Текст книги "Очевидное? Нет, еще неизведанное…"
Автор книги: Вольдемар Смилга
Жанр:
Физика
сообщить о нарушении
Текущая страница: 13 (всего у книги 16 страниц)
А до Эйнштейна вообще не подозревали, что такие понятия, как «одновременность», «время», «длина», нужно строго определять. Поэтому в чисто психологическом отношении теория относительности не меньший переворот, чем по своему физическому содержанию.
Очень точно характеризовал положение вещей Л. И. Мандельштам:
«То, что понятие одновременности нуждается, как указал Эйнштейн, в определении, а не дано свыше, – это шаг, который взять обратно не сможет никто».
Надо ясно представлять, что в постулатах и основных понятиях теории Эйнштейна нет никакого противоречия с логикой. Теория может противоречить фактам, это другой вопрос. Но пока все опытные данные самой разнородной природы великолепно подтверждают теорию относительности.
Вспомним теперь пример, разобранный в предыдущей главе. В центре равномерно движущегося вагона произошла световая вспышка.
Относительность одновременности – один из центральных пунктов теории относительности.
В системе отсчета, связанной с поездом, сигналы достигли передней и задней стенок вагона одновременно.
В системе, связанной с полотном дороги, эти события неодновременны.
Этот «странный» вывод совершенно правилен. А весь пример очень ясно показывает относительность одновременности.
Но любопытно вот что. Вряд ли у кого-либо при чтении возникла мысль, что, пока не было четкого понятия одновременности событий (все равно какого – классического или по Эйнштейну), наш разговор был бессодержателен.
Утверждение «два события одновременны или неодновременны» имеет смысл только тогда, когда есть понятие одновременности. А оно не дается свыше, оно не априорно. Мы сами формулируем его, причем, повторяю, эта формулировка навязывается нам реальным, окружающим нас миром.
Можно привести еще много иллюстраций относительности понятия одновременности, но мы ограничимся только одним известным примером, предложенным самим Эйнштейном.
По железной дороге идет поезд[68]68
Чтобы легче представить себе, что получится, мысленно вообразите поезд длиной в 10 световых лет, движущийся со скоростью 150 тысяч километров в секунду.
[Закрыть]. В его начало и конец ударяют молнии, которые поражают и поезд и полотно дороги. Нам надо установить, одновременны ли удары молний или нет. Наблюдатель в поезде заявит, что удары одновременны, если прибор (скажем, фотоэлемент); находящийся точно в середине поезда, зафиксировал приход световых сигналов от обеих молний в один и тот же момент.
Наблюдатель на полотне заявит, что удары молний были одновременными, если сигналы зафиксированы в один и тот же момент прибором, который находился точно посредине тех следов на земле, которые оставили молнии.
Классический пример, иллюстрирующий относительность одновременности. Кстати, он довольно труден.
Нам не очень интересно, как именно построен опыт, но, чтобы избавиться от возможных недоумений, предположим, что существует два комплекта приборов: в поезде и на полотне железной дороги. Причем любой из этих приборов срабатывает только тогда, когда оба световых сигнала приходят к нему в один и тот же момент (допустим, внутри приборов есть так называемые схемы совпадений).
После ударов молний мы проверяем обе серии приборов и смотрим, какой именно сработал. Если сработал прибор строго посередине поезда, то, по определению, удары молний одновременны в системе отсчета «поезд».
В серии приборов, стоявших на земле, естественно, «щелкнет» тот прибор, который находится на полотне точно против середины поезда. Но пока световые сигналы от молний добирались до приборов, прошло какое-то время, и поезд успел проехать некоторое расстояние. Его середина окажется не против той точки на полотне, что находится посередине между следами от удара молний по полотну дороги, а ближе к «передней» отметке!
Поэтому в системе отсчета «полотно дороги» удары молний, опять же согласно нашему определению, неодновременны. Наблюдатель на полотне скажет, что раньше ударила молния в «хвост» поезда.
Точно так же, если окажется, что на полотне железной дороги «щелкнул» прибор, который находится строго посередине следов на земле от ударов молний, то в поезде сработает прибор, который находится несколько ближе к его «хвосту». Тогда удары молний будут одновременны в системе отсчета «полотно дороги» и неодновременны в системе «поезд». Но никак не может оказаться, что эти события одновременны сразу в обеих системах отсчета.
Почему мы так детально остановились на понятии одновременности?
Причин по меньшей мере две.
Во-первых, понятие одновременности – одно из основных в теории Эйнштейна. Если хорошо в нем разобраться, вся принципиальная физическая сторона теории представляется чрезвычайно естественной и ясной. Поэтому-то Эйнштейн всегда начинал построение своей теории с понятия одновременности.
Можно, конечно, провести «стыдливое» изложение теории относительности, протащить одновременность через заднюю дверь, не определяя открыто, а введя понятие о синхронных часах. Это, однако, было бы нечестно и затемнило бы суть дела.
Об одновременности необходимо говорить и потому (и это вторая причина), что по поводу содержания понятия одновременности в теории Эйнштейна разгорелось много споров; причем, не поняв, в чем дело, некоторые авторы полагают, что эйнштейновская трактовка одновременности противоречит диалектическому материализму. В зависимости от своих взглядов они, соответственно, приветствуют или отвергают эйнштейновские представления о физической структуре его теории, и в частности, о понятии одновременности.
И поскольку зашел вопрос об одновременности, приходится коснуться философской стороны проблемы, хотя автор очень ясно сознает, как мало он компетентен в философии.
Замечания о существе дела с точки зрения философа.
Все, что сказано об одновременности, лишний раз иллюстрирует справедливость методологических установок материалистической философии.
Для материалиста ясно, что априорным понятиям нет места в физике.
Поэтому понятие одновременности необходимо определить.
Реальная действительность диктует нам содержание этого понятия.
Относительность одновременности и соответственно времени не смущают материалиста.
Материалист не навязывает своих представлений природе.
Наоборот, изучение реальной действительности приводит ученого к формулировке тех или иных понятий, отражающих эту действительность.
Вот, собственно, и все.
При всем желании невозможно усмотреть ни малейшего противоречия между постановкой вопроса об одновременности в теории Эйнштейна и положениями диалектического материализма.
В заключение позвольте высказать замечание общего характера. Методическое значение теории Эйнштейна прежде всего в том, что она ясно показала: часто в науке декларируем понятия, лишенные всякого содержания (например, «абсолютное пространство» Ньютона). Другая сторона той же медали проявляется в широком использовании «самоочевидных» (априорных) понятий (например, одновременность, длина, время в классической физике).
Казалось бы, после Эйнштейна в физике не должно остаться места подобным взглядам. Но, как ни парадоксально, основные споры, которые ведутся вокруг трактовки теории относительности, возникают именно в результате необдуманного употребления слов без ясного понимания их содержания.
Глава XIII,
очень сухо сообщающая читателю, что такое «интервал» и преобразование Лоренца. Прочитав эту главу до конца, можно также узнать, как своеобразна в теории Эйнштейна формула для сложения скоростей
Эйнштейн
(«удивительные» выводы теории)
Несколько упрощая, можно заявить: вся математическая сторона теории Эйнштейна основана на одном факте – инвариантности интервала.
Что такое «интервал» и его «инвариантность», сейчас скажем. Правда, в нашей беседе значение понятия интервала не будет раскрыто, и, уверяя читателя, что это очень важно, автор напоминает человека, демонстрирующего фотографию тигра, чтобы доказать, какой это страшный зверь. У собеседника же всегда останется смутное подозрение, что перед ним просто увеличенный портрет котенка. Тем не менее от соблазна продемонстрировать фото все же трудно удержаться…
Инвариантность интервала и чуть-чуть математики.
Пусть произошли два каких-то события А и В.
Пусть координаты этих событий, измеренные в определенной инерциальной системе отсчета K, – xA; yA; zA и xB; yB; zB.
Пусть, наконец, определенные в той же инерциальной системе моменты времени, когда случились эти события, – tA и tB.
Тогда интервал между этими событиями определяется соотношением:
S2AB = c2(tB – tA)2 – (xB – xA)2 – (yB – yA)2 – (zB – zA)2.
И эта величина обладает замечательным свойством.
Допустим, что наши события А и В рассматривают из другой инерциальной системы отсчета K1. Обозначим координаты событий в этой новой системе x1A; y1A; z1A и x1B; y1B; z1B, а моменты времени, когда произошли события, – t1A и t1B. Для наглядности снова представим некую многострадальную железную дорогу – такую, что система отсчета, связанная с полотном дороги, инерциальна. Допустим, это система К. (Если вспомнить, что система отсчета «Земля», строго говоря, неинерциальная, наш рельсовый путь придется проложить где-то в космосе.)
Пусть по дороге равномерно и прямолинейно идет поезд. Тогда система отсчета, связанная с поездом, тоже инерциальна. Это система K1. Где-то на небосклоне вспыхнули две звезды – это события А и В.
Если наблюдатели на полотне дороги и в поезде отметят координаты событий и моменты, когда они произошли, то окажется, что
SAB = S1AB или c2(tB – tA)2 – (xB – xA)2 – (yB – yA)2 – (zB – zA)2 = c2(t1B – t1A)2 – (x1B – x1A)2 – (y1B – y1A)2 – (z1B – z1A)2.
Интервал между событиями неизменен при переходе от одной инерциальной системы к другой. Иначе говоря – интервал инвариантен.
Предыдущее равенство еще удобнее записать так:
S2AB = c2t2AB – r2AB = c2(t1AB)2 – (r1AB)2 = (S1AB)2.
Вот что такое инвариантность интервала.
Здесь rAB и r1AB – расстояние между точками, где произошли события A и B в системах K и K1, а tAB и t1AB – соответственно промежутки времени.
Как установили, что интервал остается неизменным, инвариантным при переходе от одной системы к другой?
Инвариантность интервала – просто математическая запись основных положений теории – принцип относительности плюс принцип постоянства скорости света. Как именно доказывается инвариантность интервала, обсуждать не стоит, хотя это и довольно просто. Это вопрос математики, а математика, как говорил А. Н. Крылов, подобно мельнице, перемалывает все, что вы засыплете. Нас же интересует в первую очередь «засыпка».
Из инвариантности интервала немедленно следуют преобразования Лоренца – формулы, позволяющие перейти от одной инерциальной системы отсчета к другой.
Это тоже математика. Опустим вывод преобразования Лоренца и даже скрепя сердце промолчим об удивительно изящной математической трактовке этих преобразований, принадлежащей Минковскому. В конце концов все это относится к работе мельницы, а нам с лихвой хватит попытки разобраться в основных физических выводах теории. Посему все формулы будем принимать на веру.
1. Рассмотрим две инерциальные системы отсчета K и K1, оси которых по направлениям совпадают.
Пусть относительная скорость движения этих систем v направлена вдоль осей x и x1. Тогда, зная время и координаты любого события в одной системе отсчета, можем найти время и координаты этого же события в другой системе. А именно:
Эти формулы и определяют преобразование Лоренца.
Как видите, написаны формулы перехода от штрихованной системы к нештрихованной[69]69
Стоит обратить внимание на то, что формулы Лоренца имеют смысл только, если относительная скорость систем отсчета V < C. При V > C корень в знаменателе, как легко видеть, – мнимая величина. Впрочем, все это можно было утверждать заранее, так как математический формализм обязан соответствовать физическим предположениям, а, как помните, скоростей больших C, не может быть!
[Закрыть].
Из рисунка видно, что рассматривается случай, когда скорость системы K1 в системе K равна +v.
Теперь, зная координаты и время в системе K1 и использовав наши формулы, сразу можем найти соответствующие координаты и время в системе K.
Чтобы проделать обратный переход, нужно разрешить наши уравнения относительно x1 и t1 (как говорится, «уединить» x1 и t1). Это очень легко сделать чисто формально, но еще проще вспомнить, что ввиду равноправия инерциальных систем формулы перехода от K к K1 и от K1 к K должны иметь тождественный вид.
Учитывая, что скорость движения K относительно K1 равна – v, сразу напишем:
Мы рассмотрели сравнительно простой случай, когда относительная скорость движения систем K к K1 совпадает по направлению с осями x и x1.
В общем случае формулы перехода, естественно, усложняются, но все принципиальные отличия теории Эйнштейна от классической физики полностью выявлены и в частном случае.
Сразу видно, как существенно отличаются преобразования Лоренца от аналогичного преобразования Галилея в классической механике. Однако, кроме различия, есть и значительное сходство.
По этому поводу можно высказать совершенно общее утверждение. Заранее ясно, что в теории Эйнштейна как предельный случай должна заключаться классическая механика. Механика Ньютона многократно оправдывалась при проверке на опыте, и никакая разумная новая теория не может просто ее отбросить. От подобных неприятностей классическую механику метод принципов Ньютона страхует навечно.
Предельный переход к механике Ньютона. Важное замечание общего характера иллюстрируется конкретным примером.
Как бы ни изменились принципиальные положения, что бы ни оказалось в дальнейшем, но когда скорости тел малы, любая теория должна давать те же или, точнее, почти те же результаты, что и механика Ньютона. Как приближение к истине законы Ньютона останутся навсегда.
Все, что сказано сейчас о механике Ньютона, можно дословно повторить по отношению к специальной теории относительности. Дальнейшее развитие науки может внести любые изменения. Может произойти все что угодно, но хотя бы как приближение к истине теория Эйнштейна останется в науке навсегда.
Вернемся, однако, к конкретному вопросу. Как можно увидеть, что теория Эйнштейна включает в себя механику Ньютона? В этом легко, например, убедиться при анализе любого вывода теории. Ограничимся только одним примером. Когда v/c << 1 можно пренебречь членами (v/c)2 и (v2/c2) и формулы преобразования Лоренца переходят в хорошо известные классические формулы преобразования Галилея:
x = x1 + vt1;
y = y1;
z = z1; t = t1.
С другой стороны, преобразование Лоренца переходит в преобразование Галилея, если устремить с к бесконечности. Здесь физическое содержание тоже очень прозрачно. Бесконечная скорость распространения сигналов – это гипотеза, как помните, лежит в основе классической физики.
А теперь разрешите совсем маленькую сенсацию.
По существу, наша работа уже почти закончена. Вся специальная теория относительности непосредственно вытекает из двух постулатов, которые мы разобрали в предыдущих главах.
Самое основное изменение, которое вносится в классическую физику, – это изменение понятия времени, или, что то же, изменение понятия одновременности. Сей вопрос также рассмотрен. Мы не касались только одного вывода совершенно принципиального характера – связи между массой и энергией. Но это потом.
Так как математическая часть теории основана целиком на преобразовании Лоренца, которое нами рассмотрено, то все остальное, в том числе сокращение длины и изменение времени, не более чем простые следствия.
Один из наиболее неожиданных выводов релятивистской теории для человека, воспитанного на механике Ньютона, – закон сложения скоростей.
Итак, перейдем к рассмотрению частностей с приятным сознанием, что основы уже ясны. Во-первых – закон сложения скоростей.
Постановка вопроса очевидна.
Пусть в инерциальной системе К со скоростью v1 движется некое тело. Пусть далее другое тело движется относительно первого со скоростью v2. Требуется определить скорость второго тела относительно системы K.
Доставив себе удовольствие строгой и общей формулировкой проблемы, вернемся к железной дороге.
Поезд идет по полотну дороги со скоростью v1 относительно полотна. (Конечно, его скорость может быть близка к скорости света.) Некто в поезде по не интересующей нас причине стреляет из ружья, и скорость пули – относительно поезда – v2. Требуется определить скорость пули относительно полотна дороги. (Конечно, и скорость пули v2 тоже может быть близка к скорости света.) Мы ограничимся только тем частным случаем, когда скорости v1 и v2 направлены по одной прямой, но все характерные черты теории относительности великолепно видны и в этом случае.
В классической механике суммарная скорость определялась предельно простым выражением vсум = v1 ± v2 (знак + в том случае, когда стреляют по ходу поезда, и знак –, когда против хода).
По Эйнштейну, закон для определения суммарной скорости другой:
Как видно, если v1 << c и v2 << c, формула Эйнштейна переходит в классическую. (В этом случае можно спокойно пренебречь вторым членом знаменателя по сравнению с единицей.) Если же скорости v1 и v2 сравнимы со скоростью света, тогда формула Эйнштейна становится совершенно отличной от классической.
Лучше всего в этом можно убедиться, положив одну из скоростей (например, v2) равной скорости света. Если помните, мы уже упоминали об этой задаче, обсуждая в XI главе, какова будет относительно полотна дороги скорость светового луча, посланного источником, находящимся на поезде. Легко видеть, что независимо от v1 абсолютная величина суммарной скорости снова равна скорости света.
Теперь можно разбить наши рассуждения в XI главе. Как помните, там, защищая баллистическую гипотезу, мы принимали как самоочевидный факт классическую формулу сложения скоростей.
Сейчас стоит прочесть еще раз страницу 246.
И вот, как оказывается, именно это и неправильно.
Фронт световой волны, идущей из прожектора поезда, распространяется со скоростью с относительно поезда. Но относительно наблюдателя на земле он распространяется не со скоростью (vпоезда + c), а снова с той же скоростью c.
Для нашего воображения, воспитанного на классической механике, это удивительно. Удивительно, но тем не менее правильно.
Более того, относительная скорость двух фотонов, несущихся навстречу друг другу со скоростью света, снова равна c, а не 2c, как в классической физике[70]70
Очень несложно убедиться, что задача определения относительной скорости двух тел тождественна отысканию закона сложения скоростей.
[Закрыть].
В механике Эйнштейна скорость света в вакууме представляет барьер, через который невозможно перебраться.
Глава XIV,
в которой обсуждаются два вывода теории относительности, вызывающие обычно максимальное недоумение
Эйнштейн (время, длина)
Как измерять длину движущихся тел, мы уже договорились в III главе. Напомним: «Длина движущегося тела есть расстояние между одновременно отмеченными положениями его начальной и конечной точек».
В классической физике длина движущегося тела, определенная таким образом, совпадала с длиной неподвижного тела, и все было хорошо. Еще и еще раз напомним:
1. До Эйнштейна вообще никто не задумывался, «как определяется длина движущихся тел». Но, по сути дела, каждый раз, измеряя длину или говоря о ней, молчаливо подразумевали, что она определяется именно так, как сказано выше.
2. Совпадение или несовпадение длин покоящегося и движущегося тела – это вопрос опыта, и никак нельзя утверждать заранее, что они должны совпадать.
Относительность длины и лоренцово сокращение.
Не следует навязывать природе наши взгляды и желания. В данной конкретной системе отсчета, где проводятся изменения, стержень неподвижный и стержень движущийся находятся в разных физических условиях, и нет никаких оснований ожидать, что длина не изменяется при движении. Так думали раньше, бессознательно обобщая эксперименты. Ведь в обычных опытах исключительно трудно наблюдать различие в длинах движущегося и неподвижного предмета, ибо достижимые скорости материальных тел неизмеримо меньше скорости света. Поэтому и не наблюдалось никакого изменения длины, а отсюда уверенность, что длина предмета абсолютна и неизменна независимо от того, из какой системы отсчета ее определяют.
Но… самый непосредственный анализ преобразований Лоренца показывает, что длина – величина относительная.
Действительно, длина стержня, движущегося со скоростью v, сокращается в направлении движения и определяется выражением:
где l0 – длина стержня, когда он находится в состоянии покоя[71]71
Вывод этого соотношения настолько прост, что его можно продемонстрировать.
Чтобы найти длину движущегося стержня, наблюдатель должен одновременно зафиксировать начальную и концевую точки x1 и x2. Тогда (x2 – x1) и есть длина стержня l.
Чтобы найти связь между l и l0, следует, используя преобразования Лоренца, связать координаты (x11 и x21) начальной и концевой точек в той системе, где он покоится, с соответствующими координатами x1 и x2, определенными в той системе отсчета, где он движется:
Обратим внимание: в правой формуле стоит одно и то же время t1.
Это соответствует тому, что при определении длины движущегося стержня нужно одновременно фиксировать его начальную и концевую точки. Вычитая из нижней формулы верхнюю, получим:
Но (x21 – x11) = l0 – длина стержня, определенная в системе, где он покоится. А (x2 – x1) = l – длина движущегося стержня.
Таким образом
[Закрыть], то есть длина, измеренная в той системе отсчета, в которой стержень покоится. Этот эффект и называется лоренцовым сокращением длины[72]72
Это название принято, поскольку в теории Лоренца (о ней упоминалось в главе XI) предполагалось, что длина тела, движущегося относительно эфира, сокращается; причем формула для сокращения такая же, как в теории относительности. Но физическое содержание формулы сокращения длины у Лоренца (как и всей его теории) совершенно отлично от содержания теории Эйнштейна. Например, в теории Лоренца имеет смысл говорить об абсолютной длине l0 – длине тела, неподвижного относительно эфира.
[Закрыть].
Для космической ракеты – спутника Солнца – наблюдаемое с Земли сокращение длины равно:
Иначе говоря, ракета укоротилась примерно на 7 стомиллионных долей процента!
Конечно, нет ни малейшей возможности заметить такое сокращение. А космические ракеты – бесспорные чемпионы скорости, если говорить о макроскопических телах.
Поэтому не должно особенно удивлять, что длина тела считалась абсолютной величиной. Иное дело, когда скорости близки к световой. Но пока не начали исследовать элементарные частицы, с такими скоростями не сталкивались.
Вот, собственно, все, что следовало сказать о понятии длины в теории относительности. Однако релятивистская постановка проблемы настолько непривычна, что стоит специально обратить внимание на вопрос, который очень часто приходится слышать: сокращается ли длина на самом деле, или же лоренцово сокращение только кажущееся?
Этот вопрос связан с непониманием существа дела.
Если сказать, что лоренцово сокращение действительно объективно и реально, – это будет правильно. Но тогда может сложиться ошибочное представление, что существует какая-то выделенная система отсчета, в которой все тела имеют максимальную «истинную» длину, а во всех остальных системах она сокращается[73]73
Именно эту идею и развивал Лоренц в своей теории, полагая, что движение тел относительно неувлекаемого эфира вызывает сокращение длины.
[Закрыть]. Ничего подобного, конечно, нет.
Лоренцово сокращение длины связано только с тем, что длина – относительная величина, зависящая от того, из какой системы отсчета ее определяют.
Спрашивать, действительно ли лоренцово сокращение, это то же самое, что спрашивать, движется ли в действительности измеряемый стержень?
Но если последний вопрос не вызывает недоумений, ибо относительность скорости очень привычна, то относительность длины часто пугает и трудно воспринимается.
По существу же, все дело в том, что очень тяжело менять привычки.
Иногда можно услышать даже, что, утверждая относительность длины, физики противоречат философскому материализму. Подобные заявления продиктованы непониманием как физики, так и философии и не заслуживали бы особого внимания, если бы не отражали все то же нежелание людей изменять привычные наглядные представления. К сожалению, однако, мир устроен таким образом, что приходится приложить известные умственные усилия, чтобы понять его структуру. Последнее философское замечание еще более относится к определению понятия времени.
Сразу сформулируем вывод.
Интервал времени между какими-то двумя событиями оказывается минимальным в той системе отсчета, где эти события произошли в одной точке.
Самое сложное. Время. Его относительность.
Эта фраза может показаться несколько туманной, и потому используем традиционное оружие популярной литературы – простой пример.
В вагоне поезда Москва – Ленинград происходит одна за другой две световые вспышки.
Пусть по часам, установленным в поезде, промежуток времени между этими вспышками равен Δt0 – скажем, 10 часам.
В системе отсчета «поезд» вспышки произошли в одной точке, и «поездные» часы в том месте, где происходили вспышки, измеряют, естественно, время именно в этой системе отсчета.
Если моменты времени световых вспышек засекать в системе отсчета, «привязанной» к полотну железной дороги, причем опять по часам, находящимся в месте вспышек, то придется использовать двое часов, так как в этой системе вспышки происходят в разных точках (сегодня поезд в Москве, а завтра в Ленинграде!).
Если в момент первой вспышки часы в поезде показывали то же время, что и часы А на перроне Ленинградского вокзала в Москве, то в момент второй вспышки часы в поезде будут показывать меньшее время, чем синхронные с часами А[74]74
Двое часов, находящихся в разных точках и неподвижных в данной системе отсчета, синхронны, если они одновременно показывают одинаковое время. При этом понятие одновременности определяется именно относительно этой системы отсчета. Однако с точки зрения наблюдателя из другой системы отсчета эта пара часов не будет синхронна.
[Закрыть] часы В на перроне Московского вокзала в Ленинграде.
Иначе говоря, если ход движущихся часов сравнивать с ходом нескольких неподвижных синхронных часов, то он будет отставать от хода покоящихся. В нашем примере «поездные» часы могут отстать на 1 час. И когда на В будет 9 часов утра, они покажут 8 часов.
Особо подчеркнем, что системы отсчета «поезд» и «полотно дороги» в разобранном примере находились в существенно неравноправных условиях. Одни часы в поезде сравнивались с двумя часами на платформе.
Если опыт видоизменить – вообразить очень длинный поезд, увешанный синхронными часами[75]75
В этом случае понятие одновременности, необходимое для определения синхронности часов, естественно, определяется в системе отсчета, связанной с поездом.
[Закрыть], и платформу с одними часами, – то окажется: при сравнении показаний перронных часов с показаниями «поездных» мы убедимся, что отстают часы перронные.
Поэтому нехорошо, очевидно, говорить: время в движущейся системе отсчета течет медленнее.
Такое утверждение противоречит принципу относительности. Все инерциальные системы отсчета совершенно равноправны, и, конечно, нельзя думать, что в одной системе время течет быстрее, чем в другой.
