиуса вступают в конкуренцию с менисками капилляров, ибо над капельками тоже повышается давление насыщенного пара, в результате интересующая нас циркуляция постепенно затухает, пересиливается капельками. Однако этот вопрос особого значения не имеет, так как не может отразиться на принципиальной стороне обсуждаемой проблемы.

Как видим, опыты с реальными испарительными вечными двигателями второго рода в точности подтверждают все высказанные выше теоретические прогнозы ОТ: об ошибочности теории фазовых превращений Томсона-Кельвина, о нарушениях второго закона термодинамики Клаузиуса и т.д. [ТРП, стр.470-471].

2. Термоэлектрические ПД.

Перейдем теперь к описанию экспериментов с различными реальными термоэлектрическими вечными двигателями второго рода. Термоэлектрический циркуляционный вечный двигатель второго рода ПД-14 выглядит значительно проще испарительного, ибо для его осуществления достаточно лишь соединить в цепь три или более разнородных проводника и измерить возникающую ЭДС. Однако исключительной простоте двигателя сопутствуют известные трудности, связанные с достаточно точными измерениями этой ЭДС. Суть проблемы заключается в том, что в настоящее время эфир перенасыщен электромагнитными излучениями, при этом провода, соединяющие ПД с измерительным прибором, например потенциометром типа Р-348 с ценой деления 10-8 В или зеркальным гальванометром соответствующей чувствительности, играют роль антенны, а поверхность контакта проводников – роль детектора. В итоге цепь превращается в импровизированный детекторный радиоприемник, в ней наводится паразитный ток, фиксируемый прибором. Будем называть этот паразитный штатив-эффект детекторным, он может существенно исказить результаты экспериментов.

Со всеми помехами можно успешно бороться лишь путем полной и совершенной изоляции ПД и всей измерительной аппаратуры от окружающей среды, в частности с помощью заземленной герметичной металлической камеры или даже целой комнаты. Но и комната не гарантирует полной изоляции, например, от таких полей, как хрональное; в последнем случае можно применить полиэтиленовую защиту. В наших опытах все соединительные провода, клеммы и приборы экранированы и заземлены, двигатель помещен в заземленную калориметрическую бомбу с толщиной стенок 20 мм, внутренним диаметром 70-90 мм и высотой 70-210 мм, бомба изготовлена из меди или стали, во втором случае исключается влияние магнитного поля, испытаны также экранирующие герметичные алюминиевые боксы и т.д. Этого, конечно, недостаточно для идеальной изоляции устройства, но полученные результаты позволяют сделать все необходимые качественные и количественные выводы. Это становится возможным благодаря применению целого комплекса различных ПД, при этом удается даже получить представление о величине посторонних наводок.

Проведены тысячи опытов, в них изучены самые различные материалы во всевозможных условиях, состояниях и сочетаниях – металлы, полупроводники и диэлектрики. Металлы использованы в виде кристаллов, пластин, фольги разной толщины, проволоки, напыленных в вакууме слоев и порошка, спеченного и свободно насыпанного; полупроводники – в виде кристаллов, пластин, выращенных слоев, порошка и тех многочисленных модификаций, которые предусмотрены технологией электронной промышленности; диэлектрики – в виде конденсаторов. Условия всех опытов изотермические, температура комнатная или повышенная с помощью термостата, давление атмосферное или пониженное до значений (2-5)·10-5 мм рт. ст. Во всех случаях обнаружен предсказанный ОТ эффект возникновения нескомпенсированной ЭДС, которая вызывает незатухающую круговую циркуляцию электрического заряда и тем самым нарушает закон Вольта и второй закон термодинамики Клаузиуса. Результаты многих опытов кратко описаны в работе [10], но, к сожалению, в этих опытах не всегда удавалось должным образом избавиться от детекторного эффекта.

Здесь я ограничусь обсуждением лишь экспериментов с тщательно изолированными двигателями ПД-14, специально спланированными для подтверждения основных теоретических выводов гл. XXIII. Испытанные двигатели состоят из трех и более металлов, образцам которых придана форма пластин толщиной около 3 мм, контакт между ними осуществляется с помощью особых зажимов, площадь контакта составляет 1-3 см2. Для возможности сравнения различных материалов в качестве двух неизменных проводников цепи использованы медь и алюминий, служащие эталонами. Пластины соединены между собой последовательно в соответствии со схемой

   – Cu – X – Al – Cu –

где X – испытуемая или испытуемые пластины.

Из схемы видно, что медный проводник разорван, в разрыв включен измерительный прибор, который как бы играет роль звена 2, заключенного между звеньями 1 (рис. 38, в). Правая медная пластина, контактирующая с алюминием, присоединена к положительной клемме прибора, левая, контактирующая с испытуемым материалом, – к отрицательной. Температура испытаний комнатная, условия изотермические, давление понижено до значений (2-5)·10-5 мм рт. ст. Если используется атмосферное давление, то соответствующая ЭДС отмечается индексом «а» внизу. Помимо эталонных меди и алюминия в опытах фигурируют также теллур, висмут и никель.

В табл. 1-3 приведены значения нескомпенсированной ЭДС ? для цепи, составленной из двух и трех металлов, причем данные табл. 2 относятся к атмосферным условиям.

        Таблица 1.

