355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Вольдемар Смилга » Очевидное? Нет, еще неизведанное… » Текст книги (страница 5)
Очевидное? Нет, еще неизведанное…
  • Текст добавлен: 20 апреля 2017, 02:00

Текст книги "Очевидное? Нет, еще неизведанное…"


Автор книги: Вольдемар Смилга


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 5 (всего у книги 16 страниц)

Глава IV,

недостатки которой отчасти искупает эпиграф. В этой главе довольно сухо и многословно объясняется, что такое система отсчета, а также неоднократно повторяется очень существенная мысль: «Пока не указана система отсчета, всякие разговоры о механическом движении совершенно лишены содержания»

Движенья нет, сказал мудрец брадатый.

Другой смолчал и стал пред ним ходить.

Сильнее бы не мог он возразить;

Хвалили все ответ замысловатый.

Но, господа, забавный случай сей

Другой пример на память мне приводит:

Ведь каждый день пред нами солнце ходит,

Однако ж прав упрямый Галилей.

Пушкин


Ньютон. Механика
(анализ основных понятий: движение)

Начнем с цитат. Исаак Ньютон – «Математические начала натурфилософии» (из основных определений):

«Абсолютное пространство, благодаря своей природе безотносительно к чему-либо внешнему, остается всегда одинаковым и неподвижным».

«Относительное пространство есть мера или подвижная часть абсолютного пространства; наши чувства обозначают относительное пространство положением относительно каких-либо тел и обыкновенно принимают за пространство неподвижное».

Взгляды Ньютона на пространство и движение.

«Место есть часть пространства, занимаемая телом, и по отношению к пространству бывает или относительным, или абсолютным».

«Абсолютное движение есть перенесение тела из одного абсолютного места в другое. Относительное – из одного относительного места в другое… Мы не без удобства пользуемся в делах житейских относительными местами и движениями вместо абсолютных; в философских же вопросах необходимо отвлечение от чувств. Может оказаться, что в действительности не существует покоящегося тела, к которому можно было бы относить места и движения прочих».

Все это говорит Ньютон-философ. Он, а не физик вводит абсолютное пространство и абсолютное движение.

Абсолютное пространство находится вне связи с материей, вне связи с чем-либо внешним. Это чисто абстрактное, умозрительное понятие. Некое загадочное вместилище божественного начала.

Но Ньютон-философ, Ньютон-богослов верует. Он верует в господа и в абсолютное пространство. Он удивительным образом забыл свое собственное правило: «Не должно требовать в природе других причин сверх тех, которые истинны и достаточны для объяснения явлений».

Да простит тень великого Ньютона столь непочтительные слова, но факт остается фактом – физического содержания в определении абсолютного пространства нет!

Но вот звучит голос физика: «Впрочем, узнавать истинные движения отдельных тел и отличать их от мнимых очень трудно, потому что части того неподвижного пространства, в которых тела действительно движутся, не могут быть чувственно познаны… Дело, однако, не вполне безнадежно».

Ньютон об абсолютном и относительном движении.

И на поле боя в защиту философа выступает Ньютон-физик, как всегда во всеоружии своего поразительного таланта. Он предлагает способ определения абсолютного пространства. Он полагает, что может найти «истинное движение» – движение относительно абсолютного пространства. И тем не менее…


Впрочем, не стоит преждевременно навязывать выводы; послушаем лучше самого Ньютона:

«Действующими причинами, из-за которых абсолютные и относительные движения различны между собой, являются центробежные силы, направленные от оси движения. При движении в круге только относительном эти силы не существуют. Но они бывают больше или меньше в зависимости от величины абсолютного движения.

Знаменитый ньютоновский опыт с вращающимся ведром!

Подвесим, например, сосуд на очень длинной нити и будем вращать его до тех пор, пока нить не закрутится очень сильно. Потом наполним этот сосуд водой. Если теперь под действием мгновенной силы сосуд станет вращаться в противоположном направлении и это движение будет продолжаться долго, поверхность воды будет сначала плоской, как до движения сосуда[16]16
  В этот момент относительная скорость частиц воды и стенок сосуда наибольшая.