Когда говорят о лоренцовом сокращении времени, всегда имеют в виду только то утверждение, что было приведено выше[76]76
Ввиду большого значения этого положения стоит его повторить… Промежуток времени между двумя событиями минимален в той системе отсчета, где они произошли в одной точке пространства. Этот промежуток времени обозначают как Δτ и называют собственным временем. В любой другой инерциальной системе промежуток времени между этими событиями определяется через Δτ соотношением:
[Закрыть].
Полную равноправность понятия времени в разных инерциальных системах хорошо поясняет одна иллюстрация.
Представьте две ракеты с радиостанциями на борту. Пусть летчики снабжены физически идентичными часами. Пусть ракеты разлетаются с постоянной относительной скоростью v и каждую секунду по своим часам радиостанция каждой ракеты посылает радиосигналы.
Наблюдатель на ракете № 2, измеряя по своим часам интервалы между моментами приема радиосигналов, посланных ракетой № 1, обнаружит, что они несколько больше одной секунды. А именно:
каждый.
Это растягивание времени между двумя последовательными приемами сигналов определяется эффектом Допплера[77]77
Воспользуемся случаем, чтобы напомнить некоторые моменты релятивистской теории эффекта Допплера для электромагнитных волн. На первый взгляд она не очень отличается от классической, и нет оснований говорить о каких-то «удивительных» выводах.
Снова, если источник и приемник двигаются навстречу друг другу, воспринимаемая приемником частота больше, чем если бы они покоились. И так же, как и раньше, если источник и приемник удаляются – воспринимаемая частота меньше. Все это очень напоминает выводы классической теории.
Но есть одно важнейшее отличие. Ясно, что если отброшен неувлекаемый эфир и для электромагнитных явлений справедлив принцип относительности, то не имеет смысла различать два разных случая: 1) источник движется, скажем, навстречу приемнику, а приемник покоится и 2) приемник движется навстречу источнику, а источник покоится. Как только отброшена «абсолютная система отсчета», такое различие теряет всякое содержание.
Изменение частоты определяется только относительной скоростью источника и приемника.
Если быть совсем точным, то надо добавить – той составляющей относительной скорости, что направлена по прямой, проходящей через две точки – «приемник» и «источник».
Не так уж важно, как именно изменяется формула для воспринимаемой частоты по сравнению с классической.
Существенно, что теория эффекта Допплера очень тесно связана с одним из самых поразительных выводов Эйнштейна – замедлением ритма движущихся часов. Поэтому, как уже сообщалось ранее, экспериментальную проверку своей формулы для эффекта Допплера Эйнштейн считал важнейшим опытом для проверки всей теории. Опыт великолепно подтвердил выводы Эйнштейна; причем любопытно, что сами экспериментаторы не понимали и не принимали его теории.
[Закрыть].
Если теперь наблюдатель в ракете № 2 произведет несложный расчет, он заключит, что по его часам n-й сигнал был отправлен в момент времени
секунд.
(Расчет воспроизводить не будем и поверим, что здесь нет ошибки.)
Но поскольку по часам ракеты № 1 n-й сигнал был послан в момент tnN = n секунд, наблюдатель в ракете № 2 заявит, что часы ракеты № 1 отстают.
Действительно, между отправлением первого и n-го сигналов с ракеты № 1 по часам ракеты № 2 прошло секунд, а по часам ракеты № 1 меньше, всего n секунд.
Но ведь вся задача сформулирована совершенно симметрично, и ракета № 1 ничем не лучше ракеты № 2. Поэтому ясно, что в нашем рассуждении можно спокойно переменить номера ракет. И с теми же основаниями наблюдатель в ракете № 1 будет утверждать, что отстают часы ракеты № 2.
Кто же прав?
Оба.
Чтобы это несколько необычное утверждение стало понятнее, надо только уточнить, что подразумевает наблюдатель ракеты № 1, определяя время отправления n-го сигнала с ракеты № 2 по своим часам.
Это время по самому своему смыслу есть не что иное, как показания часов, синхронных с часами ракеты № 1 и находящихся в той точке, где в момент отправления n-го сигнала была ракета № 2.
По сравнению с показаниями этих часов часы ракеты № 2 будут показывать меньшее время – отставать. Точно так же, утверждая, что отстают часы ракеты № 1, наблюдатель в ракете № 2 мысленно «вешает» часы, синхронные со своими, в точку, где находится ракета № 1.
Мы снова приходим к старому выводу. Отстают те часы, которые сравниваются с показаниями нескольких синхронных между собой часов другой инерциальной системы.
В таком виде это заявление выглядит несколько формально, но по смыслу оно совпадает с основным утверждением об измерении промежутка времени между двумя событиями. Интервал времени минимален в той системе отсчета, где события произошли в одной точке[78]78
Математический вывод лоренцова сокращения времени так же, как и длины, очень прост. Рассмотрим две системы отсчета, К и К1, относительная скорость которых направлена вдоль оси X.
В системе, где вспышки произошли в одной точке, квадрат интервала между вспышками равен с2Δτ2, так как Δx – расстояние между точками, где произошли вспышки, – равно нулю. В системе, где вспышки случились в разных точках, квадрат интервала равен с2Δt2 – Δx2.
Поскольку интервал между событиями остается неизменным при переходе от одной системы к другой, то с2Δτ2 = с2Δt2 – Δx2, или
но так как Δx/Δt = V (относительной скорости систем отсчета), то
[Закрыть].
Самый «главный» парадокс теории относительности – парадокс с часами.
Однако, честно признаемся, изменение ритма часов воспринимается тяжелее, чем лоренцово сокращение длины. Это вызвано, вероятно, отчасти тем, что вообще труднее воспринять понятие времени, а отчасти «необратимостью» эффекта. Что именно подразумевается под «необратимостью», лучше всего пояснить, вспомнив о длине.
Разгоним стержень относительно какой-либо инерциальной системы до скорости, близкой к скорости света, а затем затормозим его. Предположим, что при малых ускорениях по-прежнему справедливы формулы специальной теории относительности. Тогда наблюдатель, покоящийся в нашей системе, измеряя в процессе движения длину стержня, должен получить примерно такой график.
В начальный момент длина стержня равна nl0, затем с ростом скорости она постепенно уменьшается. Когда скорость достигает максимального значения v и стержень двигается по инерции, длина его остается некоторое время постоянной. Потом по мере торможения она монотонно растет, возвращаясь к прежнему значению l0. После окончания движения стержень «забывает», что он двигался. Его длина остается неизменной.
Со временем положение иное.
Если «разогнать» часы С (например, поставив в некую фантастическую ракету) и заставить их некоторое время двигаться со скоростью v, а потом затормозить, то после остановки они не будут показывать то время, что часы В, синхронные с А и находящиеся «на остановке».
Часы С отстанут от В. В этом случае обратимой величиной оказывается ритм часов. После путешествия часы С будут идти так же, как до полета (синхронно с А и В). Но время путешествия, которое они отмерят, будет меньше времени, измеренного по часам А и В. При этом мы снова предположим, что, если часы двигались с не очень большим ускорением, можно с хорошей степенью точности определять измерение их ритма в каждый данный момент, используя формулы специальной теории. То есть:
Вообще-то как задача определения длины ускоренно движущегося тела, так и вопрос о ходе времени на этом теле не могут быть решены с помощью специальной теории относительности.
Специальная теория рассматривает только инерциальные системы, и поэтому в наших рассуждениях выводы специальной теории, строго говоря, незаконно распространялись на более общие случаи.
Однако общепринято считать: если ускорения в некоем определенном смысле малы[79]79
Эта фраза сформулирована так учено потому, что мы не в состоянии углубляться в детальный анализ, а слова «ускорения малы» (или «велики») сами по себе еще ничего не значат. Необходимо дать критерий, указать точное математическое условие малости ускорений. Критерия мы приводить не будем, но, имея его в виду, осторожно пишем: ускорения малы «в некоем определенном смысле».
[Закрыть], это можно делать.
Впрочем, некоторые ученые возражают против такого вывода, считая использование специальной теории незаконным. Но мы будем слепо следовать за большинством.
Еще раз повторим: сейчас обсуждается проблема, строго говоря, «не подсудная» специальной теории. Полное решение вопроса может быть получено только в общей теории относительности.
И еще одно и весьма важное замечание. Мы поверили, что, сравнивая ход своих часов с ускоренно двигающимися часами, наблюдатель в инерциальной системе отсчета с хорошей точностью может использовать формулу, приведенную чуть выше, или, иными словами, воспользоваться специальной теорией относительности.
Поверим теперь, что, решая аналогичную задачу, наблюдатель, связанный с ускоренно движущимися часами (наблюдатель в неинерциальной системе отсчета), вообще не имеет права использовать формулы специальной теории. Поверим, что это незаконно.