355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Вольдемар Смилга » Очевидное? Нет, еще неизведанное… » Текст книги (страница 9)
Очевидное? Нет, еще неизведанное…
  • Текст добавлен: 20 апреля 2017, 02:00

Текст книги "Очевидное? Нет, еще неизведанное…"


Автор книги: Вольдемар Смилга


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 9 (всего у книги 16 страниц)

Начнем вращать теперь правый кристалл относительно левого. Яркость каждой из четырех точек на экране будет изменяться. Причем при определенном положении кристаллов друг относительно друга вместо четырех лучей мы увидим только два, а два других исчезают! Значит, каждый из лучей, вышедших из первого кристалла, во втором уже не расщепляется[34]34
  Два луча на выходе получаются тогда, когда соответствующие кристаллографические оси либо совпадают, либо угол между ними составляет 90°. Поэтому, поворачивая нижний кристалл на полный угол в 360°, мы 4 раза будем наблюдать на выходе 2 луча вместо 4.


[Закрыть]
.

Итак, интенсивность каждого из наблюдаемых четырех лучей меняется в зависимости только от взаимного расположения кристаллов.

Каждому лучу, который вышел из первого кристалла, не безразлично, в каком положении будет второй кристалл. Луч света, оказывается, как-то «подготовлен» к прохождению через второй кристалл. Все это довольно странно.

При вращении нижнего кристалла для лучей света, казалось бы, ничего не изменилось – ведь оба кристалла однородны, одинаковой толщины, и при вращении меняется только взаимное расположение их кристаллографических граней.

Если же вращать оба кристалла вместе, не меняя их взаимного расположения, интенсивность каждого из четырех лучей на выходе строго постоянна и не зависит от вращения.

Это сразу указывает, что весь эффект скрыт в свойствах световых лучей, вышедших из первого кристалла. Чем-то такой свет отличается от обычного. Но чем?

Этот эффект, назовем его пока условно «эффектом Гюйгенса», оставался необъясненным более ста лет.

И это не удивительно. Если принять, что свет – продольные колебания эфира и сам эфир изотропен, невозможно понять, чем могут отличаться друг от друга два луча белого света равной интенсивности.

Но стоит предположить, что свет – это поперечные колебания, как появляется еще одна характеристика – направление колебаний частиц эфира.

Руководящая идея для объяснения двойного лучепреломления – поперечных световых волн.

Если колебания поперечны, то в цилиндрике, который «вырезается» из эфира световым лучом, выделяется одно из плоских сечений. Это плоскость, в которой колеблются частицы эфира.

Как объяснить тогда, что в обычном световом луче мы не наблюдаем такой выделенной плоскости?


Ну, это сравнительно просто. Вспомним, например, что белый свет – это смесь световых волн различной длины, смесь различных цветов (Ньютон!). Может быть, в обычном луче, кроме того, равномерно смешаны световые колебания, происходящие в различных плоскостях. А тогда, естественно, выделенное направление отсутствует.

Кристалл же исландского шпата, возможно, как-то сортирует лучи. И у двух лучей, вышедших из первого кристалла, направления плоскости колебаний различны.

Правда, такая гипотеза пока не кажется очень убедительной. Тем более что при изучении исландского шпата мы наблюдаем довольно сложную картину (4 луча!). Проще проделать аналогичный опыт с кристаллом турмалина.

Очень изящный опыт с кристаллом турмалина.

Возьмем определенным образом вырезанную пластинку турмалина, направим перпендикулярно к ее поверхности луч света. Пройдя сквозь пластинку, он не преломится[35]35
  Турмалин тоже двояко преломляющий кристалл, но один из лучей в нем полностью поглощается.


[Закрыть]
.

Не изменится и его интенсивность, если вокруг оси луча вращать пластинку.

Но усложним опыт. Будем пропускать свет последовательно через две пластинки.

Если вторую пластинку вращать относительно первой вокруг оси светового луча, то увидим, как при каком-то взаимном расположении пластинок интенсивность света на выходе достигнет максимума, а потом постепенно уменьшится до нуля. Свет не проходит! При дальнейшем вращении турмалина интенсивность снова растет.

Вывод.

Значит, луч света, проходящий через две пластинки, очень чутко реагирует на взаимное положение пластинок. Допустив, что колебания эфира продольны, невозможно понять, как вращение пластинок может влиять на луч.


Следовательно, приходится, по-видимому, признать, что колебания эфира в световой волне поперечны. А луч, выходящий из кристалла турмалина, поляризован. Кстати, давно пора сказать, что такое поляризованная волна.

Поперечная волна называется плоскополяризованной, если колебания частиц той среды, в которой она распространяется, происходят все время в одной плоскости.

Итак, из кристаллов исландского шпата и турмалина свет выходит плоскополяризованным (по-видимому!).

Стоило ли так подробно останавливаться на этих опытах, усложняя при этом рассказ упоминанием об опытах Гюйгенса с исландским шпатом? Ведь с турмалином поперечность колебаний устанавливается значительно проще.

Пожалуй, все-таки стоило. Очень часто приходится слышать, что в XVII веке ученым работать было легче. Достаточно было проделать элементарный опыт или «угадать» тривиальный вывод – и новый шаг в науке сделан. Поэтому, мне кажется, полезно чуть-чуть серьезнее проанализировать «элементарные» выводы Галилея, Ньютона, Гюйгенса.

У нас, конечно, нет возможности по-настоящему разобрать хоть одну из задач прошлого, но хочется дать хоть какое-нибудь представление о том, какими удивительными и необъяснимыми предстают всегда новые эффекты независимо от того, в каком веке их наблюдают.

Назидательные рассуждения о сложности науки и о возможности других попыток для объяснения двойного лучепреломления.

Если говорить строго, то даже опыт с турмалином не позволяет заключить, что в световой волне имеются только поперечные колебания эфира. Пока не было приведено ни одного факта, утверждающего отсутствие продольных колебаний.

Более того, можно, например, выдвинуть гипотезу, что частицы эфира – нечто вроде «световых магнитиков», причем расположены они совершенно беспорядочно. Можно думать, что в световом луче эти частицы испытывают продольные колебания. В обычном световом луче колеблются все беспорядочно направленные магнитики эфира. После прохождения через кристалл турмалина почему-то возбуждаются продольные колебания только в определенным образом ориентированных магнитиках эфира. Тогда, хотя колебания и продольны, появляется выделенное направление.


Конечно, легко сказать, что все это ерунда. Но сказать и обосновать – вещи разные.

А можно попробовать объяснить поляризацию света и с корпускулярной точки зрения. Для этого достаточно ввести гипотезу, что сами световые корпускулы аналогичны магнитикам, а кристалл просто приводит в порядок их расположение. Кстати, автор последней гипотезы не кто иной, как Ньютон. Именно он первый уловил исключительное значение опытов Гюйгенса, опытов, в которых, по его выражению, проявились «изначальные» свойства света.

Короче, не стоит удивляться, что гипотеза поперечности световых колебаний была принята физиками с таким трудом. Она казалась им очень неестественной. Признание поперечных колебаний в эфире означало отказ от модели газообразного эфира! Ведь в газах поперечные волны отсутствуют!

Поперечность световых волн и гипотеза эфира.

Следовательно, приходилось перестраиваться и представлять эфир каким-то аналогом твердых тел.

Но в этом случае уж совершенно непонятно, как в таком эфире небесные тела двигаются без трения! И это еще не все. Во всех твердых и жидких телах могут распространяться как поперечные, так и продольные волны. А Френель и Араго в начале XIX столетия проделали опыты[36]36
  Конечно, мы снова отказываемся от разбора этих работ.


[Закрыть]
, объяснить которые можно было, только предположив, что продольные колебания в световых лучах совершенно отсутствуют. И это было уже совсем нехорошо!

В механике было доказано, что если на границу раздела двух упругих сред набегает даже строго поперечная волна, в отраженной и преломленной волнах должна иметься продольная составляющая. А в эфире никакой продольной волны не появляется! Отраженный свет состоит из строго поперечных колебаний!

