355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ТЕ) » Текст книги (страница 23)
Большая Советская Энциклопедия (ТЕ)
  • Текст добавлен: 7 октября 2016, 11:13

Текст книги "Большая Советская Энциклопедия (ТЕ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 23 (всего у книги 79 страниц)

Телеграфный канал

Телегра'фныйкана'л , совокупность технических средств, обеспечивающих передачу телеграфных сигналов от передатчика информации к её приёмнику (см. Телеграфная связь ). Различают Т. к. низовой связи (внутригородские, внутрирайонные и внутриобластные) и магистральной связи (межобластные и межреспубликанские). Т. к. позволяет передавать сигналы со скоростями 50—200 бод. Т. к. включает линии связи и аппаратуру линии связи уплотнения (обычно это аппаратура тонального телеграфирования ).

Телеграфный ключ

Телегра'фный ключ, простейший передатчик телеграфных сигналов для передачи сообщений Морзе кодом . Является частью аппаратов Морзе. При работе ключом телеграфист манипулирует рычагом замыкая и размыкая цепь тока в соответствии с передаваемым сообщением. Скорость передачи простым Т. к. (рис. 1 ) 70—90 знаков в мин, а вибрационным (рис. 2 ) – 120—150 знаков в мин. Т. к. применяется при радиотелеграфной связи с приёмом сигналов на слух (в частности, радиолюбителями-коротковолновиками).

Рис. 2. Работа вибрационным телеграфным ключом.

Рис. 1. Схема простейшего телеграфного ключа: 1 – подставка; 2 – задний контактный винт; 3 – двухплечий рычаг; 4 – рукоятка ключа; 5 – передний контакт; 6 – плоские стальные контактные пружины с серебряными контактными напайками; 7 – пружины.

Телеграфный коммутатор

Телегра'фный коммута'тор, устройство, служащее для соединения между собой телеграфных аппаратов, линий и каналов. Устанавливается на телеграфной станции . Т. к. соединён со всеми исходящими и входящими линиями и каналами, а также с телеграфными аппаратами данной станции. С помощью Т. к. технический персонал станции производит оперативное переключение направлений связи и замену линий и каналов при неисправностях в них. Имеющимися на Т. к. измерительными приборами можно определять электрические характеристики телеграфных линий и каналов. На Т. к. устанавливают элементы грозозащиты – предохранители и разрядники.

Телеграфный передатчик

Телегра'фный переда'тчик, устройство, предназначенное для формирования и передачи в канал связи телеграфных сигналов – посылок тока, составляющих (в соответствии с кодом телеграфным ) комбинации передаваемых знаков. Т. п. – основной узел современного буквопечатающего стартстопного аппарата . Т. п. состоит из клавиатуры (как у пишущей машинки), шифратора, распределителя и ряда вспомогательных устройств. При нажатии клавиши клавиатуры передаваемый знак при помощи шифратора и распределителя преобразуется в сочетание токовых и бестоковых элементарных сигналов телеграфного кода, которые передаются в канал связи. См. также Телеграфный аппарат .

Телеграфный приёмник

Телегра'фный приёмник, устройство, предназначенное для приёма из канала связи передаваемых телеграфным передатчиком сигналов и отпечатывания на бумажной ленте или рулоне соответствующих этим сигналам знаков. Т. п. – основной узел современного буквопечатающего стартстопного аппарата . Т. п. состоит из так называемого приёмного электромагнита, дешифратора, печатающего и ряда вспомогательных механизмов. Под действием поступающего на вход Т. п. телеграфного сигнала якорь электромагнита перемещается в определённое положение и через промежуточный механизм управляет работой дешифратора. Дешифратор определяет знак, которому соответствует принятый сигнал. Печатающий механизм отпечатывает этот знак. См. также Телеграфный аппарат .

Тележечный конвейер

Теле'жечный конве'йер, см. в ст. Конвейер .

