355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Вольдемар Смилга » Очевидное? Нет, еще неизведанное… » Текст книги (страница 11)
Очевидное? Нет, еще неизведанное…
  • Текст добавлен: 20 апреля 2017, 02:00

Текст книги "Очевидное? Нет, еще неизведанное…"


Автор книги: Вольдемар Смилга


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 11 (всего у книги 16 страниц)

Вероятно, всякий согласится, что произведенная нами работа в достаточной степени вознаградила нас за отрицательный результат опыта тем, что привела к изобретению интерферометра».

Любопытный отзыв Майкельсона о своих опытах.

Этот отрывок продиктован не только скромностью большого человека. Майкельсон был действительно очень разочарован отрицательным результатом своего эксперимента. Он рассчитывал одновременно установить движение солнечной системы в системе отсчета неподвижных звезд и подтвердить теорию неувлекаемого эфира.

Ни того, ни другого добиться не удалось. Опыт показал только, что теория неувлекаемого эфира не оправдывается. До создания теории относительности было еще очень далеко, и Майкельсон мог только констатировать, что результат опыта совершенно непонятен. Поэтому его разочарование было и искренне и естественно. Впрочем, он утешался тем, что изобрел действительно замечательный прибор – интерферометр.

Вообще стоило бы детально разобрать не только идею, но и теорию опыта Майкельсона. Но следует помнить, что точная теория этого эксперимента сравнительно мало напоминает общепринятую в изложениях схему. Достаточно заметить, что в первом сообщении сам Майкельсон приводит ошибочный расчет.

Если на основе теории неувлекаемого эфира правильно вычислить предполагаемый эффект, результат окажется вдвое меньше рассчитанного Майкельсоном.

Как указывает Майкельсон, идея опыта принадлежит Максвеллу, а схема (именно схема!) установки весьма проста.

По теории неувлекаемого эфира скорость света относительно эфира совершенно не зависит от движения источника относительно эфира. (Точно так же, как скорость звука в атмосфере не зависит от движения источника звука относительно атмосферы[48]48
  Уже упоминалось, что теория неувлекаемого эфира совершенно аналогична теории распространения звуковых волн в атмосфере. Атмосфера – «неувлекаемый звуковый эфир».


[Закрыть]
.) И если теория неувлекаемого эфира правильна, то должен существовать следующий любопытный эффект.

Рассмотрим источник света и зеркало, жестко закрепленные друг относительно друга. Они, естественно, как и всё в мире, погружены в море неувлекаемого эфира. Если эта система движется относительно эфира со скоростью V, то можно легко убедиться, что свет затратит на путь туда и обратно время, отличное от времени, которое требуется ему на тот же путь в случае, когда эта система покоится относительно эфира.


Собственно, на этом и основан эксперимент Майкельсона. В теории неувлекаемого эфира «строгое» описание опыта выглядит так[49]49
  Во избежание путаницы надо представлять, что поскольку (как мы увидим дальше) теория неувлекаемого эфира неправильна, неправильно и дальнейшее описание опыта.


[Закрыть]
.

Описание опыта Майкельсона, «переведенное» на язык школьных задач о пловцах.

По спокойной воде буксируется квадратный плот. (Квадратным он взят только для простоты дальнейших расчетов.)

Скорость плота относительно воды – V.

Из точки А одновременно бросаются в воду два спортсмена: пловец № 1 и пловец № 2. Оба имеют одинаковую скорость – с.

Пловец № 1 плывет к точке Д; пловец № 2 – к точке В. Достигнув этих точек, они поворачивают назад и плывут в точку А. Конечно, c > v, в противном случае плот просто уплывет от обоих спортсменов.

Требуется подсчитать время, которое затратил на свой путь каждый из пловцов. Задача, как видите, доступна семикласснику. Позвольте поэтому привести ее решение без пояснений.

Чуть-чуть совсем простой математики.

Для пловца № 1:

1) tАДА = tАД + tДА;

2) c · tАД = l + v · tАД, tАД = l/c – v;

3) c · tДА = l – v · tДА, tДА = l/v;

4) tАДА = l/– v + l/v = 2cl/c2 – v2 = 2l/c · 1/(1 – v2/c2).

Здесь 2l/c = t0 – время, которое затратил бы пловец на путь туда-обратно, если бы плот не двигался.