Едва удалось найти удовлетворительную гипотезу, объясняющую этот факт, как физики оказались лицом к лицу перед совершенно удивительными открытиями.

Майкл Фарадей обнаружил, что плоскость поляризации света вращается под действием магнитного поля. Световые и электромагнитные явления оказались тесно связанными между собой. Эфир «световой» оказался по меньшей мере очень близким родичем эфиру «электрическому»!

Глава IX,

прочитав которую читатель, возможно, сможет чуть лучше представить, как «просто» заниматься физикой

Я не знаю, что такое этот эфир.

Ньютон


Рождение неувлекаемого эфира

Начиная с этой главы, мы вступаем, так сказать, в «предгорья» теории Эйнштейна. Все дальнейшее посвящено, по существу, одному вопросу: «Можно ли какими угодно опытами обнаружить покоящийся эфир – выделить абсолютную систему?»

В XIX столетии отношение физиков к гипотезе эфира очень напоминало отношение родителей к единственному балованному ребенку.

Завидная судьба эфира.

Эфиру прощали все: и его совершенно странные свойства сверхтвердого тела (строгая поперечность световых колебаний); и одновременно его исключительную разреженность, вытекающую из полного отсутствия влияния его на движение звезд и планет; и искусственность поведения эфира в сплошных телах (два эфира в исландском шпате?!). Позже вместо гипотезы о двух эфирах была выдвинута гипотеза о различной упругости эфира вдоль разных кристаллографических направлений (Нейман, 1835 г.), но это тоже вряд ли можно рассматривать как счастливую находку.

Физики мирились со всем потому, что без эфира, без какой-то среды немыслимо было представить, как распространяются электромагнитные волны в пространстве.

В наши дни мы довольно спокойно говорим, что само пространство обладает свойством передавать электромагнитные и гравитационные волны. Причем это свойство мы не связываем с наличием какой-то заливающей вселенную среды.

Современная точка зрения пока, естественно, не обоснована.

Механические методы эфира отброшены, и вместо них введено новое понятие – понятие поля. Чтобы не вдаваться в тонкости, просто отметим: современная физика отказалась от попыток представлять электромагнитные волны аналогично волнам в механических средах и газах.

Сейчас мы просто констатируем факт: в пространстве могут распространяться волны; эти волны обладают такими-то свойствами.

Мы знаем теперь, что гипотеза, будто пространство заполнено какой-то средой, аналогичной по своим свойствам газам или упругим телам, – эфиром, – несостоятельна, она противоречит опытам.

Короче, в вопросе об эфире физики вернулись к методу принципов. Но думаю, довольно ясно, как тяжело было отказаться от очень наглядной гипотезы эфира – упругой среды, заливающей вселенную.

Небольшое филологическое замечание.

Когда говорят, что теория относительности изгнала из физики эфир, имеют в виду «истребление» среды, заполняющей пространство и построенной из частиц. Сейчас мы утверждаем только то, что через пространство могут передаваться волны. Можно называть такое пространство эфиром, никто особенно не будет возражать; это вопрос сугубо терминологический.

Классический эфир погиб, когда установили, что в оптических явлениях так же, как в механике, отсутствует выделенная система отсчета.

Сентиментальное введение.

Но прежде чем в этом убедились, прежде чем Эйнштейн создал свою теорию, пришлось потратить двести с лишним лет на поиски. Сотни опытов, десятки теорий, талант и трудолюбие многих поколений физиков подготовили триумф Эйнштейна.

Каждый по мере сил вносил свою долю: и те, чьи работы были похоронены навечно очень скоро после их рождения; и те, чьи труды оставили заметный след в физике.

Пожалуй, нет в истории науки более драматичной повести, чем поиски теории эфира. Несколько раз казалось, что все уже ясно, что все сомнения исчезли. Но проходил десяток лет, и новые опыты ставили под удар теории, столь убедительные в недавнем прошлом.

У нас, естественно, нет возможности даже очень схематично проследить этот великий и тяжелый путь.

Мы ограничимся лишь упоминанием о двух работах, сделанных на заре изучения световых явлений. Они выбраны не столько потому, что сыграли важнейшую роль в истории эфира и учении о свете, сколько потому, что, проследив за замечательными, неожиданными и поразительно смелыми выводами их авторов (в общем сравнительно рядовых ученых), можно почувствовать, что такое физика.

Первая работа.

Датский математик и астроном Олаф Ремер в 1676 году в движении ближайшего спутника Юпитера обнаружил очень странные неправильности: систематически нарушалась периодичность затмений спутника. Наблюдаемая картина представлялась в высшей степени удивительной.


Факт номер один.

Известно, что время одного полного оборота спутника Юпитера постоянно. Наблюдения, проведенные в разные времена года, давали одну и ту же цифру – 42 часа 47 минут 33 секунды. Конечно, иногда получали чуть больше, иногда чуть меньше, но отклонения не превышали пределов ошибок эксперимента, а среднее наблюдаемое значение продолжительности одного оборота оставалось постоянным, что, впрочем, было вполне естественным.

Мистификация! Наблюдаемое кажущееся время одного оборота спутника непостоянно. Но во времена Ремера заметить этого не могли из-за недостаточной точности приборов.

Далее. Орбиты Земли и Юпитера и скорости движения этих планет были хорошо изучены астрономами. Поэтому, казалось бы, зная момент наступления одного затмения спутника, можно легко предсказать, когда начнется любое последующее. Надо только провести кропотливые, но в принципе очень простые вычисления.

Действительно, есть три тела. Известно, как они двигаются. И совсем не сложно установить, через какие интервалы времени они окажутся на одной прямой.

Пусть затмение наблюдается в момент, когда Юпитер, Земля и спутник Юпитера находятся в положении 1. Зная время одного оборота спутника Юпитера, можно вычислить моменты наступления остальных затмений на весь земной год вперед.

Но вместо нарисованной мирной картины астрономы столкнулись с удивительным фактом номер два.

Факт номер два.

Оказалось, что моменты наступления затмений сначала запаздывают. Запаздывание все возрастает примерно в продолжение нашего земного полугода и достигает под конец значительной величины – нескольких минут.

Потом в течение следующего полугода запаздывание все уменьшается и уменьшается, пока не исчезает совсем.

Впечатление такое, будто спутник первые полгода вращается вокруг Юпитера несколько медленнее, а вторые полгода – несколько быстрее, чем это наблюдалось в момент, соответствующий положению 1.

Получалось так, будто движение спутника возмущено какой-то неизвестной причиной, которая то ускоряет его, то замедляет; причем воздействие ее по своему характеру периодично с периодом примерно в один земной год.

Но откуда может появиться подобное возмущение?

Ремер выдвинул смелую гипотезу: причина отклонений не в спутнике Юпитера, он вращается равномерно, а в том, что скорость света конечна, и в результате наблюдателю на Земле кажется, что время одного оборота различно.

Повторяю (насколько можно понять из имевшейся в распоряжении автора литературы), во времена Ремера инструменты были недостаточно точны, чтобы непосредственно поймать разницу во временах одного оборота спутника Юпитера, измеряя это время, скажем, сегодня и через полгода.

Но, регулярно накапливаясь, отклонения в доли секунды привели к различию между наблюдениями и предсказаниями теории для моментов наступления затмения в несколько минут.

Кстати, с явлением, «очень напоминающим» запаздывание затмений спутника Юпитера, приходится сталкиваться в повседневной жизни.

Довольно часто можно слышать: «У этих часов очень точный ход. Они отстают на минуту в месяц».

Попытка популярно объяснить кажущееся противоречие в наблюдаемых Ремером фактах.

Точность обычных наручных часов не позволяет обнаружить отставание на две секунды в сутки. Но, постепенно накапливаясь, за месяц эта малая ошибка дает вполне заметное значение – минуту. Уже через несколько суток по секундной стрелке можно заметить, что часы отстают, хотя, если сверять их по сигналам точного времени в двенадцать дня и двенадцать ночи, нет возможности заметить отставание на одну секунду. При такой проверке создается впечатление, что часы идут совершенно точно.