Телезио Бернардино

Теле'зио (Telesio) Бернардино (1509, Козенца, – 2.10.1588, там же), итальянский натурфилософ эпохи Возрождения. Окончил Падуанский университет (1535). Основное сочинение – «О природе вещей согласно сё собственным началам» (1565; 9 книг в 1586). Противник схоластического аристотелизма, основал в Неаполе академию (Academia Telesiana, или Cosentina) с целью опытного изучения природы на основе её законов. Натурфилософия Т. опирается на традиции античного гилозоизма . Противоположные стихии тепла и холода, но Т., – главные движущие начала всего, воздействующие на пассивную материю. Материя земли и неба тождественна, но земная находится во власти холода, небесная – во власти тепла. Тепло – источник всякой органической жизни, а также тонкоматериального жизненного «духа» (spiritus), присущего животным и человеку, у которого наряду с этим имеется бессмертная душа, вложенная в него богом. В теории познания Т. развивал точку зрения сенсуализма. Основой этики считал стремление всего сущего к самосохранению. Своей ориентацией на опытное познание Т. оказал большое влияние на Т. Кампанеллу , а также на Дж. Бруно, Р. Декарта и Ф. Бэкона.

  Соч.: De rerurn natura juxta propria principia, v. I—2, Cosenza, 1965—74; Varii de naturalibus rebus libelli, pt I—8, Venetia, 1590.

  Лит.: Горфункель А. Х., Материализм и богословие в философии Б. Телезио, в сборнике: Итальянское Возрождение, [Л.], 1966; Fioreпtino F., В. Telesio, v. 1—2, Firenze, 1872—74; Gentile G., B. Telesio, Bari, 1911; Troilo E., B. Telesio, Modena, 1924; Soleri G., Telesio, Brescia, 1944.

  А. Х. Горфункель.

Телеизмерение

Телеизме'рение (ТИ), телеметрия, измерение на расстоянии, осуществляемое средствами телемеханики ; раздел телемеханики, к которому относятся передача на расстояние измерительной информации и представление её в виде, наиболее удобном для непосредственного восприятия оператором, ввода в управляющую машину или автоматической регистрации. Измерительная информация от измерительных преобразователей (датчиков) передаётся на пункт управления или контроля непрерывно или циклически, а иногда по вызову – после посылки оператором специального сигнала-запроса, содержащего адрес (кодовое обозначение) измеряемого параметра. При передаче непрерывная измеряемая величина на контролируемом пункте часто подвергается квантованию (см. Квантование сигнала ); на пункте управления она воспроизводится в аналоговой форме (в виде показаний стрелочных приборов) или в цифровой форме. Измерительная информация передаётся с помощью систем ТИ, а также с помощью комбинированной телеизмерения и телесигнализации системы либо с помощью комплексной телемеханической системы .

  ТИ, осуществляемое по радиоканалам, называется радиотелеизмерением, или радиотелеметрией (см. Радиотелемеханика ).

  Лит. см. при ст. Телемеханика .

  Г. А. Шастова.

Телеизмерения и телесигнализации система

Телеизмере'ния и телесигнализа'ции систе'ма, система Т И – ТС, комбинированная телемеханическая система , предназначенная для контроля за состоянием объектов и измерения их параметров на расстоянии. По методам воспроизведения измеряемых величин устройства телеизмерения подразделяют на аналоговые и цифровые. Основная погрешность телеизмерения в зависимости от класса системы составляет 0,25—4%. Пример Т. и т. с. – система «Телекомплекс» (СССР), предназначенная для оперативного сбора, обработки и представления информации в автоматизированной системе диспетчерского управления энергосистемами и энергообъединениями. Система может обслуживать до 32 контролируемых пунктов (КП; например, электрических подстанций), удалённых от пункта управления (ПУ) на расстояние до 14 000 км; информация передаётся по проводным линиям либо радиоканалам связи. На каждый КП может поступать до 80 сигналов телеизмерений (силы тока, напряжения, частоты и т. п.) и до 736 сигналов телесигнализации («включен такой-то блок», «под нагрузкой такая-то линия»). В случае большого объёма измерительной информации она обрабатывается на ЭВМ. Диспетчерский щит на ПУ Т. и т. с. имеет до 3000 индикаторов двоичных сигналов и до 256 цифровых измерительных приборов.

  В. В. Наумченко.

Телейтоспоры

Телейтоспо'ры (от греч. teleuté – конец и споры ), один из видов спор (большей частью зимующих) у ржавчинных грибов . Т. могут быть одно– и многоклеточные, на ножке или без ножки, свободные или срастающиеся в столбики или корочки и т. д. Этими признаками пользуются для разделения ржавчинных грибов на семейства и роды. Т. иногда называют также споры головнёвых грибов .

