355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ТЕ) » Текст книги (страница 59)
Большая Советская Энциклопедия (ТЕ)
  • Текст добавлен: 7 октября 2016, 11:13

Текст книги "Большая Советская Энциклопедия (ТЕ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 59 (всего у книги 79 страниц)

Термозит

Термози'т, то же, что пемза шлаковая.

Термозитобетон

Термозитобето'н, то же, что шлакобетон .

Термокарст

Термока'рст, термический карст, образование просадочных и провальных форм рельефа и подземных пустот вследствие вытаивания подземного льда или оттаивания мёрзлого грунта при повышении среднегодовой температуры воздуха или при увеличении амплитуды колебания температуры почвы. Т. – специфическое явление области распространения многолетнемёрзлых горных пород . Типичные формы рельефа, образующиеся в результате Т.: озёрная котловина, аласы , западины, блюдца и другие отрицательные формы рельефа, а также провальные образования и полости в подпочвенном слое (гроты, ниши, ямы). Т., как правило, сопутствуют другие процессы (например, тепловая усадка и гравитационное перемещение оттаявших пород); он может сочетаться с плоскостным и подпочвенным смывом, солифлюкцией , суффозией , эрозией и абразией . Т. развивается также и на территориях стабильной и даже агградирующей криолитозоны в результате нарушений динамического равновесия в водном и тепловом режимах земной поверхности. Причиной Т. может также стать промышленное и гражданское строительство, вырубка лесов и многие др. факторы хозяйственной деятельности человека.

  Комплекс мероприятий по предупреждению и борьбе с Т. включает предохранение многолетнемёрзлых пород и подземных льдов от протаивания при строительстве и эксплуатации сооружений, предпостроечное оттаивание мёрзлых льдистых оснований, дренаж территорий.

  Лит.: Качурин С. П., Термокарст на территории СССР, М., 1961.

  Ю. Т. Уваркин, А. А. Шарбатян.

Термокаустика

Термока'устика (от термо ... и греч. kaustikós – жгучий), прижигание с использованием высоких температур (например, раскалённым железным стержнем или платиновым наконечником специального прибора – термокаутера). В современной медицинской практике применяется главным образом гальванокаустика.

Термокопировальная бумага

Термокопирова'льная бума'га, бумага (плёнка), прозрачная для инфракрасных (тепловых) лучей, покрытая с одной стороны тонким слоем термочувствительного вещества; предназначается для термокопирования . В состав термочувствительного слоя входят: воски (карнаубский, церезин, воск монтан и др.); красители (трифенилметановые, родаминовые, аураминовые и др.); твёрдые жиры; иногда пластификаторы. Получаемые копии в зависимости от качества покрытия могут быть использованы либо как одноразовые (конечные) копии, либо как матрицы-шаблоны для последующего размножения на гектографе . В СССР выпускают Т. б., дающую копии чёрного, красного, синего и зелёного цветов; формат листов 297 ´ 210 мм.

  Лит.: Уэцкий М. И., Техническая бумага для размножения документации, 3 изд., М., 1973.

Термокопировальный аппарат

Термокопирова'льный аппара'т, одно из средств оргтехники , применяется для оперативного копирования и размножения документов термокопированием . Технологический процесс получения термокопий предусматривает экспонирование термочувствительного материала (отдельно или совместно с носителем копии – обычной бумагой) в инфракрасных лучах и проявление изображения или перенос его на носитель копии. Основные узлы Т. а. (рис. 1 ): листопротяжное устройство, стеклянный цилиндр, внутри которого находится источник инфракрасного излучения (например, лампа накаливания), электропривод и вентилятор.

  Оригинал и термочувствительный материал, проходя между стеклянным цилиндром и прижимным валиком, облучаются потоком инфракрасных лучей. Привод позволяет осуществлять бесступенчатую регулировку времени экспонирования.

  Копирование на Т. а. можно производить с листовых прозрачных и непрозрачных, односторонних и двусторонних оригиналов со штриховым изображением (текст, чертёж, штриховые рисунки). Прозрачные и полупрозрачные односторонние оригиналы копируют преимущественно на просвет; непрозрачные односторонние и двусторонние оригиналы копируют только рефлексным способом, в отражённых т оригинала лучах (рис. 2 ). Производительность Т. а. от 3 до 10 копий в 1 мин; наибольший формат копируемого материала (в разных моделях Т. а.) от 200 ´ 300 мм до 300 ´ 450 мм.