Но если в примере с наручными часами все достаточно очевидно, то со спутником Юпитера положение было очень запутано ввиду побочных эффектов.

Шеф Ремера – крупнейший французский астроном Кассини – сначала было согласился с его идеей. Но потом отказался от нее, так как наблюдаемые движения других спутников Юпитера как будто противоречили выводам Ремера. И как часто бывает, Ремер так и не дождался при жизни полного признания своей теории.

Принципиально эффект кажущейся неравномерности вращения, вызванный конечностью скорости света, очень ясен.


Рассмотрим два положения Земли и Юпитера. В этих двух положениях и проведем измерение интервалов между двумя затмениями. Заметим, что в положении 1 расстояние между Землей и Юпитером уменьшается со временем, а в положении 2 растет.

Учтем теперь, что скорость света конечна.

Пусть Юпитер, спутник и Земля находятся в положении 1. Пусть спутник зашел за Юпитер в момент времени t1. В это мгновение на Земле мы получим световые волны, которые были посланы с поверхности спутника в какой-то предыдущий момент. Иными словами, мы увидим изображение спутника в том месте, где его уже нет.

Точно так же мы ничего не увидим, если попытаемся найти быстро летящий самолет в той точке, откуда доносится звук мотора. Пока звук будет до нас добираться, самолет улетит дальше.

Кажется, первая совершенно точная аналогия.

Изображение спутника, скрывающегося за Юпитером, мы получим не в момент t1, а спустя некоторое время Δt1(r1), которое нужно затратить свету, чтобы пробежать расстояние r1 от спутника Юпитера до Земли. Оно будет равно Δt1(r1) = r1/c, где с – скорость света.

Пожалуй, и в этом случае проще разобраться в сути дела, используя формулы.

Земной наблюдатель по своим часам отметит, что затмение спутника Юпитера началось в момент tт = t1 + r1/c[37]37
  Наблюдатель, естественно, отмечает момент tT. Момент t1 можно установить только при помощи расчетов, зная также r1 и C.


[Закрыть]
.

Когда произойдет второе затмение (а оно наступит примерно через двое суток), все повторится. И мы занесем в журнал наблюдений, что затмение началось в момент tт1 = t11 + r11/c, – где r11 – расстояние между Землей и Юпитером в момент начала второго затмения.

Интервал времени между началами двух затмений = Δt1 т = (t11 – t1) + 1/c(r11 – r1).

Но, как помните, в положении 1 расстояние между Землей и Юпитером все время уменьшается. Следовательно, r11 < r1, и вторая скобка отрицательная.

Правда, скорость света с очень велика, поэтому все второе слагаемое очень мало по сравнению с первым членом. Но все же измеряется несколько меньший интервал времени, чем действительный период между двумя затмениями.

Все сказанное можно повторить по отношению к измерениям, проведенным в положении 2, и тогда получим:

Δt2 т = (t21 – t2) + 1/c(r21 – r2).

Есть, однако, существенное различие. Когда Земля и Юпитер находятся в положении 2, расстояние между ними все время растет, то есть r21 > r2.

Значит, вторая скобка положительна, и интервал Δt2 т несколько больше действительного периода между затмениями. (Само собой разумеется, что Δt2 т > Δt1 т.)

Зная движение Земли и Юпитера, можно определить разность расстояний между ними в любые моменты времени. И, имея эти данные, путем несложных вычислений легко найти скорость света.

Вычисления самого Ремера были довольно грубы: по его данным, скорость света равна приблизительно 215 тысячам километров в секунду[38]38
  Точное значение, как известно, 299 976 км/сек.


[Закрыть]
.

Наш разговор о методе Ремера чуть менее схематичен, чем принято обычно. Но и мы обратили внимание только на одно затруднение – противоречивость кажущегося постоянства времени одного оборота спутника и предсказаний времени затмений на длительные сроки, – забыв о многих не менее тяжелых препятствиях на пути Ремера. Мало было связать руководящую идею конечности скорости света с тем, что предсказания затмений на длительные сроки были ошибочны. Требовалось еще обработать очень сложный и запутанный экспериментальный материал, материал настолько противоречивый, что Кассини отказался от теории Ремера.

Опять назидательные поучения!

Когда работа закончена, когда не остается сомнений в ее справедливости, все представляется очень простым. Это впечатление бывает особенно четким при поверхностном знакомстве. Но стоит присмотреться внимательней, как видишь, сколько было поисков и сомнений у исследователей, какой тяжелый путь скрыт за этой мнимой простотой. Избитый афоризм «гениальное всегда просто» мало поэтому соответствует истине. Более точно было бы сказать: «Простым кажется все, что уже ясно понято другими». Причем простота видна тем разительней, чем меньше мы сами понимаем, о чем идет речь.


Перейдем ко второй работе, сыгравшей в теории света и эфира исключительную роль.

Интересно, что в какой-то степени она была сделана случайно.

С тех пор как появилась система Коперника, ее сторонники пытались доказать вращение Земли, обнаружив кажущееся годичное движение неподвижных звезд – параллактическое смещение.

Очень издалека начинается рассказ об аберрации света – эффекте, замечательном как по своей физической сущности, так и своей историей.

Идея наблюдений очевидна.

Когда Земля находится в положении Т′, звезда представляется нам в точке S′. Спустя полгода мы из Т″ увидим ее в точке S″. И за год она совершает движение S′S″S′[39]39
  Для простоты рассматривается случай, когда звезда находится в плоскости земной орбиты (в плоскости эклиптики).
  Несущественная для нас тонкость! Если звезда находится не в плоскости эклиптики, ее видимое движение происходит по эллипсу, подобному земной орбите, как она представляется со звезды.


[Закрыть]
.

Иными словами, видимое движение звезды проявляется в том, что в разные времена года надо направлять телескоп под различными углами к земной поверхности. А это на нашем языке и означает в различные точки неба.

Так как расстояние от Земли до звезд во много раз превышает размеры земной орбиты, годичный параллакс ничтожно мал. Поэтому астрономы XVI столетия, с их несовершенными приборами, заметить его не могли. Ведь наибольший параллакс у самой близкой к нам звезды Proxima (Ближайшая) Центавра равен 0,75″! Под таким углом виден человеческий волос на расстоянии 18 метров![40]40
  Между прочим, по годичному параллаксу звезды определяют ее расстояние до Земли. В наши дни параллакс определяют с точностью 0,01″. Это угол, под которым человеческий волос виден с расстояния 1,5 километра!


[Закрыть]

Любопытные сведения.

Известный датский астроном Тихо де Браге тщетно пытался обнаружить годичный параллакс Полярной звезды и после неудачных опытов в конце концов стал непримиримым противником учения Коперника.

В XVII столетии точность астрономических наблюдений значительно возрастает и действительно удается наблюдать смещение звезд. Решили, что обнаружен годичный параллакс и получено еще одно подтверждение идеи Коперника.

Но вот Брадлей, изучая годичные смещения многих звезд, приходит к выводу, что это отнюдь не параллактическое смещение. Наблюдаемые движения совершенно не совпадали с теоретическими представлениями.

Не было просто ничего похожего.

Во-первых, абсолютно все звезды, лежащие в плоскости эклиптики, в течение года дважды пробегали одну и ту же дугу, равную 40,9 секунды.


Далее. Все звезды, не лежащие в плоскости эклиптики, описывали на небе эллипсы, большая ось которых также равнялась тем же 40,9 секунды.

Если допустить, что эти движения и есть параллактические смещения, пришлось бы сделать невероятное предположение, что все звезды удалены от Земли на одно и то же расстояние. Впрочем, такой отчаянный шаг тоже не мог спасти положение.

В открытом Брадлеем движении наблюдались такие закономерности, которые уже совсем нельзя было объяснить, считая, что мы видим параллактическое смещение.

Действительно, если видимое движение звезд вызвано параллактическим смещением, то при тех двух положениях Земли, когда Солнце, Земля и звезды находятся на одной прямой, звезда должна наблюдаться в одной и той же точке небосклона. А Брадлей установил, что как раз при положении Земли в этих точках звезда максимально отклоняется от своего среднего положения на небосводе.


Естественно, возник вопрос: какова же причина наблюдаемого движения? Брадлей нашел совершенно неожиданное и изящное решение задачи.

Пусть скорость света конечна, говорит Брадлей. Свет – это поток летящих от звезды на Землю мельчайших частиц – корпускул (Брадлей твердо стоял за корпускулярную теорию света).

Тогда, поскольку Земля двигается по своей орбите со значительной скоростью, наблюдаемая картина звездного неба должна отличаться от реальной.

Пояснить идею Брадлея очень просто.

Предположим, что в какой-то обсерватории проводятся наблюдения и телескоп направлен точно в зенит вертикально к поверхности Земли. Чтобы сделать наш пример «более реальным», вооружим обсерваторию телескопом-рефлектором, в котором верхнее отверстие трубы телескопа ничем не закрыто. В какой-то момент может случиться так, что начнется совершенно отвесный дождь. Если телескоп не убрать, естественно, все зеркало, расположенное внизу трубы, будет равномерно залито дождем. Капли дождя, двигаясь вдоль оптической оси трубы сверху вниз, попадут строго в центр зеркала.

Уже вторая довольно точная аналогия!

Перенесем теперь мысленно обсерваторию, телескоп и рассеянного астронома на быстро плывущий корабль и снова прикажем начаться совершенно отвесному дождю.

Картина изменится. Пока капля проходит путь от верхнего отверстия трубы до зеркала, телескоп «проезжает» некоторое расстояние, и частица падает не параллельно оси телескопа. Ее «сносит» в направлении, противоположном движению. В результате левый край зеркала будет заливаться больше, чем правый (см. рисунок).


Чтобы частицы дождя двигались по-прежнему параллельно оси телескопа, его необходимо наклонить на некоторый угол вправо. Если бы наблюдателю пришла в голову идея – определять направление падения дождевых капель по оси телескопа в тот момент, когда капли падают параллельно стенкам трубы, то он ошибся бы.

Вернемся теперь к звездам. Мы смотрим на звезду в зените небосклона через диафрагму телескопа. Пусть Земля при этом покоится. Тогда «дождь световых корпускул», падающий от звезды, пройдет точно параллельно оси телескопа и попадет в приемное устройство.

А если Земля движется? Тогда за время падения световых корпускул вдоль трубы телескопа переместится и сама труба; лучи же пойдут не параллельно оси, а под каким-то углом к ней. И попадут они не в приемное устройство, а сместятся в сторону.

Чтобы световые корпускулы двигались параллельно оси телескопа, надо просто наклонить трубу вперед. Тогда в результате совместного движения частиц и трубы лучи света пройдут параллельно оси прибора.

Угол наклона определяется просто. Если скорость световых корпускул – c, а скорость телескопа (скорость Земли) – v, то

tgφ = v/c.

Направление на звезду астроном определяет по направлению оси телескопа в момент, когда изображение звезды находится в центре поля видимости (на оптической оси). В корпускулярной же теории Ньютона сравнительно просто показывается, что изображение предмета окажется на оптической оси прибора только в том случае, когда световые корпускулы от этого предмета летят параллельно оптической оси. А мы сейчас только убедились, что ввиду движения Земли корпускулы двигаются параллельно оси телескопа, когда он направлен не на звезду, а несколько отклонен. Вот что такое аберрация света[41]41
  «Аберрация» дословно означает «отклонение», «заблуждение». Поэтому не приходится удивляться, что термин «аберрация» используют также для обозначения совершенно отличных по своей природе физических явлений, связанных с искажением хода световых лучей. Существует еще «хроматическая аберрация», «сферическая аберрация», «продольная аберрация» и еще несколько аберраций.


[Закрыть]
. Из-за аберрации света мы, следовательно, видим звезду не в том направлении, где она находится.

Может быть, стоит заметить, что все мы не раз наблюдали аберрацию отвесно падающего дождя. Если судить только по дождевым следам на стекле двигающегося вагона, создастся впечатление, что дождь падает косо к поверхности Земли.

Очень существенное замечание.

Стоит особо отметить, что если бы Земля двигалась равномерно и прямолинейно по отношению к неподвижным звездам, мы, конечно, никак не могли бы экспериментально установить наличие аберрации света. Всегда во всех опытах телескопы были бы наклонены на один и тот же угол по отношению к истинному направлению на звезду; никакого аберрационного движения звезды по небосклону не наблюдалось бы, и об аберрационном смещении можно было бы заключить только на основе теоретических рассуждений. Аберрационное смещение звезд, как видно из рисунка, наблюдается потому, что в разных точках орбиты скорость Земли имеет различное направление.

…Теория Брадлея великолепно объяснила наблюдаемые смещения звезд. В частности, стало совершенно понятно, почему максимальные угловые смещения всех звезд равны между собой – ведь они всецело определяются отношением орбитальной скорости Земли к скорости света.


Кстати, по величине углового смещения можно было определить скорость света. Брадлей и нашел, что c = 303 тысячам километров в секунду, то есть определил скорость света с точностью до одного процента.

Аберрационное смещение звезд послужило также прекрасным доказательством системы Коперника.

Словом, Брадлей открыл значительно более интересное явление, чем то, которое он искал.

А параллактическое смещение было обнаружено только в середине XIX столетия, так как эффект был слишком тонок для инструментов XVIII века.

Итак, наука торжествовала…

Все это очень мило, но ведь корпускулярная теория оказалась неправильной! Следовательно, объяснение аберрации, которое дал Брадлей, удовлетворить нас не может! Необходимо объяснить аберрацию с позиции волновой теории, ибо без такого объяснения вся теория повисает в воздухе.

Толкование аберрации с волновой точки зрения нашел Роберт Юнг (1804). И тогда обнаружили, что проблема аберрации значительно ядовитее, чем думали вначале.

Неувлекаемый эфир! Внимание!

Юнг предположил, что эфир не увлекается Землей при ее движении; что Земля несется сквозь эфирное море и ее скорость относительно частиц эфира равна орбитальной скорости[42]42
  Орбитальная скорость Земли была известна – 30 километров в секунду.


[Закрыть]
. Только в этом случае – в случае полностью неувлекаемого эфира – аберрационный эффект, рассчитанный по волновой теории, полностью совпадает по величине со значением, предсказанным корпускулярной теорией света и полученным экспериментально.

Сейчас мы коротко передадим сущность рассуждений Юнга, но пока важно отметить другое.

При попытке построить волновую теорию аберрации физики впервые столкнулись с центральной проблемой теории эфира – проблемой, которая в конечном счете погубила эфир.

Как взаимодействует эфир с движущейся Землей? Как движение Земли относительно эфира сказывается на оптических и электромагнитных явлениях? Можно ли обнаружить экспериментально движение относительно эфира? В итоге все это сводится к одному.

Существует ли абсолютная система отсчета – покоящийся эфир?

Итак, аберрация в волновой теории света получила важнейшее, принципиальное значение. Точное решение задачи аберрации в волновой теории довольно кропотливо, и мы ограничимся грубыми качественными замечаниями.


Впрочем, эти соображения отражают совершенно правильно суть вопроса.

Световые волны, излучаемые звездой, концентрически разбегаются от нее в неподвижном эфире[43]43
  Следует напомнить, чтó мы понимаем под неподвижным эфиром. Эфир считается покоящимся в системе неподвижных звезд.


[Закрыть]
.

Аберрация и неувлекаемый эфир. Очень важное место.

Предположим, что Земля в своем движении не увлекает эфир. Тогда волны, прошедшие через диафрагму телескопа, будут как бы «снесены» относительно оси прибора влево.

А если бы Земля увлекала эфир в своем движении, никакой аберрации не было бы!

Существование аберрации показывало бы, что эфир не увлекается Землей. Значит, при движении Земли относительно неподвижных звезд вблизи нее должен возникать «эфирный ветер».


    Ваша оценка произведения:

Популярные книги за неделю