Телекинопередатчик

Телекинопереда'тчик, телекинопроектор, аппарат для передачи по телевидению изображений, зафиксированных на киноплёнке (кинофильмов). Состоит из лентопротяжного механизма и оптико-электронного считывающего устройства, преобразующего киноизображение в видеосигнал . Современные Т. позволяют вести как цветные, так и черно-белые передачи.

  Известны Т. с преобразованием светового изображения в видеосигнал в передающих телевизионных трубках и Т. с развёрткой изображения бегущим световым пятном (см. Камера с бегущим лучом ). В первых изображение каждого кадра демонстрируемого фильма проецируется цветоделительной оптической системой (содержащей дихроические зеркала или призмы в сочетании со светофильтрами и позволяющей разделять световой поток на 3 цветовых составляющих – красную, зелёную и синюю) на светочувствительные элементы передающих трубок (плюмбиконов или видиконов ). Во вторых считывание изображения с киноплёнки производится световым лучом, формируемым посредством проекции на плоскость киноплёнки светового пятна, которое создаётся на экране электроннолучевой трубки (проекционного кинескопа). Этот луч, проходя последовательно участки киноплёнки с различной оптической плотностью, модулируется (см. Модуляция света ), затем разделяется цветоделительной оптической системой на 3 составляющих луча, которые с помощью фотоэлектронных умножителей преобразуются в видеосигналы. После усиления видеосигналы преобразуются в полный телевизионный сигнал .

  Разрабатываются также Т., в которых используются принципы развёртки передаваемого изображения комбинированным трёхцветным лазерным лучом (см. Проекционное телевидение ) и преобразования светового сигнала в электрический с использованием растровых линеек с полупроводящими фоточувствительными элементами.

  Лит.: Тельнов Н. И.. Современная телекинопередающая аппаратура, «Техника кино и телевидения», 1972, № 11: Выходец А. В.. Телевизионная передача кинофильмов, М.. 1975.

  Н. И. Тельнов.

Телекинопроектор

Телекинопрое'ктор, то же, что телекинопередатчик .

Телеконтроль

Телеконтро'ль, контроль на расстоянии, осуществляемый средствами телемеханики ; реализация процессов телеизмерения и (или) телесигнализации .

Телекс

Те'лекс, международная сеть абонентского телеграфирования . Объединяет (середина 70-х гг. 20 в.) около 100 национальных сетей, оборудованных автоматическими коммутационными станциями «Телекс» – декадно-шаговыми станциями с дисковым набором номера (см. Телеграфная станция ). На международном участке сети Т. используются каналы частотного телеграфирования и радиоканалы. В большинстве стран сеть Т. не выделяется из сети абонентского телеграфирования страны. Т. охватывает около 600 тысяч абонентов, из которых более половины находится в Европе.

Телеман Георг Филипп

Те'леман (Telemann) Георг Филипп (14.3.1681, Магдебург, – 25.6.1767, Гамбург). немецкий композитор, органист, капельмейстер. Музыкальными предметами занимался самостоятельно. С 1701 изучал право в Лейпцигском университете, где основал музыкальный кружок «Коллегиум музикум». В 1704 органист в Лейпциге. В 1704—08 капельмейстер при герцогском дворе в Зорау (ныне Жоры, ПНР). Важное значение для Т. имело посещение Кракова, где он познакомился с польской народной музыкой. В 1708—12 был придворным музыкантом в Эйзенахе (здесь встречался с И. С. Бахом), в 1712—1721 кантор и музик-директор в Франкфурте-на-Майне; с 1721 городской музик-директор Гамбурга, до конца жизни руководил церковными капеллами и оперным театром (сыграл большую роль в его деятельности), основал общество «Коллегиум музикум», с 1728 издавал нотный журнал «Der getreue Musicmeister».

  Т. работал в разных жанрах (около 40 опер, многочисленные духовные кантаты, оратории, пассионы, мессы, оркестровые увертюры, сюиты, кончерти гросси, произведения для клавира, скрипки, триосонаты и др.). Современник Баха и Г. Ф. Генделя, Т. в своём творчестве соединял свободное владение полифонией с чертами нового, так называемого галантного стиля 18 в., писал пьесы для домашнего музицирования. нередко обращался к программности (оркестровая сюита «Дон Кихот» и др.).