  Т. а. могут быть также использованы для нанесения на оригиналы защитных покрытий с помощью пластикатной плёнки (ламинирование) и изготовления копий на прозрачных плёнках для проекторов.

  Лит.: Алферов А. В., Резник И. С., Шорин В. Г., Оргатехника, М., 1973.

  А. Я. Манцен.

Рис. 2. Копировальные комплекты (конверты): а – для получения копий при помощи термокопировальной бумаги (косвенный способ); б – для получения копий на термореактивной бумаге (прямой способ).

Рис. 1. Термокопировальный аппарат ТЕКА—II (СССР): а – внешний вид; б – схема; 1 – листопротяжное устройство; 2 – ведущий валик; 3 – стеклянный цилиндр; 4 – рефлектор; 5 – лампа; 6 – прижимной валик; 7 – направляющие для вывода копировального комплекта; 8 – вентилятор; 9 – корпус (кожух); 10 – рычаг прижимного валика; 11 – рычаг включения лампы; 12 – направляющие для ввода копировального комплекта.

Термокопирование

Термокопи'рование, копировальный процесс, основанный на свойстве термочувствительных материалов изменять своё состояние под действием тепла (инфракрасных лучей). Термокопии изготовляют в термокопировальных аппаратах контактным способом (на просвет или в отражённых лучах) на термореактивной бумаге (прямое, или термохимическое, копирование) либо на носителе копии с помощью термокопировальной бумаги или плёнки (косвенное, или термопластическое, копирование) с оригиналов, выполненных тушью, чёрным карандашом, отпечатанных на пишущей машине или типографским способом (элементы изображения таких оригиналов способны интенсивно поглощать тепло).

  При экспонировании в инфракрасном свете светлые участки оригинала (пробелы) отражают большую часть лучей, а тёмные (элементы изображения) – поглощают лучи и при этом нагреваются. При прямом Т. тепло нагретого элемента оригинала вызывает в соприкасающемся с ним участке чувствительного слоя термореактивной бумаги химическую реакцию, вследствие которой образуется контрастное тёмное вещество (рис. , а). При косвенном Т. чувствительный слой термопластической плёнки (или термокопировальной бумаги) под действием тепла расплавляется и переносится на носитель копии (рис. , б). Копии на термореактивной бумаге со временем темнеют вследствие воздействия тепла и света на пробелы, которые остаются теплочувствительными, поэтому срок их хранения ограничен. Термопластичное копирование позволяет получать печатные формы для размножения документов средствами оперативной полиграфии , а также копии для длительного хранения.

  Лит.: Алферов А. В., Резник И. С., Шорин В. Г., Оргатехника, М., 1973.

  А. Я. Манцен.

Схемы процессов термокопирования: а – прямого, б – косвенного, или переносного; 1 – инфракрасные лучи; 2 – оригинал (непрозрачные элементы изображения зачернены); 3 – термореактивная бумага (чувствительный слой не заштрихован); 4 – термокопия (после химической реакции); 5 – термокопировальная бумага (чувствительный слой не заштрихован); 6 – термокопировальная бумага после копирования; 7 – термокопия.

Термолюминесценция

Термолюминесце'нция,люминесценция , возникающая при нагревании вещества, предварительно возбуждённого светом или жёстким излучением. Наблюдается у многих кристаллофосфоров , минералов, некоторых стекол и органических люминофоров. Механизм Т. – рекомбинационный. При нагревании освобождаются электроны, захваченные ловушками, и происходит излучательная рекомбинация их с ионизованными при возбуждении центрами люминесценции. Т. применяется при исследовании энергетического спектра электронных ловушек в твёрдых телах, а также в минералогии. Центрами люминесценции минералов служат разнообразные структурные дефекты, определяемые условиями образования минералов, а также возникающие при облучении их ионизирующим излучением и при других внешних воздействиях. Спектр Т. минералов и характер высвечивания несут информацию о природе центров свечения, их энергетических параметрах, возрасте пород, их радиационной и термической истории. Наиболее интенсивной и сложной Т. обладают минералы, содержащие примеси редкоземельных элементов (флюорит, апатит, ангидрит и др.), а также многие силикаты (полевой шпат, кварц, содалит и др.), карбонаты, сульфаты.

  Лит.: Марфунин А. С., Спектроскопия, люминесценция и радиационные центры в минералах, М., 1975; Thermoluminescence of geological materials, L.– N. Y., 1968.

  А. Н. Таращан.

Термомагнитные сплавы

Термомагни'тные спла'вы, ферромагнитные сплавы, имеющие резко выраженную температурную зависимость намагниченности в заданном магнитном поле. Это свойство проявляется в определённом интервале температур вблизи Кюри точек , значения которых у Т. с. находятся между 0 и 200 °С. Известны 3 основные группы Т. с.: медно-никелевые (30—40% Cu), железо-никелевые (30% Ni) и железо-никелевые (30—38% Ni), легированные Cr (до 14%), Al (до 1,5%), Mn (до 2%). Типичные представители этих групп: кальмаллои , термаллои , компенсаторы. Медно-никелевые сплавы могут применяться в области температур от -50 до 80 °С; их недостаток – низкие значения намагниченности. Железо-никелевые сплавы предназначены для работы от 20 до 80 °С; при отрицательных температурах в этих сплавах возможно изменение кристаллографической структуры, сопровождающееся повышением точки Кюри и снижением температурного коэффициента намагниченности. Наибольшее распространение получили легированные железо-никелевые сплавы. В зависимости от состава они могут применяться в узкой (от -20 до 35 °С) либо широкой (от -60 до 170 °С) температурных областях. На базе легированных железо-никелевых сплавов созданы многослойные термомагнитные материалы, имеющие лучшие магнитные характеристики, чем сплавы. Основная область применения Т. с. – термокомпенсаторы и терморегуляторы магнитного потока в измерительных приборах (гальванометров, счётчиков электроэнергии, спидометров и т. п.), выполняемые в виде шунтов, ответвляющих на себя часть потока постоянного магнита. Принцип действия такого шунта основан на том, что с повышением температуры резко уменьшается его намагниченность, вследствие чего увеличивается поток в зазоре магнита. Благодаря этому компенсируется погрешность прибора, связанная с температурными изменениями индукции магнита, электрического сопротивления измерительной обмотки, жёсткости противодействующих пружин. Т. с. применяются также в реле, момент срабатывания которых зависит от температуры.

  Лит.: Займовский А. С., Чудневская Л. А., Магнитные материалы, М.– Л., 1957, с. 142—44; Прецизионные сплавы. Справочник, под ред. Б. В. Молотилова, М., 1974, с. 156—64.

  А. И. Зусман.

Термомагнитные явления

Термомагни'тные явле'ния, группа явлений, связанных с влиянием магнитного поля на электрические и тепловые свойства проводников и полупроводников, в которых существует градиент температуры. Т. я., как и гальваномагнитные явления , обусловлены воздействием магнитного поля на движущиеся частицы, несущие электрический заряд (электроны в проводниках, электроны и дырки в полупроводниках). Магнитное поле искривляет траекторию движущихся зарядов и, в частности, отклоняет текущий по телу электрический ток и связанный с переносом частиц поток теплоты от первоначального направления (см. Лоренца сила ). В результате появляются составляющие электрического тока и теплового потока в направлении, перпендикулярном магнитному полю, и наблюдаются др. явления.

  Т. я. можно классифицировать, рассматривая взаимное расположение векторов: напряжённости магнитного поля Н, температурного градиента ÑТ в проводнике, плотности W теплового потока и вектора N, параллельного направлению, в котором измеряется явление. Т. я., измеряемые в направлении, перпендикулярном или параллельном первичному температурному градиенту, называются соответственно поперечными и продольными. Характерным примером Т. я. может служить возникновение в проводнике (металле) или полупроводнике электрического поля Е, если в теле имеется градиент температуры и в перпендикулярном к нему направлении накладывается магнитное поле Н (Нернста – Эттингсхаузена эффект ). Возникшее поле Е имеет как продольную, так и поперечную составляющие. К Т. я. относится также Риги – Ледюка эффект и ряд др. явлений.

  Лит.: Блатт Ф. Д., Теория подвижности электронов в твердых телах, пер. с англ., М.—Л., 1963; Цидильковский И. М., Термомагнитные явления в полупроводниках, М., 1960.

Термометр

Термо'метр (от термо ... и... метр ), прибор для измерения температуры посредством контакта с исследуемой средой. Применение Т. исключительно разнообразно: существуют Т. бытового употребления (комнатные, для воздуха и воды, медицинские и др.); Т. технического применения, высокоточные Т. для исследовательских и метрологических работ и др. Действие Т. основано на таких физических свойствах, как тепловое расширение жидкостей, газов и твёрдых тел; на температурной зависимости давления газа или насыщенных паров, электрического сопротивления, термоэлектродвижущей силы, магнитной восприимчивости парамагнетика и т. д. (см. Термометрия ).

  Наиболее распространены термометры жидкостные , термометры манометрические , термометры сопротивления , Т. термоэлектрические (см. Термопара ). Для измерения низких температур применяют, кроме того, конденсационные Т., газовые термометры , акустические Т., магнитные Т. Существуют Т. специального назначения, например термометры метеорологические , гипсотермометры , глубоководные Т.

  Иногда применяют биметаллические Т., основанные на различии теплового расширения веществ, из которых изготовлены пластины их чувствительных элементов; кварцевые Т., основанные на температурной зависимости резонансной частоты пьезокварца ; ёмкостные Т., основанные на зависимости диэлектрической восприимчивости сегнетоэлектриков от температуры, и др.

  Д. И. Шаревская.

Термометр жидкостный

Термо'метр жидко'стный (реже – жидкостный термометр), прибор для измерения температуры , принцип действия которого основан на тепловом расширении жидкости. Т. ж. относится к термометрам непосредственного отсчёта.

  Широко применяется в технике и лабораторной практике для измерения температур в диапазоне от –200 до 750 °С. Т. ж. представляет собой прозрачный стеклянный (редко кварцевый) резервуар с припаянным к нему капилляром (из того же материала). Шкала в °С наносится непосредственно на толстостенный капилляр (так называемый палочный Т. ж.) или на пластинку, жестко соединённую с ним (Т. ж. с наружной шкалой, рис. , а). Т. ж. с вложенной шкалой (рис. , б) имеет внешний стеклянный (кварцевый) чехол. Термометрическая жидкость заполняет весь резервуар и часть капилляра. В зависимости от диапазона измерений Т. ж. заполняют пентаном (от -200 до 20 °С), этиловым спиртом (от -80 до 70 °С), керосином (от -20 до 300 °С), ртутью (от -35 до 750 °С) и др.

  Наиболее распространены ртутные Т. ж., так как ртуть остаётся жидкой в диапазоне температур от -38 до 356 °С при нормальном давлении и до 750 °С при небольшом повышении давления (для чего капилляр заполняют азотом). Кроме того, ртуть легко поддаётся очистке, не смачивает стекло, и её пары в капилляре создают малое давление. Т. ж. изготавливают из определённых сортов стекла и подвергают специальной термической обработке («старению»), устраняющей смещение нулевой точки шкалы, связанное с многократным повторением нагрева и охлаждения термометра (поправку на смещение нуля шкалы необходимо вводить при точных измерениях). Т. ж. имеют шкалы с различной ценой деления от 10 до 0,01 °С. Точность Т. ж. определяется ценой делений его шкалы. Для обеспечения требуемой точности и удобства пользуются Т. ж. с укороченной шкалой; наиболее точные из них имеют на шкале точку 0 °С независимо от нанесённого на ней температурного интервала. Точность измерений зависит от глубины погружения Т. ж. в измеряемую среду. Погружать Т. ж. следует до отсчитываемого деления шкалы или до специально нанесённой на шкале черты (хвостовые Т. ж.). Если это невозможно, вводят поправку на выступающий столбик, которая зависит от измеряемой температуры, температуры выступающего столбика и его высоты. Основные недостатки Т. ж. – значительная тепловая инерция и не всегда удобные для работы габариты. К Т. ж. специальных конструкций относят термометры метеорологические , метастатические термометры , медицинские и др. Медицинские ртутные Т. ж. имеют укороченную шкалу (34—42 °С) и цену деления шкалы 0,1 °С. Действуют они по принципу максимального термометра – ртутный столбик в капилляре остаётся на уровне максимального подъёма при нагревании и не опускается до встряхивания термометра.

  Лит.: см. при ст. Термометрия .

  Д. И. Шаревская.

Жидкостные термометры: а – комнатный термометр с наружной шкалой; б – лабораторный термометр с вложенной шкалой, имеющий на шкале точку 0°С.

Термометр манометрический

Термо'метр манометри'ческий, прибор для измерения температуры , действие которого основано на одном из трёх принципов: тепловом расширении жидкости, температурной зависимости давления газа и температурной зависимости давления насыщенных паров жидкости. Различают Т. м. газовые (азот), жидкостные (ртуть) и конденсационные, или парожидкостные (хлористый этил и др.). Конструктивно они представляют собой герметичную систему, состоящую из баллона, соединённого капилляром с пружинным манометром (показывающим или самопишущим). Т. м. широко распространены в качестве приборов технического назначения в диапазоне температур от -60 до 550 °С. Благодаря длине капилляра (до 60 м ) они могут служить дистанционными термометрами. Шкала манометра, измеряющего давление в баллоне, градуирована непосредственно в °С.