Схема соединения пластин

ЭДС ?2 , мкВ

1

Cu – Al – Cu

2

Cu – Ni – Cu

3

Cu – Bi – Cu

4

Cu – Te – Cu

– 0,70

Из табл. 1 видно, что два металла дают либо нулевую, либо сравнительно небольшую ЭДС. Наличие этой ЭДС при двух металлах противоречит теории и объясняется действием паразитного детекторного эффекта. Сопоставление данных табл. 1 и 3 говорит о том, что указанный штатив-эффект сравнительно невелик. Вместе с тем надо полагать, он в большей или меньшей степени присутствует во всех экспериментах.

        Таблица 2.

Схема соединения пластин

ЭДС ?3а, мкВ

1

Cu – Ni – Al – Cu

2

Cu – Bi – Al – Cu

3

Cu – Te – Al – Cu

– 0,60

Обращает на себя внимание сильное влияние на величину ЭДС адсорбированных поверхностями металла газов. Эти газы образуют и сильно изменяют термодинамические свойства тех самых тончайших слоев х, в которых разыгрывается интересующая нас картина. В результате газы начинают играть роль проводников 1 на рис. 38, в, и вследствие этого основной металл 2 из рассмотрения выпадает. Это хорошо видно из сравнения табл. 2 и 3, где ЭДС на воздухе существенно ниже, чем в вакууме.

        Таблица 3.

Схема соединения пластин

ЭДС ?3 , мкВ

1

Cu – Ni – Al – Cu

+ 0,03

2

Cu – Bi – Al – Cu

+ 0,16

3

Cu – Te – Al – Cu

– 4,15

После нескольких часов вакуумирования адсорбированные газы удаляются, срабатывает основной металл, ЭДС резко возрастает. Поэтому, чтобы избежать влияния газов, в опытах вакуумирование длится не менее двух суток. Согласно теории, симметричное соединение должно исключить из игры те проводники, которые соприкасаются с одноименными материалами. Это косвенно подтверждается характером влияния адсорбированных газов (табл. 2). Более сложные случаи симметричного соединения проводников представлены в табл. 4. Здесь позиции 1 и 2 соответствуют схеме в на рис. 38,


        Таблица 4.

Схема соединения пластин

ЭДС, мкВ

1

Cu – Bi – Te – Bi – Al – Cu

?4 = – 3,97

2

Cu – Ni – Te – Ni – Al – Cu

?4 = – 2,17

3

Cu – Ni – Bi – Te – Bi – Ni – Al – Cu

?5 = – 2,99

4

Cu – Ni – Bi – Te – Ni – Al – Bi – Cu

?5 = + 1,71

а позиция 3 – схеме г на том же рисунке. В первых двух позициях из рассмотрения должен выпасть теллур, а в третьей – теллур и висмут. Но опыт не показывает ожидаемого полного выпадения указанных металлов и превращения четырех– и пятизвенной цепей в трехзвенную. Согласно опытным данным, ЭДС цепи, как и положено, несколько снижается по сравнению с ЭДС теллура, но не достигает тех значений, которые в табл. 3 соответствуют трехзвенной цепи для висмута и никеля. Наблюдаемое недостаточно точное следование теории тоже можно объяснить влиянием внешних помех. В этом смысле теллур обладает ярко выраженными детекторными свойствами.

Пять металлов, присутствующих в позиции 3 табл. 4, можно соединить по схеме рис. 38, д. В этом случае все они вносят свой посильный вклад в ЭДС (табл. 4, позиция 4). Отсюда видно, какое большое влияние на ЭДС оказывает конкретное сочетание и чередование проводников в цепи. Аналогичная картина наблюдается при перестановке любых двух металлов; например, соответствующие данные для четырехзвенной цепи приведены в табл. 5.

        Таблица 5.

Схема соединения пластин

ЭДС ?4 , мкВ

1

Cu – Bi – Te – Al – Cu

– 2,10

2

Cu – Te – Bi – Al – Cu

– 0,65

Особый интерес представляют цепи, в которых последовательно, соединяются между собой целые блоки проводников (назовем их элементами) типа тех, которые приведены в табл. 3. Например, цепи табл. 6 содержат по два таких элемента. Из таблицы видно, что последовательное соединение двух

        Таблица 6.

Схема соединения пластин

ЭДС ?3х2 , мкВ

1

Cu – Ni – Al – Cu – Ni – Al – Cu

+ 0,01

2

Cu – Bi – Al – Cu – Bi – Al – Cu

+ 0,10

3

Cu – Te – Al – Cu – Te – Al – Cu

– 1,90

одинаковых элементов не приводит к двухкратному увеличению ЭДС цепи. Наоборот, фактическая суммарная ЭДС цепи оказывается почти вдвое ниже, чем ЭДС каждого из элементов, входящих в цепь. Это объясняется тем, что контактная ЭДС зависит не только от температуры, но и от потенциала (заряда) (см. уравнение (336)). В результате соседние элементы гасят ЭДС друг друга. Таким образом, нельзя воспользоваться соблазнительной идеей без особых мудростей соединить между собой последовательно и параллельно большое множество – тысячи и миллионы – однотипных элементов и получить таким образом мощный термоэлектрический вечный двигатель второго рода, способный бесплатно питать различные полезные и бесполезные устройства.


    Ваша оценка произведения:

Популярные книги за неделю