  Лит.: Роллан Р., Музыкальное путешествие в страну прошлого, Собр. соч., т. 17, Л., 1935, гл. 5; Рабей В., Георг Филипп Телеман, М., 1974.

Телемах

Телема'х, Телемак, в «Одиссее» сын Одиссея и Пенелопы , сначала отправился на розыски отца, затем помогал ему в расправе с женихами, добивавшимися руки Пенелопы.

Телеметрия

Телеметри'я (от теле ... и... метрия ). то же, что телеизмерение . Термин «Т.» заимствован из иностранной литературы и традиционно употребляется применительно к дистанционным исследованиям биологических процессов и измерениям биологических показателей (см. Биотелеметрия ), а также к измерениям и передаче метеорологических данных с космических объектов (метеорологических ракет или искусственных спутников Земли) или с наземных автоматических метеостанций, находящихся в зонах относительной недоступности (см. Телеметрия метеорологическая ). Информация от объектов, удалённых от пункта управления на большие расстояния, передаётся, как правило, по каналам радиосвязи , в этом случае употребляют термин «радиотелеметрия» (см. Радиотелемеханика ).

Телеметрия метеорологическая

Телеметри'я метеорологи'ческая. Телеметрией (правильнее телеизмерениями ) пользуются для получения метеорологической информации. Существует ряд информационных метеорологических телеметрических систем (ТМС), в основу которых положены общие принципы телемеханики . Появление в 1930 радиозонда положило начало развитию радиотелеметрических систем и широкому их применению для исследования верхних слоев атмосферы. Радио-ТМС температурно-ветрового зондирования атмосферы распространены во всех странах мира. Др. разновидность ТМС – автоматические радиометеорологические станции (АРМС). которые устанавливаются в труднодоступных районах (льды Арктики, высокогорные районы и т. п.). Первые АРМС были разработаны в СССР в начале 30-х гг. Наземные телеметрические метеорологические станции с проводными линиями связи (протяжённостью до 10 км ) применяются в метеорологической сети, особенно на аэродромах; они появились в СССР в конце 50-х гг.

  Исследования верхних слоев атмосферы с помощью ракет были предприняты в США в начале 40-х гг., а в СССР систематическая работа радио-ТМС ракетного зондирования атмосферы началась с начала 50-х гг. Измерительно-передающая аппаратура поднимается с помощью ракеты на высоту более 100 км и при спуске на парашюте передаёт данные о состоянии атмосферы, которые принимаются наземной станцией. Важную роль играют радио-ТМС, установленные на ИСЗ. которые с помощью измерительно-передающей аппаратуры и приёмной аппаратуры на наземных станциях обеспечивают получение информации о состоянии поверхностей суши и океана, облачности, радиации атмосферы, суши и воды и о др. характеристиках в масштабах всей планеты.

  Лит.: Ильин В. А.. Телеуправление и телеизмерение, 2 изд., М.. 1974; Системы получения и передачи метеорологической информации, Л.. 1971; Вайсман Г. М.. Верле Ю. С.. Основы радиотехники и радиосистемы в гидрометеорологии, Л.. 1970; Автоматическая станция КРАМС. Л.. 1974; Разработка и эксплуатация автоматических метеорологических станций. Труды II Международного симпозиума, Л.. 1974.

  М. С. Стернзат.

Телемеханика

Телемеха'ника (от теле ... и механика ), область науки и техники, предметом которой является разработка методов и технических средств передачи и приёма информации (сигналов) с целью управления и контроля на расстоянии. Т. отличается от др. областей науки и техники, связанных с передачей информации на расстояние (телефония, телеграфия, телевидение и др.), рядом специфических особенностей, важнейшие из которых – передача очень медленно меняющихся данных; необходимость высокой точности передачи измеряемых величин (до 0,1%); недопустимость большого запаздывания сигналов; высокая надёжность передачи команд управления (вероятность возникновения ложной команды должна быть не более 10-6 —10-10 ); высокая степень автоматизации процессов сбора и использования информации (Т. допускает участие человека в передаче данных только с одной стороны тракта передачи); централизованность переработки информации. Указанные особенности обусловлены спецификой задач, решаемых Т. Как правило, телемеханизация применяется тогда, когда необходимо и целесообразно объединить разобщённые или территориально рассредоточенные объекты управления в единый производственный комплекс (например, при управлении газо– и нефтепроводом, энергосистемой, ж. -д. узлом, сетью метеостанций) либо когда присутствие человека на объекте управления нежелательно (вследствие того, что работа на объекте сопряжена с риском для здоровья – например, в атомной промышленности, на некоторых химических предприятиях) или невозможно (из-за недоступности объекта управления – например, при управлении непилотируемой ракетой, луноходом).