Если v/c << 1, то 1/(1 – v2/c2) ≈ (1 + v2/c2)[50]50
  Здесь впервые используются приближенные вычисления, на которые, несмотря на их важнейшее значение, мало обращают внимания в школе. Поэтому поясним вывод как приведенной формулы, так и еще одной, неоднократно используемой в дальнейшем.
  Если α очень мало, можно утверждать, что
  Доказать это очень просто.
  Пункт № 1. Когда α мало, то
  Действительно, возводя обе части приближенного равенства в квадрат, получаем 1 – α ≈ 1 – α + α2/4.
  Правая часть равенства больше левой на α2/4, но если α << 1, то α2 совсем уже малая величина и ею можно пренебречь (если, например, α = 0,001, α2 = 0,000001).
  Итак, с точностью до членов порядка α2,
  Пункт № 2. Умножим числитель и знаменатель дроби 1/(1 – α/2) на 1 + α/2. Получим, что
  Как и раньше, можно пренебречь членом α2/4 в знаменателе. Тогда окончательно
  Это равенство справедливо с точностью до членов порядка α2. Не следует опасаться, конечно, того, что мы пренебрегали членами порядка α2 не один, а два раза. Это не может сколько-нибудь заметно увеличить ошибку.
  Фактически невозможно уловить разницу между тысячью человек, тысячью без одного или же тысячью без двух.


[Закрыть]
. Тогда время, затраченное пловцом № 1 на путь, равно:

tN1 = t0(1 + v2/c2).

Для пловца № 2 решение чуть-чуть сложнее. Кратчайшим путем из А в В будет гипотенуза треугольника АВВ1, где В1 – то положение, которое занимает конец плота в момент, когда пловец № 2 доплывает до В.

Если пловец № 2 умный, он с самого начала рассчитает свой путь, сделает упреждение на снос плота и «поплывет по гипотенузе». То же самое можно сказать о его обратном пути из В в А.

Время пути находится просто:

1) tАВА = tАВ + tВА = 2tАВ.

2) с2 · t2AB = l2 + v2 · t2АВ, t2АВ = l2/(c2 – v2);


3) 

Снова, если v/c << 1, то

И окончательно в этом случае:

tN2 = t0(1 + v2/2c2).

(Заметим, что это время меньше, чем время пловца № 1.)

Как видите:

tN1 – tN2 = t0 · v2/2c2.

Пловец № 1 оказывается в менее выгодном положении, чем пловец № 2. Он вернется назад позже. Если плот повернется на 90°, не изменяя направления движения, пловцы обменяются ролями: № 1 окажется в роли № 2, а № 2 – в роли № 1. Тогда, естественно, пловец № 2 отстанет от пловца № 1.

А теперь достаточно:

заменить воду неувлекаемым эфиром;

плот – прибором Майкельсона, несущимся сквозь эфирное море вместе с Землей;

пловцов – световыми лучами.


И мы получим схему опыта Майкельсона.

Выводы. Теория опыта уже рассказана.

Аналогия здесь совершенно точная. В нашем примере строго изложена элементарная теория опыта Майкельсона с точки зрения гипотезы неувлекаемого эфира. Но повторяю, реальная картина существенно усложняется из-за аберрации и преломления света в оптических приборах.

Итак, чтобы убедиться в движении Земли сквозь эфирное море, надо взять источник света и зеркало и измерить время, которое тратит световой луч на путь туда-обратно (см. рисунок на стр. 228). При вращении платформы прибора мы согласно сделанному расчету должны уловить, что время пути светового луча изменяется.

Наибольшее время на путь туда-обратно свет затратит, когда плечо AB параллельно движению Земли сквозь эфир; наименьшее – когда это плечо перпендикулярно (в этом случае «эфирный ветер» только несколько «сдувает» в сторону световой пучок). Если мы эту разницу поймаем, то убедимся в движении Земли сквозь эфир. Все очень просто.

Замечания о практическом осуществлении опыта.

Правда, если учесть, что предполагаемая разница времен составляла 1/100 000 000 времени пути светового луча[51]51
  Так как vЗемли = 30 км/сек., то vЗемли/C = 10–4 и (tN1 – tN2) = t0v2/2c2 = t0/2 · 10–8.