[Закрыть]
, но потом, когда сила[17]17
  Сила трения.


[Закрыть]
начнет постепенно действовать на воду, стенки сосуда увлекут воду в своем движении, и она начнет вращаться. Постепенно жидкость отдалится от середины (оси вращения), подымется у стенок сосуда, и в результате образуется некоторое углубление в виде воронки (этот опыт я проделал сам).

Вначале, когда движение воды в сосуде относительно стенок сосуда было наибольшим, вода не обнаруживала ни малейшего стремления удалиться от оси. Она не стремилась приблизиться к краю, поднимаясь вдоль стенок, а оставалась плоской, и истинное кругообразное движение жидкости еще не начиналось.


Но потом, когда относительное движение воды стало уменьшаться, ее поднятие по стенкам сосуда стало указывать на стремление удалиться от оси.

Это стремление указывало на все возрастающее истинное круговое движение воды. Когда, наконец, это движение стало наибольшим, вода относительно сосуда находилась в состоянии покоя».

Итак, появляется критерий абсолютного движения – центробежные силы. Наличие центробежных сил всегда можно установить либо по форме движущегося тела, либо по внутренним напряжениям, которые возникают в теле, – словом, их легко обнаружить.

Может быть, Ньютон действительно нашел способ определения абсолютного движения, а следовательно, и абсолютного пространства?

Может быть, его определение абсолютного пространства просто не очень удачно сформулировано, но им указан реальный путь для определения абсолютного пространства и движения?

Опыт показывает, что центробежные силы возникают в теле в том случае, если оно вращается относительно неподвижных звезд.

Может быть, имеет смысл говорить, что движение абсолютно, если оно происходит относительно звезд?

Может быть, неподвижные звезды и определяют абсолютное пространство?

Итак, существует ли такое движение, о котором можно говорить, как об абсолютном? Или всякое механическое движение относительно?

Внимание! Это центральный, важнейший вопрос.

Не предрешая ответа, мы перейдем к анализу, «по-видимому, всем знакомого» понятия движения.

Прежде всего – главнейшее. «О движении механическом имеет смысл говорить, только указав систему отсчета или в конечном счете какие-то реальные физические объекты, которые считаются неподвижными. Пока система отсчета („неподвижные тела“) не указана, слова „тело движется“ лишены всякого содержания».

И, как видно из предыдущих страниц, Ньютон это великолепно понимал. Говоря об относительном движении, он, собственно, и вводит понятие системы отсчета. Причем именно Ньютон первый из физиков осознал, какую решающую роль имеет система отсчета. Даже сам Галилей не имел о ней ясного представления, а значит, не имел четкого понятия и о механическом движении. Он обрывает свой анализ как раз тогда, когда надо ответить: «Что же такое движение?»

И снова внимание!

И это не удивительно.

Несмотря на свою кажущуюся очевидность, понятие системы отсчета настолько абстрактно, что могло возникнуть лишь на довольно высокой стадии развития науки.

Этот тезис подтверждает, в частности, хотя бы такое несколько неожиданное обстоятельство. Даже в наши дни многие люди, знакомые с механикой и способные решать задачи, недоступные Ньютону, теряются при вопросе: что же происходит «на самом деле» – паровоз движется относительно Земли или Земля относительно паровоза?

Так чем же определяется выбор системы отсчета? Какие конкретные тела следует считать неподвижными?

Тела, которые надо считать неподвижными – систему отсчета, – мы выбираем по своему произволу. Точнее, выбор системы отсчета определяется соображениями простоты и удобства.

Сегодня, рассматривая полет снаряда, мы выбираем систему отсчета, жестко связанную с Землей. Завтра, рассматривая движение Земли, мы выбираем систему, связанную с Солнцем. А изучая Солнце, мы относим его движение к системе, связанной со звездами.