  Методы и средства Т. Любой процесс управления включает собственно управление, то есть воздействие на объект с целью изменения его состояния (положения в пространстве, значений его параметров), и контроль за состоянием объекта. Управление и контроль с помощью средств Т. осуществляются обычно с пункта управления (ПУ) или диспетчерского пункта (ДП), где находится оператор (диспетчер). Объекты управления могут быть сосредоточены в одном месте, на одном контролируемом (управляемом) пункте (КП) либо рассредоточены, то есть расположены по одному или группами (на нескольких КП) на большой территории (в пространстве). Расстояние между КП и ПУ может быть от нескольких десятков (например, при управлении строительным краном) до десятков и сотен тысяч км (например, при управлении автоматической межпланетной станцией). Для передачи телемеханической информации используют выделенные для этого линии связи (проводные и кабельные), радиоканалы, оптические, гидравлические и акустические каналы, распределительные электрические сети и линии электропередачи. Нередко телемеханическая информация передаётся по каналам, предназначенным для передачи др. сигналов – например, по телефонным каналам и каналам передачи данных . В этом случае для телемеханических сигналов выделяют определённый диапазон частот канала или целиком незанятый телефонный или телеграфный канал. По одному стандартному телефонному каналу можно передавать управляющую информацию на десятки и даже сотни КП. При использовании выделенных проводных линий аппаратура КП обычно подключается параллельно к общей линии, структура которой может быть достаточно сложной (древовидной, кольцевой, кустовой и смешанной). Значительно реже (вследствие низкой надёжности) применяется цепочечное соединение линий связи и аппаратуры отдельного КП. Если для передачи телемеханической информации используют радиоканалы, то Т. называется радиотелемеханикой . Совокупность устройств, посредством которых с помощью человека-оператора осуществляется управление объектами и контроль за их состоянием на расстоянии, называется телемеханической системой (ТМС). Соответственно системы Т., выполняющие функции только управления и только контроля, называются системами телеуправления (ТУ) и телеконтроля (ТК).

  Частично в телемеханической системе управляющие воздействия могут вырабатываться управляющим автоматом (например, для автоматического аварийного отключения оборудования, подключения нагрузок к энергосистеме, управления устройствами по заранее заданной программе и т. п.). При телеуправлении сложными объектами используются ЭВМ для обработки полученной контрольной информации, функционирующие в режиме «советчика». Такие телемеханические системы называются телеинформационными. Телемеханические системы, в которых управляющие воздействия вырабатываются полностью автоматически, называются телеавтоматическими системами управления.

  При ТУ команды управления передаются оператором (диспетчером) с ПУ или ДП по каналу связи на объекты (к КП). Команды формируются оператором на пульте управления с помощью органов ручной коммутации (тумблеров, переключателей, кнопок). С ПУ в линию связи поступает кодированный сигнал, обычно в виде последовательности импульсов с определёнными признаками (см. Код в телемеханике). Из-за необходимости обеспечивать высокую надёжность передачи команд управления в ТУ применяются специфические методы кодирования, а также методы обнаружения и исправления ошибок с помощью квитирования сигналов (повторения сигналов по обратному каналу). При приёме кодовая посылка преобразуется в управляющее воздействие на соответствующий исполнительный механизм (например, в простейшем случае – на реле, включающее двигатель).

  При ТК информация передаётся в обратном направлении – от объекта (с КП) к оператору (на ПУ или ДП). Контрольная информация о состоянии объекта поступает обычно с измерительных преобразователей (датчиков), реагирующих на изменения параметров объекта. Для удобства передачи такой информации используют кодирование и модуляцию или только одну модуляцию, в том числе двух– и трёхкратную (например, двухкратную частотную, широтно-импульсную и затем частотную модуляцию). На ПУ после демодуляции и декодирования индикаторы воспроизводят значение измеряемого параметра или отображают изменение состояния (положения) объекта управления.