[Закрыть]
, а свой путь в приборе (несколько метров) он пробегает примерно за стомиллионную долю секунды, может быть, станет яснее, насколько «прост» был опыт Майкельсона.

Максвелл считал практическое осуществление своей идеи абсолютно безнадежным делом, и это совершенно понятно. Ведь необходимая относительная точность измерения (10–8) означает, например, что интервал в несколько тысяч лет надо замерить с точностью до одной секунды.

Или другое сравнение.

Разница времен, которую взялся уловить Майкельсон, по порядку меньше времени, необходимого электрону, чтобы сделать один оборот вокруг ядра.

Трудно даже представить все невероятные препятствия, стоявшие на пути Майкельсона.

Может быть, достаточно указать только одно «симпатичное» обстоятельство. База прибора имела длину примерно 1 метр. Для того чтобы замечать изменение времени движения луча света с точностью 10–8, надо быть убежденным, что длина пути светового луча остается неизменной, по крайней мере с точностью 10–9. Иначе время пути светового луча могло бы меняться просто из-за изменения длины базы. Точность же 10–9 означает, что расстояние в 1 метр может изменяться не больше чем на 10 ангстрем! Напомним, что 10 ангстрем – это линейный размер 3–4 атомов, поставленных рядом.

Следовательно, малейший толчок, ничтожное изменение температуры – и база изменилась бы на значительно большую величину. На прибор Майкельсона в буквальном смысле слова нельзя было дышать! Чтобы избежать сотрясений, Майкельсон работал в подвале на тумбе, врытой в землю. Каменная плита, на которой была смонтирована установка, была положена на круглую деревянную пластину, плавающую в сосуде, наполненном ртутью.

Сотрясение удалось ликвидировать. Но как измерить время пути светового луча? Любые попытки непосредственного измерения обрекали, конечно, опыт на полную неудачу. И Майкельсон применил очень изящный прием. Он использовал эффект интерференции.

…Если пучок света раздвоить, а потом снова свести два полулуча в одну точку, на экране будет наблюдаться определенное чередование интерференционных полос.


На рисунке показан тот способ разделения луча, который использовал Майкельсон. Слабо посеребренная пластина частично отражает и частично пропускает свет.

Колебания в обоих световых лучах строго когерентны (синхронны), и, попадая на экран, световые волны интерферируют. Если разность путей строго постоянна, интерференционная картина, видимая в окошечко интерферометра, неизменна, поскольку она полностью определяется разностью времен хода световых пучков. Стоит чуть-чуть изменить разность путей, как характер наблюдаемых интерференционных полос изменится. Чему равно это самое «чуть-чуть»? Оказывается, можно добиться почти невероятной относительной точности – 10–10!

Это и использовал Майкельсон. В приборе он разделил пучок света на два взаимно перпендикулярных луча, а затем свел их вместе. В окошечке интерферометра наблюдалась какая-то интерференционная картина, чередование интерференционных полос. Пока все внешние условия оставались неизменными, интерференционные полосы также не изменялись. Майкельсон добился, что они оставались неизменными по нескольку часов.

Более или менее точное описание опыта.

Если теория неувлекаемого эфира верна, то, как мы видели, свету совсем не безразлично, распространяется он параллельно движению Земли сквозь эфир или перпендикулярно. На один и тот же путь он затратит различное время. Поэтому при повороте прибора на 90° («пловец № 1» и «пловец № 2» меняются местами) должно наблюдаться изменение интерференционной картины. И тем не менее…

См. описание опыта с плотом.

Уже в первом своем опыте Майкельсон установил, что при повороте прибора на 90° никакого ожидаемого систематического смещения интерференционных полос не наблюдается. Результат прямо противоречил выводам теории.

…Когда речь шла о такой важной проблеме, как теория эфира, казалось бы неоднократно подтвержденная, отрицательный результат опыта в первую очередь вызывал сомнения в том, насколько чисто был сделан эксперимент.

Между прочим, С. И. Вавилов замечает, что точность измерений в первом опыте была слишком мала и Майкельсон скорее угадал, чем строго обосновал правильный вывод. Поэтому прежде всего Майкельсон решил проверить собственные наблюдения.

Через шесть лет (он совместно с Морлеем) повторяет свой опыт на более совершенной установке. На этот раз он как будто безусловно убеждается в отсутствии эффекта. Однако были высказаны новые сомнения.

Несколько слов о характере физиков.

К работам, имеющим такое значение, как опыт Майкельсона, физики вообще относятся крайне недоверчиво. И опыт Майкельсона со все возрастающей точностью повторяли еще много раз, вплоть до 1927 (!) года.

Конечный приговор всей совокупности экспериментов гласил: «Майкельсон прав! Никакого эффекта движения Земли сквозь эфир нет, никакого „эфирного ветра“ не существует!»

Заметьте – 1927 год! Прошло уже 40 лет со времени первого опыта Майкельсона и 22 года от дня создания теории относительности. Уже проделаны десятки различных экспериментов, подтверждающих эту теорию. Но результат Майкельсона все снова и снова настойчиво проверяют ученые.

Подобная скрупулезная придирчивость очень характерна для физики вообще. Нет такого общего положения в ее истории, которое не подвергалось бы самой жестокой экспериментальной проверке, и трудно сказать, когда, наконец, наступает тот благословенный для теории момент, когда можно считать, что она безусловно справедлива…

Из опыта следовало, что гипотеза неувлекаемого эфира в чем-то несправедлива, в чем-то ее надо менять. Этот вывод и сделал Майкельсон. Но он не знал, чтó именно несостоятельно в теории неувлекаемого эфира. Может быть, эфир увлекается только у поверхности Земли? А опыты проводились в подвальном помещении.

Снова сомнения.

Майкельсон допускал эту возможность.

«…Безнадежно пытаться решать вопрос о движении солнечной системы по наблюдениям оптических явлений на поверхности Земли. Но не исключено, что даже на умеренной высоте над уровнем моря, например на вершине какой-нибудь уединенной горы, относительное движение можно заметить при помощи аппарата вроде описанного в наших опытах».

Впоследствии опыт Майкельсона был повторен на вершине горы и даже на воздушном шаре. Результат по-прежнему был отрицателен.

Несколько раз возникали сомнения в правильности расчета и в обработке данных эксперимента. Снова и снова проверяли работу Майкельсона, пока не убедились окончательно в отсутствии «эфирного ветра».

Помимо опыта Майкельсона, были проделаны многие отличные по своей идее «опыты второго порядка». И все они давали отрицательный результат.

Уже была создана теория относительности, уже все стало понятным, уже эфир был выброшен «в ту мусорную кучу, где давно гнили флогистон, теплород, horror vacui»[52]52
  Теплород, флогистон, horror vacui (ужас пустоты) – все это в свое время очень модные и распространенные теоретические концепции, отброшенные в дальнейшем как несостоятельные.


[Закрыть]
, как четко сформулировал один из ученых начала XX столетия, а экспериментаторы снова и снова проверяли результат Майкельсона. И трудно сказать, в каком году и в какой именно день подобная инспекция перестала представлять научный интерес.

Всегда наступает какой-то момент, когда совершенно законное вначале критическое, недоверчивое отношение к новой теории переходит в закостенелый консерватизм. Но когда именно он наступает, сказать трудно. Во всяком случае, теория относительности «вышла чистой» после такого «перекрестного допроса с пристрастием», после стольких вызовов к судейскому столу эксперимента, что можно быть уверенным в ее абсолютной «порядочности».

Теперь остановимся и посмотрим, что, собственно, сделано.

Попытаемся подвести черту.

Мы очень поверхностно проследили развитие теории эфира и убедились, что после опыта Майкельсона – точнее, после второй работы Майкельсона и Морлея (1887 г.) – необходимо какое-то существеннейшее изменение этой теории.

Какое именно, мы не знаем. Причем, хотя мы и зашли в тупик с гипотезой эфира, мы успели убедиться, что многие факты эта гипотеза объясняет очень хорошо и наглядно. Если вы «привыкли» к эфиру, если вы почувствовали некоторую симпатию к этой гипотезе – возможно, станет яснее, почему уничтожение эфира означало революцию в физике.

С нашей точки зрения гипотеза эфира – некоей загадочной субстанции – представляет только исторический интерес. Но, представив, почему был дорог эфир для физиков, мы лучше поймем, что сделал Эйнштейн.

Теорию относительности можно разбирать, совершенно не касаясь эфира. Возможно, тогда даже легче усвоить постулаты Эйнштейна. Но было бы очень жаль утерять перспективу. В самом начале книги говорилось, что постулаты Эйнштейна очень просты. Разрешите теперь взять эти слова назад.

Снова несколько слов о самом Эйнштейне.

Теория Эйнштейна очень стройна, изящна по своей структуре.

Постулаты Эйнштейна, пожалуй, значительно естественней и сформулированы намного более четко и строго, чем вся классическая физика.

Все эффекты, все существующие эксперименты теория Эйнштейна объясняет совершенно непринужденно.

Наконец, теория относительности непосредственно использует только опытные факты и в этом смысле непосредственно вытекает из опыта.

Но при всем этом для меня лично остается абсолютной загадкой, как двадцатипятилетний юноша Альберт Эйнштейн пришел к своей теории.

Пожалуй, малоубедительно соображение, что после работы Майкельсона теория относительности оставалась единственным выходом.

Было очень много возможностей исправления теории эфира. Их использовали, добивались известных успехов.

Лоренц, например, пытался объяснить опыт Майкельсона, сохранив эфир, сохранив почти все основы классической физики.

Ритц построил теорию, в которой эфир, правда, отбрасывался, но зато сохранялась неизменной классическая механика.

С точки зрения своей эпохи Эйнштейн пошел самым невероятным путем.

И создание теории относительности, пожалуй, в первую очередь обусловлено теми непостижимыми качествами ее автора, которые можно называть, можно объяснять, но нельзя воспринять.

И мне кажется, что среди многих бессмысленных занятий почетное место занимают попытки проанализировать в деталях механику мышления гения. Что касается мнения самого Эйнштейна, то он обычно объяснял, что думал над этими вопросами примерно десять лет. Точные слова Эйнштейна приведены в следующей главе; причем хотелось бы обратить внимание на ту замечательную наивность, с которой Эйнштейн пишет: «Интуитивно мне казалось ясным с самого начала…»

Покончим с эфиром. Вот резюме Майкельсона, которое довольно верно отражает состояние проблемы непосредственно перед созданием теории относительности:

Здесь Майкельсон цитирует, вероятно, самого остроумного физика в истории науки лорда Кельвина (Томпсона).

«Ряд не зависящих друг от друга рассуждений приводит нас к заключению, что среда, в которой распространяются световые волны, не представляет обычной формы вещества.

Несмотря на то, что мы весьма мало знаем об этой среде, мы все-таки можем сказать, что про обыкновенную материю мы знаем еще меньше…

Явление аберрации звезд можно объяснить при помощи гипотезы, что эфир не принимает участия в движении Земли вокруг Солнца. Между тем все попытки проверить эту гипотезу дали отрицательные результаты, вследствие чего мы можем сказать, что весь вопрос пока еще находится в неудовлетворительном состоянии».

Глава XI,

в которой автор пытается запутать терпеливого читателя, убеждая его в противоречивости постулатов Эйнштейна. В итоге выясняется, что постулаты Эйнштейна несовместимы с классической механикой, и автор призывает читателя разделить его восхищенное удивление Эйнштейном. Первая половина главы, возможно, несколько трудна, но утешение можно найти в том, что самое главное содержится как раз во второй половине

Счастливец Ньютон, систему мира можно установить только один раз.

Лагранж


Эйнштейн
(основные постулаты)

Наконец мы у цели. Все последующее посвящено непосредственно теории Эйнштейна. Мы не будем сколько-нибудь подробно останавливаться на других попытках объяснить результат Майкельсона, хотя они очень интересны и поучительны. Но несколько слов сказать о предшественниках надо, хотя бы затем, чтобы лишний раз убедиться, как много возможных путей открывается каждый раз, когда старая теория зашла в тупик и нужно создавать новую.

Традиционные общие рассуждения. Несколько слов о предшественниках Эйнштейна.

Первый – Лоренц, очень много работавший над теорией электромагнитного поля и создавший в восьмидесятых годах прошлого века наиболее стройную и прогрессивную схему «эфирной физики». После работы Майкельсона он сделал отчаянную попытку спасти свою теорию (1904 г.).

Лоренц предположил, что все тела, движущиеся относительно эфира, сокращаются в направлении перемещения в отношении

Здесь l0 – длина тела, покоящегося относительно эфира; v – скорость тела относительно эфира[53]53
  Эта же гипотеза была независимо сформулирована Фитцджеральдом.


[Закрыть]
.

Он даже нашел очень правдоподобное (конечно, тоже гипотетическое) объяснение этого явления на основе своей теории строения материи. Теория Лоренца не только объясняла результаты опыта Майкельсона, но и по своей формальной, математической структуре очень походила на теорию Эйнштейна.

Еще ближе к теории относительности идеи крупнейшего французского математика Пуанкаре[54]54
  Любопытно, что статья Пуанкаре послана в печать на три недели позже, чем работа Эйнштейна.


[Закрыть]
.

Довольно часто недоумевают: почему Лоренц и особенно Пуанкаре, так близко подошедшие к теории относительности, не смогли сделать последний шаг? Традиции обязывают высказаться по этому поводу.

Теорию относительности открыл Эйнштейн, а не Пуанкаре или Лоренц единственно потому, что Эйнштейн несравненно глубже разобрался в существе дела.

Этот ответ полностью исчерпывает проблему.

Если же говорить серьезно, то, пожалуй, широко распространенное мнение, что Пуанкаре и Лоренцу оставалось совсем немного для формулировки теории относительности, ошибочно.

Некий вклад в историю науки.

Всякая физическая теория в первую очередь определяется не математическим аппаратом, а физическим содержанием. Лоренц и особенно Пуанкаре действительно были очень близки к математической формулировке теории, но в физике они не разобрались. А этот последний шаг в данном случае и был самым трудным. И гадать, через сколько времени Пуанкаре пришел бы к идеям Эйнштейна, в высшей степени бессодержательное занятие.

Статья Эйнштейна «К электродинамике движущихся тел» была напечатана в 1905 году в семнадцатом томе «Annalen der Phýsic»[55]55
  Основной немецкий физический журнал «Анналы физики».


[Закрыть]
.

Говорить о значении этой работы излишне, а внешняя характеристика труда Эйнштейна прекрасно дана Инфельдом:

«Название статьи очень скромное, однако при чтении мы сразу замечаем, что эта работа отличается от других аналогичных работ. Она не содержит ссылок на литературу, не цитируются авторитеты, а отдельные сноски носят лишь пояснительный характер. Работа написана простым языком, и большая ее часть может быть понята без глубокого знания предмета. Можно только удивляться, что эта работа, отличающаяся так резко по своей форме от обычных научных работ, была пропущена референтом (если таковой вообще существовал). Это тем более удивительно, что для полного понимания этой статьи требуется такая глубина, которая ценнее и встречается реже, чем педантичное знание. Метод изложения и сам стиль работы сохранили свою свежесть еще и сегодня. Она до сих пор является лучшим пособием для изучения теории относительности. Автор этой работы не принадлежал к научным кругам, он не был даже преподавателем средней школы. В то время, 50 лет назад, будучи молодым доктором философии, 26 лет от роду, он служил в Швейцарском патентном ведомстве в Берне».

…Эйнштейн начал с выбора безусловных опытных фактов. Фактам «несть числа», и они, казалось бы, противоречат один другому. Отсеять все побочное и выбрать основное – задача сама по себе исключительно тяжелая.

Но вот безусловное. Опыт Майкельсона окончательно убедил, что оптические явления на Земле не зависят от ее движения относительно неподвижных звезд. А так как годичное движение Земли относительно звезд можно с высокой степенью точности считать равномерным и прямолинейным (и это очень важно), то, следовательно, Майкельсон показал, что равномерное и прямолинейное движение Земли относительно неподвижных звезд не сказывается на оптических явлениях на Земле[56]56
  Стоит обратить внимание на последнее замечание, потому что вращательное движение системы отсчета относительно неподвижных звезд влияет на оптические и электромагнитные явления в этой системе. В связи с этим уместно обсудить один гипотетический курьез. Из теории относительности следует, что, например, суточное вращение Земли должно влиять на оптические явления. Майкельсон и Гель в 1925 году сделали изумительно тонкий опыт и обнаружили этот эффект. Еще в 1913 году влияние вращения системы отсчета относительно неподвижных звезд на оптические и электромагнитные явления экспериментально установил Саньяк (правда, идея опыта также принадлежала Майкельсону).
  Но весь юмор в том, что для этих опытов предсказания теории относительности качественно совпадают с предсказаниями теории и неувлекаемого эфира. В данном случае правильная и неправильная теории дают один и тот же результат.
  И представьте себе, насколько опоздало бы появление теории Эйнштейна, если бы Майкельсон сначала проделал опыт с суточным вращением, чтобы показать, что эфир не увлекается вращательным движением Земли. Ведь все считали бы, что существование неувлекаемого эфира доказано. Лучшее подтверждение гипотезы неувлекаемого эфира, казалось бы, трудно придумать. А если бы еще Майкельсон почил на лаврах и свой «настоящий» опыт не стал делать, то…
  В общем лучшей темы для рассуждения о том, что было бы, если бы… желать не надо.
  Эти, мягко говоря, несколько наивные соображения иллюстрируют тем не менее один примечательный момент: опровергнуть теорию можно при помощи одного эксперимента. Чтобы утвердить ее, необходима тьма и тьма различных опытов.


[Закрыть]
.

Но если так, то, значит, принцип относительности Галилея верен и для электромагнитных явлений, и возможно, он вообще общий закон природы! Это предположение Эйнштейн берет за первый постулат своей теории.

«Все законы природы одинаковы во всех инерциальных системах координат, движущихся равномерно и прямолинейно друг относительно друга».

Первый постулат теории Эйнштейна – принцип относительности. Сейчас необходимо снова просмотреть главу V.

Как видите, словесно этот постулат отличается от принципа Галилея только тем, что вместо слова «механика» поставлено «природа». Соответственно и физическое содержание совпадает с существом принципа относительности Галилея, с той важнейшей поправкой, что теперь постулируется равноправие инерциальных систем по отношению ко всем физическим законам (а не только к законам механики).

Физическое содержание принципа относительности нам уже знакомо.

Именно: равномерное и прямолинейное движение системы отсчета относительно неподвижных звезд абсолютно ни на что не влияет. (Ни один опыт, произведенный внутри замкнутой комнаты, не обнаружит ее равномерного и прямолинейного движения относительно неподвижных звезд.)

Возможно, в такой форме принцип относительности покажется тривиальным. Ведь звезды так далеко, и интуитивно как будто ясно, что они ни на что влиять не могут.

Вспомните, однако, о вращательном движении. Стоит заставить «изолированную от внешнего мира» комнату «вращаться относительно звезд», как наблюдатель внутри комнаты сразу это заметит.

Так что принцип относительности отнюдь не самоочевиден. Напротив, он весьма удивителен. Но мир так устроен…

Итак, Эйнштейн распространяет принцип относительности на все законы природы (а в первую очередь на законы электромагнетизма), тем самым сразу объясняя отрицательный результат опыта Майкельсона. Он – совершенно очевидное следствие принципа относительности.

Равномерное прямолинейное движение относительно неподвижных звезд ни на что не влияет, и поэтому, пусть Земля движется, световые лучи в установке Майкельсона ведут себя точно так же, как если бы она покоилась. Чтобы не углубляться в детали, приведем совершенно точную аналогию.

Принцип относительности и опыт Майкельсона.

Если в салоне равномерно плывущего корабля играть в бильярд, то все будет происходить так же, как и на твердой Земле. Бильярдным шарам безразлично, летят ли они по направлению движения, или против движения, или под углом 90° к курсу корабля.

Шар, пущенный от одной стенки к другой по направлению движения и отраженный затем назад, затратит на путь «туда» такое же время, как и на путь «обратно» (естественно, мы пренебрегаем изменением скорости из-за трения шара о сукно стола).

Шар, летящий перпендикулярно направлению движения корабля, также «не знает», что корабль движется; он ударится о борт стола точно против того места, откуда вылетел. Движение корабля не «сдует» шар в сторону.


В общем игроки в бильярд никак не почувствуют, что игра происходит на корабле, а не в здании.

Если вместо бильярда представить себе экспериментальную установку Майкельсона, вместо шаров – световые лучи, а вместо корабля – Землю, то весь опыт пройдет так, как если бы Земля покоилась относительно неподвижных звезд (неувлекаемого эфира).

Подобно бильярдным шарам, лучам света безразлично, под каким углом к направлению движения Земли они распространяются, и время их пути совершенно не зависит от этого угла.

Принцип относительности и эфир.

Очевидно, что, приняв принцип относительности Эйнштейна, надо распроститься с выделенной системой отсчета – неувлекаемым эфиром. Если помните, в V главе остался открытым вопрос о существовании «абсолютной системы». Мы допускали, что такую систему, может быть, можно обнаружить, исследуя, например, электромагнитные процессы. Распространяя принцип относительности на все законы природы, Эйнштейн тем самым уничтожает идею существования выделенной системы отсчета.

Но не противоречит ли принципу относительности аберрация? Ведь мы объясняли ее, считая, что имеется абсолютная система отсчета – неувлекаемый эфир. Однако кто сказал, что это объяснение единственно возможное?

Аберрация и первые сомнения.

Само по себе явление аберрации не противоречит принципу относительности.

Ему противоречит наше толкование аберрации. Ну что ж, тем хуже для объяснения.

А «сами по себе» данные эксперимента показывают только то, что возможно обнаружить.

Итак, основа – принцип относительности. В этом пункте Эйнштейн не отходит от «классики». Наоборот, он расширяет галилеевский классический принцип, расширяет границы его применения.

Беда в том, что один принцип относительности сам по себе мало проясняет положение. То, что приходится отбросить теорию неувлекаемого эфира, еще не так страшно. Мы вообще можем забыть об эфире и непредвзято исследовать опытные факты.

Но тут-то как раз и начинается непонятное.

«Ученый» пример.

Используем принцип относительности для анализа простого опыта.

Рассмотрим уже известные нам инерциальные системы отсчета K и K1, относительная скорость которых равна v. Проделаем в системе K опыт по определению скорости света. Назовем его условно «опыт L».

Для этого возьмем источник света S, неподвижный в системе K, и каким-нибудь способом (например, способом Физо) измерим скорость света. Наша экспериментальная установка неподвижна в системе K. Пусть мы получили, что скорость света равна какому-то числу c.


Сдублируем нашу установку в системе K1 которая движется относительно системы K так, как это показано на рисунке (возьмем источник S1, неподвижный в системе K1 и т. д.), и проделаем аналогичный «опыт L1». Все условия «опыта L1» относительно системы K1 тождественно повторяют условия «опыта L» относительно системы K.

Согласно принципу относительности скорость света, измеренная в «опыте L1», снова должна оказаться равной c, поскольку одна инерциальная система ничем не хуже другой.

Действительно, получив другое значение скорости света в системе K1, мы убедились бы, что законы природы различны в различных инерциальных системах. Пока все хорошо.

Но мы имеем полное право рассматривать любой опыт из любой системы отсчета. Рассмотрим и опишем «опыт L1», используя систему K.

Внимание! Начинается крупная и очень важная мистификация!

В системе K источник света S1 и вся экспериментальная установка движутся направо со скоростью v. И мы сейчас убедимся, что в ней скорость светового луча, бегущего от этого источника направо, равна скорости света плюс скорость системы K1 относительно системы K, то есть (c + v). И соответственно, налево свет бежит со скоростью, равной разности скорости света и скорости системы K1, то есть (с – v).

Мы подошли к очень важному месту и, чтобы лучше понять дальнейшее, перейдем от общих, абстрактных рассуждений к конкретному примеру.

Пусть физик находится со своей установкой в вагоне равномерно идущего поезда. Измерения, которые он провел, показывают, что скорость света относительно источника не зависит от направления, а постоянна и равна определенному числу – c. Иначе говоря, он установил, что свет одновременно достиг передней и задней стенок вагона через Δt, и определил скорость

c = ½l/Δt.

Если вагон сделан из стекла, наблюдатель на полотне дороги также может изучать процесс распространения света. Однако для него все будет выглядеть несколько по-другому.


Пока свет бежит от источника к стенкам вагона, поезд проезжает некоторое расстояние. Передняя стенка «убегает», а задняя «бежит навстречу» световому лучу. До нее свет должен пройти меньшее расстояние. Но свет достигает стенок одновременно! