Текст книги "Большая Советская Энциклопедия (ТЕ)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 45 (всего у книги 79 страниц)
Тепловой удар (в технике)
Теплово'й уда'р в технике, то же, что термический удар .
Тепловой удар (мед.)
Теплово'й уда'р, тепловая лихорадка, острое заболевание человека и животных, обусловленное расстройствами терморегуляции при длительном воздействии на организм высокой температуры внешней среды. У человека может развиться при работе в горячем цеху (например, у литейщиков, сталеваров), на открытом воздухе в районах с жарким климатом, во время длительного перехода в жаркое время дня и т. д. Возникновению Т. у. способствуют нарушения теплообмена при сердечно-сосудистых заболеваниях, болезнях щитовидной железы, ожирении, обезвоживании (понос, рвота). Т. у. легко возникает у детей до года в связи с несовершенной теплорегуляцией. Различают лёгкую, среднюю и тяжёлую формы Т. у. При лёгкой форме отмечаются слабость, головная боль, тошнота, учащение пульса. Резкая слабость, состояние оглушённости, обморок, рвота, повышение температуры тела до 39—40 °С свидетельствуют о Т. у. средней тяжести. При продолжающемся воздействии температурного фактора внезапно развивается тяжёлая форма поражения с потерей сознания, судорогами, учащённым, поверхностным дыханием, ослаблением кровообращения, повышением температуры тела до 41—42 °С. Возможен смертельный исход.
Первая помощь – вынос пострадавшего из жаркого помещения, холодные обтирания, питье холодной воды (при сохраненном сознании); при тяжёлом Т. у. пострадавший должен лежать на боку, чтобы не было вдыхания рвотных масс; при необходимости применяют закрытый сердца массаж , искусственное дыхание способом изо рта в рот или изо рта в нос; реанимация в стационаре включает общую гипотермию, предупреждение осложнений (отёка мозга и лёгких). Профилактика: предварительные и периодические медицинские осмотры лиц. работающих в условиях высокой температуры; соблюдение санитарно-гигиенических требований к условиям труда в горячих цехах, к одежде и к организации длит. переходов в жаркий период. См. также Солнечный удар .
Лит.: Руководство по гигиене труда, т. 1, М., 1965; Руководство по тропическим болезням, 3 изд., М., 1974.
У животных Т. у. возникает при длительном пребывании в помещениях с высокой температурой, скученном содержании и плохой вентиляции, транспортировке или перегонах, работе в жаркое время дня. Проявляется угнетением (вначале возможно возбуждение), потением, одышкой, частым пульсом, повышением температуры тела, шаткостью движений, иногда судорогами. Лечение: больных животных помещают в прохладное помещение или затенённое место; на область головы применяют холод, вводят сердечные средства, при признаках отёка лёгких делают кровопускание. Профилактика: соблюдение правил содержания, транспортировки и эксплуатации животных.
Тепловой центр
Теплово'й центр, центр терморегуляции, совокупность специфических нервных клеток, сосредоточенных в преоптической области переднего и в ядрах заднего гипоталамуса ; обеспечивает терморегуляцию у теплокровных животных и человека. Гипоталамический Т. ц., к которому поступают импульсы от тепловых или холодовых терморецепторов , координирует процессы, обусловливающие сохранение температуры тела на постоянном уровне. Одни нейроны Т. ц., называются «термодетекторами», обладают высокой собственной температурной чувствительностью и посылают больше импульсов к другим, когда температура крови, поступающей в гипоталамус, оказывается выше нормальной, и меньше – когда ниже. Другие нервные клетки, называются «интегрирующими», не обладают высокой собственной температурной чувствительностью, но воспринимают через синапсы температурные сигналы от «термодетекторов» гипоталамуса и некоторых других отделов центральной нервной системы (зрительные бугры, средний мозг, спинной мозг и др.), а также от терморецепторов кожи. «Интегрирующие» нейроны суммируют температурные раздражения от различных точек тела и посылают импульсы к эффекторным органам системы терморегуляции (кожным сосудам, потовым и эндокринным железам, мышцам и др.). На функцию Т. ц. влияют высшие отделы центральной нервной системы и, в частности, кора больших полушарий головного мозга. Разрушение Т. ц. ведёт к резкому нарушению терморегуляции, которое, однако, через определённое время частично восстанавливается. Это объясняется тем, что и в других отделах центральной нервной системы имеются термочувствительные нервные клетки. См. также Теплоотдача , Теплопродукция .
Лит.: Веселкин П. Н., Лихорадка, М., 1963; Иванов К. П,, Биоэнергетика и температурный гомеостазис, Л., 1972.
К. П. Иванов.
Тепловой эквивалент работы
Теплово'й эквивале'нт рабо'ты, количество теплоты, энергетически эквивалентное единице работы, если за счёт совершения работы увеличивается внутренняя энергия физической системы. Понятие Т. э. р. применяют в тех случаях, когда работа и количество теплоты измеряются в разных единицах. Значение Т. э. р. обратно значению механического эквивалента теплоты и равно 0,239 кал/дж.
Тепловой эффект реакции
Теплово'й эффе'кт реа'кции, алгебраическая сумма теплоты, поглощённой при данной реакции химической , и совершенной внешней работы за вычетом работы против внешнего давления. Если при реакции теплота выделяется или работа совершается системой, то соответствующие величины входят в сумму со знаком минус. При постоянных температуре и объёме Т. э. р. равен изменению внутренней энергии реагентов DU, а при постоянных температуре и давлении – изменению энтальпии DН. Т. э. р. выражается обычно в кдж или ккал и определяется тем количеством молей реагентов, которое соответствует стехиометрии реакции. Для отдельных типов химических реакций вместо Т. э. р. используют специальные (сокращённые) термины: теплота образования , теплота сгорания и т. п.
Т. э. р. зависит от температуры и давления (или объёма): зависимость от температуры выражается Кирхгофа уравнением . Для сравнения Т. э. р. и упрощения термодинамических расчётов все величины Т. э. р. относят к стандартным условиям (все реактанты находятся в стандартных состояниях ). Данные по Т. э. р. получают непосредственно (см. Калориметрия ) либо при изучении равновесия химического при различных температурах, а также путём расчёта, например по теплотам образования всех реагентов. При отсутствии исходных данных они могут быть оценены с помощью приближённых методов вычисления, основанных на закономерных связях между теплотами образования (теплотами сгорания) и химическим составом веществ. Т. э. р. важны для теоретической химии и необходимы при расчётах равновесных составов смесей, выхода продуктов реакций, удельной тяги топлив реактивных двигателей и для решения многих других прикладных задач (см. Термодинамика химическая ).
Тепловыделяющий элемент
Тепловыделя'ющий элеме'нт ядерного реактора (ТВЭЛ), один из основных конструктивных узлов реактора, содержащий ядерное топливо , размещается в активной зоне реактора. В Т. э. протекает ядерная реакция деления топлива, в результате которой выделяется тепло, передаваемое теплоносителю . Т. э. состоит из сердечника и герметизирующей оболочки.
Сердечник Т. э., кроме делящегося вещества (например, 233 U, 235 U, 239 Pu), может содержать «сырьевое» вещество, обеспечивающее воспроизводство ядерного топлива (238 U,232 Th). Материал для сердечника может быть получен в виде металла, металлокерамики или керамики. Металлические сердечники изготовляют из чистых урана, тория или плутония или из их сплавов с другими металлами (например, с Al, Zr, Cr, Zn). Металлокерамические сердечники получают, например, из U и Al путём прессования смесей их порошков (опилок, гранул). Керамические сердечники представляют собой спечённые или сплавленные окислы или карбиды (например, UO2 , ThC2 ). Металлокерамические и керамические сердечники, а также сердечники из сплавов наиболее полно отвечают предъявляемым к материалу сердечника высоким требованиям по механической прочности, а также по неизменности физических свойств и геометрических размеров в условиях высоких температур и интенсивного нейтронного и g-излучения. Поскольку, однако, в такого рода сердечниках существ, объём занимает наполнитель (вещество, атомы которого не участвуют в процессе деления и воспроизводства ядерного топлива), то в них используется ядерное топливо с повышенным обогащением (например, с содержанием 235 U до 10% и более). Наполнитель, как правило, обладает небольшим сечением поглощения нейтронов, но иногда в материал сердечника включают небольшие добавки металлов, интенсивно поглощающих нейтроны (например, Mo), если это приводит к повышению стойкости сердечника по отношению к тепловым и радиационным воздействиям.
В распространённых энергетических реакторах, работающих на слабообогащённом уране, наиболее часто применяют керамические сердечники из спечённой двуокиси урана, которые не деформируются при глубоком выгорании топлива. К тому же UO2 не реагирует с водой; вследствие этого разгерметизация Т. э. в реакторе с водяным охлаждением не приводит к попаданию урана в теплоноситель.
Герметизирующая оболочка Т. э. обеспечивает надёжное отделение сердечника от теплоносителя. Нарушение её целостности привело бы к попаданию продуктов деления в теплоноситель, его активации и затруднению обслуживания реактора, а кроме того (в ряде случаев), к химической реакции теплоносителя с веществом сердечника и, следовательно, к «размыванию» сердечника и потере им требуемой формы. В силу этих причин к материалу оболочки предъявляют жёсткие требования. Он должен обладать высокой коррозионной, эрозионной и термической стойкостью, высокой механической прочностью и не должен существенно изменять характер поглощения нейтронов в реакторе. Наиболее употребительные материалы для изготовления оболочки – сплавы алюминия и циркония и нержавеющая сталь. Сплавы Al используются в реакторах с температурой активной зоны < 250—270 °С, сплавы Zr – в энергетических реакторах при температурах 350—400 °С, а нержавеющая сталь, которая довольно интенсивно поглощает нейтроны, – в реакторах с температурой >400 °С. В ряде случаев находят применение и др. вещества, например графит высокой плотности.
Для улучшения теплообмена между сердечником и оболочкой осуществляют их диффузионное сцепление (если сердечник металлический) или в зазор между ними вводят газ, хорошо проводящий тепло (например, гелий). Такой зазор необходим, когда материалы сердечника и оболочки имеют существенно разные коэффициенты объёмного расширения.
Конструктивное исполнение Т. э. определяется формой сердечника. Наиболее распространены цилиндрические (стержневые), однако применяются трубчатые, пластинчатые и другие сердечники. Т. э. объединяют в сборки (пакеты, кассеты, блоки) и в таком виде загружают в реактор. В реакторе с твёрдым замедлителем Т. э. или их сборки размещают внутри замедлителя в каналах, по которым протекает теплоноситель. Если замедлитель жидкий и выступает одновременно в роли теплоносителя, то сборки сами являются элементами, направляющими поток жидкости.
Основной показатель работы Т. э. – глубина выгорания топлива в нём; в энергетических реакторах она достигает 30 Мвт сут/т. В энергетических реакторах время работы Т. э. достигает трёх лет. Использованные Т. э. могут быть подвергнуты переработке с целью извлечения из них недогоревшего, а также вновь накопленного ядерного топлива.
Лит. см. при ст. Ядерный реактор .
С. А. Скворцов.
Тепловые нейтроны
Тепловы'е нейтро'ны,медленные нейтроны с кинетической энергией в интервале 0,5 эв – 5 Мэв. Называются тепловыми, так как получаются при замедлении нейтронов до теплового равновесия с атомами замедляющей среды (термализация нейтронов ). Распределение Т. н. в замедлителе по скоростям определяется его температурой в соответствии с Максвелла распределением для молекул газа. Энергия, соответствующая наиболее вероятной скорости Т. н., равна 8,6 10-5 Тэв, где Т – абсолютная температура в К. Скорость Т. н. с энергией 0,025 эв равна 2200 м/сек и длина волны де Бройля l= 1,8 Å (см. Нейтронная оптика ). Так как l близка к величинам межатомных расстояний в твёрдых телах, то дифракция Т. н. используется для изучения структуры твёрдых тел. Наличие у нейтрона магнитного момента позволяет методом когерентного магнитного рассеяния Т. н. изучать магнитную структуру твёрдых тел. Изменения энергии при неупругом рассеянии Т. н. в конденсированных средах сравнимы с их начальной энергией, поэтому неупругое рассеяние Т. н. является методом исследования движения атомов и молекул в твёрдых телах и жидкостях (см. Нейтронография ). Т. н. имеют огромное значение для работы ядерного реактора , так как вызывают цепную реакцию деления U и Pu. Велика также роль Т. н. в производстве радиоактивных изотопов.
Лит.: см. при ст. Медленные нейтроны .
Э. М. Шарапов.
Тёплое
Тёплое, посёлок городского типа, центр Тёпло-Огарёвского района Тульской области РСФСР. Ж.-д. станция на линии Сухиничи – Волово, в 70 км к Ю. от Тулы. Молочный завод.
Теплоёмкость
Теплоёмкость, количество теплоты, поглощаемой телом при нагревании на 1 градус; точнее – отношение количества теплоты, поглощаемой телом при бесконечно малом изменении его температуры, к этому изменению Т. единицы массы вещества (г, кг ) называется удельной теплоёмкостью, 1 моля вещества – мольной (молярной) Т.
Количество теплоты, поглощённой телом при изменении его состояния, зависит не только от начального и конечного состояний (в частности, от их температуры), но и от способа, которым был осуществлен процесс перехода между ними. Соответственно от способа нагревания тела зависит и его Т. Обычно различают Т. при постоянном объёме (Cv ) и Т. при постоянном давлении (Ср ), если в процессе нагревания поддерживаются постоянными соответственно его объём или давление. При нагревании при постоянном давлении часть теплоты идёт на производство работы расширения тела, а часть – на увеличение его внутренней энергии , тогда как при нагревании при постоянном объёме вся теплота расходуется только на увеличение внутренней энергии; в связи с этим cp всегда больше, чем cv . Для газов (разреженных настолько, что их можно считать идеальными) разность мольных Т. равна cp – cv = R, где R – универсальная газовая постоянная , равная 8,314 дж/ (моль× К ), или 1,986 кал/ (моль× град ). У жидкостей и твёрдых тел разница между Ср и Cv сравнительно мала.
Теоретическое вычисление Т., в частности её зависимости от температуры тела, не может быть осуществлено с помощью чисто термодинамических методов и требует применения методов статистической физики . Для газов вычисление Т. сводится к вычислению средней энергии теплового движения отдельных молекул. Это движение складывается из поступательного и вращательного движений молекулы как целого и из колебаний атомов внутри молекулы. Согласно классической статистике (то есть статистической физике, основанной на классической механике), на каждую степень свободы поступательного и вращательного движений приходится в мольной Т. (Cv ) газа величина, равная. R /2; а на каждую колебательную степень свободы – R, это правило называется равнораспределения законом . Частица одноатомного газа обладает всего тремя поступательными степенями свободы, соответственно чему его Т. должна составлять R [то есть около 12,5 дж/Кмоль× К), или 3 кал/ (моль×град )], что хорошо согласуется с опытом. Молекула двухатомного газа обладает тремя поступательными, двумя вращательными и одной колебательной степенями свободы, и закон равнораспределения приводит к значению Cv = R; между тем опыт показывает, что Т. двухатомного газа (при обычных температурах) составляет всего R. Это расхождение теории с экспериментом связано с тем, что при вычислении Т. необходимо учитывать квантовые эффекты, то есть пользоваться статистикой, основанной на квантовой механике . Согласно квантовой механике, всякая система частиц, совершающих колебания или вращения (в том числе молекула газа), может обладать лишь определёнными дискретными значениями энергии. Если энергия теплового движения в системе недостаточна для возбуждения колебаний определённой частоты, то эти колебания не вносят своего вклада в Т. системы (соответствующая степень свободы оказывается «замороженной» – к ней неприменим закон равнораспределения). Температура Т, при достижении которой закон равнораспределения оказывается применимым к вращательной или колебательной степени свободы, определяется квантово-механическим соотношением T >> hv/k (v – частота колебаний, h – Планка постоянная , k – Больцмана постоянная ). Интервалы между вращательными уровнями энергии двухатомной молекулы (деленные на k ) составляют всего несколько градусов и лишь для такой лёгкой молекулы, как молекула водорода, достигают сотни градусов. Поэтому при обычных температурах вращательная часть Т. двухатомных (а также многоатомных) газов подчиняется закону равнораспределения. Интервалы же между колебательными уровнями энергии достигают нескольких тысяч градусов и поэтому при обычных температурах закон равнораспределения совершенно неприменим к колебательной части Т. Вычисление Т. по квантовой статистике приводит к тому, что колебательная Т. быстро убывает при понижении температуры, стремясь к нулю. Этим объясняется то обстоятельство, что уже при обычных температурах колебательная часть Т. практически отсутствует и Т. двухатомного газа равна R вместо R.
При достаточно низких температурах Т. вообще должна вычисляться с помощью квантовой статистики. Как оказывается, Т. убывает с понижением температуры, стремясь к нулю при Т ® 0 в согласии с так называемом принципом Нернста (третьим началом термодинамики ).
В твёрдых (кристаллических) телах тепловое движение атомов представляет собой малые колебания вблизи определённых положений равновесия (узлов кристаллической решётки). Каждый атом обладает, таким образом, тремя колебательными степенями свободы и, согласно закону равнораспределения, мольная Т. твёрдого тела (Т. кристаллической решётки) должна быть равной 3 nR, где n – число атомов в молекуле. В действительности, однако, это значение – лишь предел, к которому стремятся Т. твёрдого тела при высоких температурах. Он достигается уже при обычных температурах у многих элементов, в том числе металлов (n = 1, так называемый Дюлонга и Пти закон ) и у некоторых простых соединений [NaCI, MnS (n = 2), PbCl2 (n = 3) и др.]; у сложных соединений этот предел фактически никогда не достигается, т. к. ещё раньше наступает плавление вещества или его разложение.
Квантовая теория Т. твёрдых тел была развита А. Эйнштейном (1907) и П. Дебаем (1912). Она основана на квантовании колебательного движения атомов в кристалле. При низких температурах Т. твёрдого тела оказывается пропорциональной кубу абсолютной температуры (так называемый закон Дебая). Критерием, позволяющим различать высокие и низкие температуры, является сравнение с характерным для каждого данного вещества параметром – так называемой характеристической, или дебаевской, температурой QD . Эта величина определяется спектром колебаний атомов в теле и, тем самым, существенно зависит от его кристаллической структуры. Обычно QD – величина порядка нескольких сот К, но может достигать (например, у алмаза) и тысяч К (см. Дебая температура ).
У металлов определённый вклад в Т. дают также и электроны проводимости. Эта часть Т. может быть вычислена с помощью квантовой статистики Ферми, которой подчиняются электроны. Электронная Т. металла пропорциональна первой степени абсолютной температуры. Она представляет собой, однако, сравнительно малую величину, её вклад в Т. становится существенным лишь при температурах, близких к абсолютному нулю (порядка нескольких градусов), когда обычная Т., связанная с колебаниями атомов кристаллической решётки, представляет собой ещё меньшую величину.
Ниже приводятся значения Т. [ккал/ (кг× град )] некоторых газов, жидкостей и твёрдых тел при температуре 0 °С и атмосферном давлении (1 ккал = 4,19кдж ).
Азот.………………6,8 Свинец…………….0,030
Водород …………6,84 Кварц ……………..0,174
Железо…………..0,104 Спирт этиловый…0,547
Медь……………...0,091 Алюминий ……….0,210
Вода.……….…….1,008
Лит.: Кикоин И. К., Кикоин А. К,, Молекулярная физика, М., 1963; Ландау Л. Д., Лифшиц Е. М., Статистическая физика, 2 изд., М., 1964 (Теоретическая физика, т. 5).
Е. М. Лифшиц.