Поскольку выбор системы отсчета (координатной системы) произволен, пассажир поезда Москва – Ленинград и провожающие его на вокзале родственники имеют равные основания утверждать, что они находятся в состоянии покоя.

Пассажир может ввести систему отсчета, жестко связанную с вагоном, и в этой системе Ленинградский вокзал в Москве (вместе с родственниками, конечно) будет двигаться, удаляясь от начала координат.

А в системе отсчета, жестко связанной с Землей, естественно, движется поезд.

Если в обыденной жизни любой человек скажет, что «на самом деле», конечно, двигается поезд, то объясняется это очень просто. Интуитивно, используя повседневный опыт, мы всегда выбираем систему отсчета, связанную с Землей.

Пример геоцентрической[18]18
  «Гео» – Земля, «Гелиос» – Солнце.


[Закрыть]
системы Птолемея лучше всего показывает, как может подвести такая интуиция.

Но, может быть, среди всех бесчисленных возможных систем есть одна (одна!) особая и неповторимая, такая, физические свойства которой столь резко отличаются от свойств любой из бесчисленного множества возможных систем отсчета, что есть основания считать ее абсолютной?

Стоит напомнить, что вопрос о существовании абсолютной системы и абсолютного движения пока по-прежнему остается открытым.

А если есть абсолютная система, то можно говорить и об истинном (абсолютном) движении, можно говорить об абсолютном пространстве.

Мы вернулись к вопросу, поставленному выше. Ньютон, как помните, предложил способ определения абсолютных движений (центробежные силы!), но мы пока еще не можем судить, прав ли он. А определение абсолютной системы по Ньютону нас не устраивает; в нем навязывается загадочное понятие абсолютного пространства.

Поэтому, отложив на время решение этого вопроса, сформулируем совершенно общее определение процесса движения.

Приводится определение понятия движения, которое, как видно, соответствует ньютоновскому «относительному движению».

Движение данного физического тела относительно других физических тел есть изменение его положения относительно этих тел.

Как видите, не сказано ничего нового. Просто подведен итог. Для полного удовлетворения необходимо точно объяснить, что означают слова «изменяет свое положение относительно других тел». Ответ сравнительно прост.

К тому телу (или телам), которые мы считаем неподвижными, мы жестко «привязываем» систему координат. Затем измеряем координаты изучаемого тела и определяем его «положение».


Из школьного курса геометрии хорошо известна только одна координатная система – Декартова. В этой системе положение точки в пространстве однозначно определяется ее кратчайшими расстояниями до трех взаимно перпендикулярных плоскостей.

В математике и в физике часто пользуются другими координатными системами, но, чтобы однозначно определить положение точки в пространстве, всегда необходимо знать три числа, три координаты.

Это, между прочим, и означает, что пространство имеет три измерения!

Не будем очень углубляться в математику и потому не будем особенно расшифровывать наш «саперный» жаргон – «жестко привязать» к физическому телу координатную систему. Просто в случае, когда координатные оси направлены в строго определенные неизменные точки твердого тела, мы говорим, что координатная система «привязана жестко». Лучше всего пояснить это примером.

«Привяжем» Декартову координатную систему к Земле. Начало координат – центр Земли. Ось z направлена от центра к Северному полюсу. Ось x – от центра к точке пересечения Гринвичского меридиана с экватором (0° широты и 0° долготы). Ось y – от центра к точке 0° широты и 90° восточной долготы.


«Привязать» можно, конечно, и по-иному. Взять за центр другую точку, по-другому расположить оси и т. п.

После небольшого экскурса в математику можно более четко перефразировать определение движения.

Тело относительно данной координатной системы движется, если с течением времени изменяется хотя бы одна из его координат.

Как именно меняются координаты, показывает важнейшая характеристика движения – скорость.