  Лит. см. при ст. Термометрия .

  Д. И. Шаревская.

Термометр опрокидывающийся

Термо'метр опроки'дывающийся глубоководный, ртутный термометр для измерения температуры воды в водоёмах на различных глубинах. Капилляр Т. о. 1 (см. рис. ) выше резервуара 2 имеет сужение в виде вилки 3, после чего он расширяется и образует петлю, а далее переходит в обычный цилиндрический канал, оканчивающийся небольшим расширением 4. После того как показания термометра установились, его резко поворачивают вверх резервуаром, вызывая этим отрыв столбика ртути, вошедшей в капилляр через сужение. Длина столбика ртути в капилляре служит мерой температуры. Петля предохраняет капилляр от дополнительного попадания в него ртути из резервуара при повышении температуры в более высоких слоях воды. В защитную стеклянную трубку Т. о. вмонтирован также обычный термометр 5, который показывает температуру в момент отсчёта и служит для внесения поправки в показания Т. о.

  Лит.: Руководство по гидрологическим работам в океанах и морях, Л., 1967; Дерюгин К. К., Степанюк И. А,, Морская гидрометрия, Л., 1974.

Глубоководный опрокидывающийся термометр.

Термометр сопротивления

Термо'метр сопротивле'ния, прибор для измерения температуры , принцип действия которого основан на изменении электрического сопротивления чистых металлов, сплавов и полупроводников с температурой (на увеличении сопротивления R с повышением температуры Туметаллов и обратная зависимость R от Т у полупроводников ).

  Широкое распространение получили Т. с. из чистых металлов, особенно платины (температурный коэффициент сопротивления  град-1 ) и меди (a = 0,0044 град-1 ), которые конструктивно представляют собой металлическую проволоку или ленту, намотанную на жёсткий каркас (из кварца, фарфора, слюды), заключённый в защитную оболочку (из металла, кварца, фарфора, стекла) с головкой, через которую проходят 2, 3 или 4 (наиболее точные Т. с.) вывода, соединяющие Т. с. с измерительным прибором (рис. ). Платиновые Т. с. применяют для измерения температур в пределах от -263 до 1064 °С, медные – от -50 до 180 °С. Материал и конструкция Т. с. должны обеспечивать его чувствительность и стабильность, достаточные для требуемой точности измерений в заданном диапазоне температур при определённых условиях применения (вибрации, агрессивные среды и др.). Точность измерений температуры зависит также от точности прибора, которым измеряют сопротивление. Т. с. технического применения работают в комплекте с мостами измерительными , потенциометрами , логометрами (показывающими и самопишущими), шкалы которых градуированы непосредственно в °С в соответствии с таблицами зависимости R от Т для данного типа Т. с. При помощи высокоточных платиновых Т. с. воспроизводится Международная практическая температурная шкала , проводятся точные измерения температуры и градуировка др. термометров в диапазоне 14—900 К.

  В качестве лабораторных иногда применяют индиевые Т. с. (4—300 К) и бронзовые Т. с. (1—4 К).

  Т. с. из полупроводников (композиционный углерод, легированный германий и др.) широко применяются для измерения низких температур (0,1—100 К) благодаря их высокой чувствительности. Т. с. этого вида представляют собой полупроводниковые пластинки (плёнки) различных габаритов и формы с приваренными металлическими выводами, помещаемые часто в защитную оболочку. В диапазоне температур 4,2—13,8 К применяют как особо точные германиевые Т. с. При температурах выше 100 К применение полупроводниковых Т. с. ограничено (сказываются их нестабильность и разброс индивидуальных характеристик, см. Терморезистор ).

  Лит. см. при ст. Термометрия .

  Д. И. Шаревская.

Общий вид платинового термометра сопротивления (а) и его чувствительный элемент (б): 1 – стальной чехол; 2 – чувствительный элемент; 3 – штуцер для установки термометра; 4 – головка для присоединения термометра к электроизмерительному прибору; 5 – слюдяной каркас; 6 – бифилярная обмотка платиновой проволоки; 7 – серебряная лента; 8 – слюдяная накладка; 9 – серебряные выводы.


    Ваша оценка произведения:

Популярные книги за неделю