  Сообщения, передаваемые системой ТК, обычно содержат информацию двух видов: сигнализирующую, дающую качественную оценку состояния как отдельных органов управления объекта («включено», «выключено», «открыто» и т. д.), так и объекта в целом («стоит», «движется», «вверху», «внизу» и др.), а также параметров, характеризующих объект («норма», «меньше нормы», «больше нормы», «авария» и др.), и измерительную, дающую количественную оценку контролируемого параметра (например, температуры, давления, напряжения в электрической цепи, угла поворота вала и т. д.). Поэтому и соответствующие процессы ТК называются телесигнализацией (ТС) и телеизмерением (ТИ).

  Телеуправление и телеконтроль отличаются от дистанционного управления и дистанционного контроля тем, что все сигналы ТУ и ТК передаются по одной линии связи (существуют многопроводные системы Т., однако число проводов в них существенно меньше числа управляемых или контролируемых объектов). Эта особенность Т. позволяет осуществлять передачу информации на расстояние с меньшими материальными затратами, чем при дистанционном управлении.

  Большинство объектов управления – двухпозиционные; они могут находиться в одном из двух состояний (позиций), например во включенном или отключенном. Таковы, например, электродвигатели, осветительные приборы, ж. -д. стрелки. Поэтому и команды управления, как правило, имеют дискретный характер: «включить» – «отключить», «пуск» – «остановка» и т. д. Однако иногда оказывается необходимым плавное изменение управляемого параметра. В этом случае оператор посылает непрерывные сигналы управления и по поступающей от объекта измерительной информации координирует свои дальнейшие действия. Такой вид ТУ называется телерегулированием (ТР).

  Для чёткой, надёжной работы оператора необходимо переданную и принятую информацию представить в виде, наиболее удобном для восприятия её человеком. Для этого на ПУ используются различные сигнализаторы, индикаторы, устройства регистрации автоматической .

  Для обеспечения независимой передачи (и приёма) многих сигналов по одному каналу связи в Т. применяется так называемое разделение сигналов, при котором сигналы сохраняют индивидуальные свойства и не искажают друг друга. Из множества способов разделения сигналов (см. Многоканальная связь ) в Т. обычно применяется разделение по времени (каждому объекту отводится определённый интервал времени), по частоте (для каждого объекта устанавливается своя полоса частот), смешанное – частотно-временное (например, для КП – частотное, а для объектов в рамках одного КП – временное) и адресное (каждому КП присваивается адрес, и все сообщения обязательно начинаются с кода адреса выбранного КП).

  Теория Т. изучает вопросы формирования и преобразования телемеханических сигналов, передачи их по линиям связи с ограничивающей полосой пропускания частот и при наличии помех, представления информации оператору и технической реализации ТМС. К основным проблемам Т. относятся проблемы повышения достоверности передачи информации, эффективного использования каналов связи и создания экономичной и надёжной аппаратуры.

  История Т. Области её применения. Первые попытки производить измерения и управлять работой машин на расстоянии относятся к концу 19 в.; термин «Т.» был предложен в 1905 французским учёным Э. Бранли. Первоначально с понятием Т. связывали представление об управлении по радио подвижными военными объектами. Известны случаи применения средств боевой техники, оснащенных устройствами управления на расстоянии, в 1-й мировой войне 1914—18. Практическое применение Т. в мирных целях началось в 20-х гг. 20 в. главным образом на ж.-д. транспорте: ТУ ж.-д. сигнализацией и стрелками было впервые осуществлено в 1927 на ж. д. в Огайо (США) на участке длиной 65 км. В 1930 в СССР был запущен первый в мире радиозонд с оборудованием для ТИ. В 1933 в Московской энергосистеме (Мосэнерго) введено в эксплуатацию первое устройство ТС. В 1935—36 началось практическое применение устройств Т. в Мосэнерго, Ленэнерго, Донбассэнерго. В 1935 реализовано ТУ стрелками и сигналами на Московско-Рязанской ж. д. В начале 40-х гг. в Москве было введено централизованное ТУ освещением улиц. Серийное заводское производство устройств Т. в СССР впервые было организовано в 1950 на заводе «Электропульт». К 1955 выявилась тенденция к техническому переоснащению средств Т.: ненадёжные релейно-контактные элементы начали с 1958 повсеместно заменять полупроводниковыми и магнитными бесконтактными элементами. Первая в СССР электронная система ТИ была разработана в 1955—56. В конце 60 – начале 70-х гг. началось оснащение ТМС аппаратурой с использованием интегральных схем .

  С каждым годом растет число оборудованных средствами Т. предприятий химической, атомной, металлургической, горнодобывающей промышленности, телемеханизированных электрических станций и подстанций, насосных и компрессорных станций (на нефте– и газопроводах, в системах ирригации и водоснабжения), ж.-д. узлов и аэропортов, усилительных и ретрансляционных установок на линиях связи, систем охранной сигнализации и т. д. Если в 30-х гг. в СССР число телемеханизированных объектов едва достигало нескольких десятков, а в 50-х гг. – нескольких десятков тысяч, то в середине 70-х гг. их стало свыше 500 тысяч. К 1975 в энергосистемах СССР находилось в эксплуатации свыше 5000 ТМС; телемеханизировано около 40 тысяч км железных дорог; свыше 80% всей добываемой в стране нефти давали телемеханизированные скважины. Внедрение ТМС позволяет сократить численность обслуживающего персонала, уменьшает простои оборудования, освобождает человека от работы во вредных для здоровья условиях. Особое значение Т. приобретает в связи с созданием автоматизированных систем управления (АСУ).

  В СССР разработаны н успешно применяются (1976) такие системы Т., как, например, МКТ, «Стимул», ТМ-500, ТМ-511. ТМ-512 (для ТУ энергетическими установками на электростанциях и промышленных предприятиях, для управления энергосистемами и энергообъединениями); ТМ-100, ТМ-120-1, ТМ-600, ТМ-625 (для централизованного ТУ газо– и нефтепроводами, линиями электропередачи, различными объектами на нефтепромыслах и транспорте); ТМ-300, ТМ-310, ТМ-320 (для телемеханизации промышленных предприятий); ЭСТ-62, «Лиспа» (для телемеханизации оборудования систем электроснабжения ж. д.); ЧДЦ, «Нива» (для диспетчерской службы на ж. д.) и др.

  Интенсивно ведутся разработка и внедрение самых разнообразных систем Т. и информационных систем с устройствами Т. за рубежом. Во Франции, например, созданы и успешно эксплуатируются ТМС: «Марафон IV», ТМСС, ТТ-40, ТТ-3000, «Редека», «Телефонта», «Консип», «Телесиль»; в Щвейцарии – ДАСА, «Телегир 505», «Телегир 707», ЦУТ, ДФМ, ДУФА; в Бельгии – «Дижитл 140», «Дижитл 1000», ТС-СЛ; в ФРГ – «Геатранс» (Ф-101, Ф-102, Ф-200), ЕФД; в Великобритании – ДТ-3, «Телеплекс», «Серк»; в Италии – ТЛСМ-30, Р-6006, STO-3400; в США—«Бристоль», DS-3500, «Систем-9000», «Дейтлок-7» и др.

  Огромную роль играет Т. в освоении космоса. Применение Т. – одно из важнейших условий успешного запуска искусственных спутников Земли, космических кораблей с человеком на борту, автоматических межпланетных станций и луноходов. Устройства Т. передают с космических объектов на пункты управления данные о работе бортовых систем, необходимую измерительную информацию, в том числе сведения о состоянии здоровья космонавтов (см. Биотелеметрия ); с помощью устройств Т. осуществляется управление этими объектами с Земли. Применительно к авиации, ракетной технике и космическим кораблям телеуправление и телеизмерения получили название радиоуправление и радиотелеметрия.

  Лит.: Шастова Г. А., Кодирование и помехоустойчивость передачи телемеханической информации, М.– Л., 1966: Бесконтактные элементы промышленной телемеханики, М., 1973; Тутевич В. Н., Телемеханика, М., 1973; Ильин В. А., Телеуправление и телеизмерение, 2 изд., М., 1974; Макаров В. А., Теоретические основы телемеханики, Л., 1974; Фремке А. В., Телеизмерения, 2 изд., М., 1975.

  Г. А. Шастова.


    Ваша оценка произведения:

Популярные книги за неделю