Если не стремиться к строгим формулировкам (это потребовало бы несколько больше математики, чем разрешают каноны популярной литературы), то понятие скорости можно ввести так.


Пусть мы хотим определить скорость тела в какой-то момент времени t0. Тогда нужно сделать следующее:

определить в выбранной нами системе отсчета положение тела в момент t0. Иначе говоря, определить его координаты;

посмотреть, где окажется наше тело в какой-то следующий момент t1 (найти координаты в момент t1);

определить длину прямолинейного отрезка, соединяющего первую и вторую точки. Эту длину обозначим ΔS(t1 · t0);

поделить ΔS(t1 · t0) на соответствующий интервал Δt = (t1 – t0). Тогда приближенно абсолютная величина скорости тела в момент t0 равна [v(t0)] ≈ ΔSt. Чем меньше мы выберем интервал Δt, тем точнее отношение ΔSt будет определять скорость в момент t0.

А в пределе при t0 → 0 наша дробь точно определяет абсолютную величину скорости тела в момент t0. Это записывают так:

На рисунке иллюстрируются те операции, о которых только что говорилось, для частного случая, когда движение происходит вдоль прямой линии.

При этом, как видно, начиная с некоторого момента времени, S уменьшается. Это значит, что тело возвращается в начальную точку. В верхней точке кривой скорость равна нулю. Слева от этой точки скорость положительна, а справа – отрицательна. Обратите внимание, что, используя приближенное выражение для скорости, в верхней точке мы не получим нуля.

Уже упоминалось, что одной абсолютной величины еще недостаточно для полной характеристики скорости. Нужно знать направление в котором тело убегает из начальной точки.

Если тело движется не по прямой, то направление его движения изменяется весьма прихотливо, и это отражается в определении скорости. Скорость тела можно считать постоянной только тогда, когда неизменны и ее абсолютная величина и направление движения (равномерное прямолинейное движение). Очевидно, что направление скорости определяется направлением отрезка (ΔS).

А теперь перейдем к самому важному.

Интервал пути ΔS, как говорилось выше, определяется в данной выбранной нами системе отсчета. При этом и абсолютная величина и направление ΔS зависят от выбора системы отсчета. В одной системе отрезок ΔSбудет один, а в другой – другой. То есть пройденный путь – величина относительная и зависит от выбора системы отсчета.

Это должно быть всем известно из школьного курса физики, поэтому ограничимся только наглядной «железнодорожной» иллюстрацией.

Путь, который проходит экспресс Москва – Ленинград в системе отсчета, жестко связанной с экспрессом, тождественно равен нулю (поезд все время находится в начале координат, и ΔS = 0).

Если систему отсчета связать с товарным поездом, который вышел из Москвы в одно время с экспрессом, но, естественно, отставал по дороге и в момент прибытия экспресса в Ленинград находился в Бологом, то путь, пройденный экспрессом, равен расстоянию Бологое – Ленинград (ΔS = 325 километрам).

В системе же отсчета, связанной с Землей, экспресс пройдет расстояние Москва – Ленинград, то есть ΔS = 650 километрам. Но так как скорость определяется отношением ΔS/Δt, то она также оказывается величиной относительной и зависит от системы отсчета.

Между прочим, надо заметить, что подобные примеры довольно часто сложнее, чем четкие математические формулы.

А как интервал времени Δt? Он, может быть, тоже зависит от системы отсчета?

Может ли оказаться, что, определяя время движения экспресса Москва – Ленинград, мы получим в системе отсчета, связанной с Землей, один результат, а в системе, связанной с самим экспрессом, – другой? Или нелепа сама постановка такого вопроса? Надеюсь, что такой мысли ни у кого не появилось.

Время – физическое понятие, которое ввели, используя опытные данные. В классической физике мы полагаем, что интервал времени Δt одинаков во всех системах отсчета. И это утверждение сделано как обобщение опытных фактов. Но если, паче чаяния, новые опыты покажут, что в различных системах отсчета интервал времени различен, мы примем это с удивлением, но без ужаса[19]19
  Именно это и пришлось сделать физикам, когда была создана теория относительности. Но пока скорости много меньше световой, можно считать, что интервал Δt неизменен во всех системах.


[Закрыть]
.

По этому поводу, пожалуй, уместно вспомнить одного персонажа Марка Твена, твердо уверенного в том, что в деревне время течет существенно медленнее, чем в городе. Полное незнание физики позволило выдвинуть ему эту смелую гипотезу, причем он, конечно, также опирался на свое нелепое, но интуитивное (основанное на «эксперименте») представление о времени.

Однако в классической физике понятие времени таково, что интервал Δt имеет абсолютное значение независимо от системы отсчета.

Следовательно, скорость, так же как и пройденный путь, – относительное понятие и при переходе от одной системы отсчета к другой изменяется точно так же, как и путь.

Ну вот, собственно, все, что стоило напомнить о скорости. Владея понятием скорости, мы совершенно аналогично определяем ускорение:

Ускорение по отношению к скорости – то же, что скорость по отношению к пути.

Настойчивые повторения. Выводы и нерешенный вопрос.

Подведем итоги. Мы очень подробно и многократно повторяли, по существу, совершенно тривиальную мысль, и тем не менее ее стоит повторить еще раз:

«Только объявив какие-то реальные физические тела неподвижными, указав систему отсчета, можно говорить о механическом движении. Без указания системы отсчета слова „покой“ и „движение“ совершенно бессодержательны».

Как видно из цитированных отрывков «Начал», Ньютон ясно сознавал все значение понятия системы отсчета.

Но он полагал, что есть некая особая, выделенная, замечательная, неповторимая – абсолютная система отсчета, и даже предложил способ определения абсолютных (истинных) движений (опыт с ведром!).

Существует ли такая система отсчета, мы не выяснили. И именно поиски ответа на этот так просто поставленный вопрос приведут к теории относительности.

В следующей главе мы увидим, что законы механики таковы, что нельзя выделить какую-то одну особую систему отсчета.

Есть целый класс совершенно равноправных с точки зрения механики систем, так называемых «инерциальных систем», о которых никак не скажешь, что какая-то одна из них чем-либо выделяется.

Но тогда можно поставить вопрос так: нельзя ли найти эту загадочную абсолютную систему, исследуя не механические явления, а какие-либо другие? Допустим, электрические, магнитные, гравитационные или еще что-либо?

Может быть, существует все же одна замечательная система, данная нам свыше, и совершенно отличная от других?

Возможно, например, что, изучая электромагнитные явления, можно отыскать какую-то особую систему отсчета?

Начиная с седьмой главы мы (к сожалению, очень поверхностно) проследим за попытками дать ответ на этот вопрос, за теми поисками, которые завершились созданием теории относительности.

Итак (снова и снова!), перед нами проблема: «Можно ли при помощи любого физического опыта отыскать такую одну замечательную систему отсчета, которая по своим физическим свойствам резко отличается от всех остальных мыслимых систем?»

Глава V,

в которой автор сначала рассуждает, а под конец удивляется; причем призывает благосклонного читателя последовать его примеру

Счастливец Ньютон, систему мира можно установить только один раз.

Лагранж


Ньютон. Механика
(анализ основных понятий: система отсчета)

Известно, что многословные объяснения далеко не лучшие, и потому автора мучают сомнения. Не покажется ли только что проведенный кропотливый и скучноватый анализ излишним? В конце концов все содержание предыдущей главы можно свести к нескольким фразам:

говорить о механическом движении какого-либо тела имеет смысл, только если указана система отсчета, связанная с какими-либо реальными телами.

Снова повторы и традиционные общие замечания.

Выбор системы отсчета определяется в конечном итоге только тем, в какой системе описание данного явления более удобно.

Если существует такая замечательная система отсчета и в ней законы природы выглядят как-то особенно просто (или, точнее, выглядят как-то совершенно по-другому, чем в любой другой), то такую систему имеет смысл назвать абсолютной и, соответственно, говорить об абсолютном движении.

Существует ли такая абсолютная система или нет – осталось неизвестным.

При этом вся тяжесть рассуждений – так сказать, линия главного удара – была сосредоточена на разъяснении первого положения.

Может быть, теряя столько слов и времени, чтобы расшифровать, «по-видимому, всем знакомое» понятие движения, мы ломились в открытую дверь, запутываясь в бесконечных оговорках, уточнениях и пояснениях? Может быть, все предыдущее, как говорится, идет от лукавого? Пожалуй, все-таки нет.

Позвольте (уже в который раз!) напомнить, что самые серьезные проблемы очень часто скрыты как раз за тем, что кажется самоочевидным. Первыми из ученых это поняли, вероятно, математики (пятый постулат Эвклида). Физики в наши дни также признают, что нет таких вопросов, от которых можно отмахнуться со словами: «Это совершенно очевидно». Однако для физиков стремление к безупречной логике все же не так естественно и привычно, как для математиков.

В подтверждение этого несколько обидного тезиса разрешите привести один пример, непосредственно связанный с понятием движения.

Очень любопытный пример.

Вероятно, почти все слыхали, что астрономы совершенно твердо установили факт вращения нашей Галактики вокруг какой-то оси, проходящей через ее центр.

Так вот, в популярных, а часто и в специальных книгах пишут о вращении Галактики, ни слова не говоря, в какой именно системе отсчета она вращается. Но без указания системы отсчета слова о вращении Галактики лишены всякого содержания.

А как ввести систему отсчета, описывающую Галактику? Чтобы убедиться в том, что предложен не совсем праздный вопрос, представьте себе вселенную как далеко рассеянные друг от друга рои пчел, повисшие в «пустом» пространстве. Каждый такой рой – одна из галактик. А теперь попробуйте разумно ввести систему отсчета. Она, естественно, должна быть связана с реальными телами. Но ведь, кроме пчелиных роев, в нашем распоряжении ничего нет. «Вбивать» координатные оси в пустое пространство нельзя. Систему отсчета нужно как-то определить, используя «подручные материалы» – пчелиные рои[20]20
  Попутно стоит отметить некоторые любопытные свойства подобной модели вселенной. Если каждая пчела соответствует звезде средних размеров, то, поместив одну из них – Солнце – в Москву, чтобы сохранить масштаб, ближайшую пчелу – Проксима Центавра – пришлось бы отправить куда-то в район Ленинграда. А наиболее далекие пчелы роя, изображающего нашу Галактику, оказались бы на расстоянии примерно в два раза большем, чем расстояние от Земли до Луны. И наконец, отдельные рои – галактики – в нашей модели разделены расстояниями в десятки миллионов километров. Земля в такой модели (стыдно сказать!) была бы пылинкой диаметром в сотую долю сантиметра. И может быть, самое обидное, что в нашем масштабе рост человека – приблизительно 10–9 сантиметра – в несколько раз меньше диаметра атома водорода. Такая модель соответствует уменьшению всех масштабов в 1011 раз.


[Закрыть]
.

Мы не будем сейчас говорить о том, на основании каких именно фактов смогли заключить, что в некоторой системе отсчета все пчелы нашего роя – нашей Галактики – участвуют в закономерном движении – вращении. Это завело бы слишком далеко в сторону. Можно заметить только, что ни один физический опыт, поставленный на самой Земле, не помогает обнаружить вращение Галактики, и вывод сделан только на основании наблюдения относительного движения звезд.

Нас интересует другое.

Как была введена система отсчета? С какими звездами – «пчелами» – она связана? Как, не используя никаких иных объектов, кроме пчел самого роя, «вбить» в пространство те три взаимно перпендикулярных стержня, которые образуют систему координат?

На все это также разрешите ответить уклончиво.

Заметим, что напрашивающаяся мысль: «Эта система отсчета как-то связана с другими галактиками», – ошибочна. Наша «загадочная» система определяется только звездами нашей Галактики.

Как именно была выбрана система, мы разбирать не будем. Ограничимся только утверждением, что такую систему можно определить. Можно «вколотить» некие условные мысленные «гвозди» в мировое пространство, к которым «привязывают» систему отсчета.

Сейчас важно даже не то, как была введена система отсчета, а то, что это совершенно необходимо сделать, прежде чем говорить о каком-либо движении (в нашем случае вращении) звезд Галактики. Важно представлять, что выбор системы – центральный, основной вопрос. Только когда есть система отсчета, слова «Галактика вращается» имеют смысл.

После этих общих замечаний дидактического характера вернемся к законам Ньютона.

Проблемой № 1 при обсуждении законов движения оказывается вопрос: «В какой системе отсчета формулируются эти законы?»

И надо сказать, что этот первый вопрос является, может быть, самым неприятным.

Ньютон ответил просто. Он ввел некую абсолютную систему отсчета – абсолютное пространство и, соответственно, абсолютное движение. Но, как помните, определение Ньютона лишено физического содержания.

Однако определение… не более чем определение. Ведь сам же Ньютон предложил способ, как находить «абсолютное движение» (центробежные силы) и, следовательно, как найти абсолютную систему отсчета. Если так, то в конце-концов вся проблема сводится к тому, что определение неудачно и его следует изменить.


В таком случае не было бы особого повода для волнений. Определение Ньютона изменили бы, но абсолютная система отсчета осталась бы в механике.

Дело, однако, в том, что Ньютон ошибался по существу.

Снова провозглашается, а затем исследуется принцип относительности Галилея.

Нет такого опыта из области механики, который позволил бы выделить какую-нибудь избранную систему отсчета. И как раз законы механики, законы Ньютона убеждают в этом.

Это мы сейчас и увидим. Откажемся пока от попыток логически безупречно определять ту систему отсчета (или, может быть, тот класс систем отсчета), для которой (которых) справедливы законы Ньютона.

Предположим просто, что, экспериментально исследуя движение тел, мы нашли систему отсчета, где в пределах точности наших измерений соблюдаются законы Ньютона. Такую систему отсчета мы назовем инерциальной системой.

Делается первая попытка дать определение инерциальной системы. И его стоит запомнить.

Ньютон сформулировал свои законы в некоей абсолютной системе отсчета. Что это за система, мы не знаем. И пока не хотим обсуждать, существует она или нет. Введя же инерциальную систему, внешне мы также не сделали ничего значительного, просто заменили одни слова другими. Вместо «абсолютная система» написали «инерциальная система».

Но, по существу, наша позиция совершенно отлична от ньютоновой. Мы апеллируем к опыту, а не к абстрактным понятиям. Нашу систему мы отыскали опытным путем и назвали ее так, как нам нравится.

А теперь посмотрим. Если в мире существует одна-единственная инерциальная система (других нет), то разумно считать ее абсолютной системой отсчета. Но если таких инерциальных систем бесчисленное множество, придется признать, что по крайней мере для механических явлений говорить о существовании абсолютной системы бессмысленно.

Вспомним теперь законы Ньютона и сформулируем их в некоторой инерциальной системе.

Предварительный анализ первого закона механики.

Первый закон – «В инерциальной системе отсчета всякое тело находится в состоянии покоя или равномерного прямолинейного движения, пока и поскольку оно не принуждается приложенными силами изменить это состояние».

Стоит обратить особое внимание, что первый закон механики торжественно провозглашает для свободного тела, рассматриваемого в инерциальной системе, полное равноправие состояний покоя и равномерного прямолинейного движения.

Довольно очевидно, что если ввести какую-либо другую систему отсчета, равномерно и прямолинейно движущуюся относительно нашей инерциальной системы, то в этой новой системе свободное тело также сохраняет свою скорость неизменной. Таким образом, первый закон Ньютона и в этой «новой» системе имеет точно такой же вид, как и в «старой» инерциальной системе.

Сложный, но существенный отрывок.

И напротив, если для описания состояния свободного тела использовать систему отсчета, ускоренно движущуюся относительно нашей инерциальной системы, то в этой «ускоренной» системе отсчета поведение свободного тела уже не будет описываться первым законом Ньютона. В такой «нехорошей» системе отсчета свободное тело не будет находиться в состоянии покоя или равномерного прямолинейного движения. Оно будет двигаться с ускорением.

Выводы.

Можно сделать вывод: если найдена одна система отсчета, в которой для свободного тела выполняется первый закон Ньютона, то этот же закон будет соблюдаться в любой из бесконечного числа систем отсчета, равномерно и прямолинейно движущихся относительно первичной системы.

И с другой стороны, существует бесконечное множество систем отсчета, в которых первый закон Ньютона не соблюдается. А именно: любая из систем, ускоренно движущихся относительно инерциальной системы.

Более строгие, но несколько абстрактные рассуждения, подтверждающие нашу точку зрения.

Возможно, предыдущие рассуждения оставили чувство неудовлетворенности. Ведь мы сами утверждали, что необходимо добиваться полной ясности и четкости, даже говоря о самых очевидных вещах. Поэтому, как ни очевидно утверждение: «Если первый закон Ньютона выполняется в одной системе отсчета, то он выполняется и во всех системах отсчета, равномерно и прямолинейно движущихся относительно нашей», – его нужно обосновать.

Схема рассуждений должна быть примерно такой. Пусть дана какая-то система отсчета: обозначим ее для удобства, скажем, буквой K. В ней мы умеем описывать движение тел и предметов при помощи законов Ньютона. Так, если изучаемое тело изолировано и свободно, оно в нашей системе либо покоится, либо движется с постоянной скоростью V.


Но вот есть другая система отсчета, скажем K1, которая движется относительно К равномерно и прямолинейно с известной нам скоростью v.

При этих условиях мы должны научиться определять положение изучаемого тела в новой системе отсчета. Ведь чтобы ответить на вопрос, каков характер движения тела в новой системе K1, надо знать его координаты в этой системе в любой момент времени.

Иными словами, нужно найти закон перехода от одной системы отсчета к другой.

Найти этот закон довольно просто в самом общем случае, но мы рассмотрим наипростейший, а именно: во-первых, когда система K1 движется с постоянной скоростью вдоль оси x системы K; и во-вторых, когда скорость нашего свободного тела V направлена также вдоль оси x системы K.

Тогда, если в момент t0 = 0 системы отсчета совпадали, то за время t начало координат системы K1 «уедет» на расстояние S = vt. Как видно из чертежа, координаты тела в новой системе можно найти, зная координаты в старой системе и используя очевидные соотношения:

x1 = х – vt;

у1 = у;

z1 = z.

Прошу поверить на слово, что если рассматривать общий случай (скорости V и v направлены не вдоль осей и не совпадают по направлениям), наши выводы останутся правильными.

Но вернемся к примеру. В каждый данный момент времени в старой системе отсчета координаты нашего тела определяются соотношениями:

x = x0 + Vt;

y = y0;

z = z0.

Здесь x0, y0, z0 – координаты тела в начальный момент t = 0.

Вспомнив формулы для перехода от одной системы к другой, получаем:

x1 = x0 + (V – v)t;

у1 = у0;

z1 = z0.

Итак, в новой системе тело снова двигается равномерно и прямолинейно вдоль оси x1, но уже с новой скоростью V1 = V – v.

Когда читатель познакомится с преобразованиями Лоренца, стоит еще раз взглянуть на эти формулы.

Иначе говоря, мы доказали, что если первый закон Ньютона справедлив в системе K, то он справедлив и в K1.


    Ваша оценка произведения:

Популярные книги за неделю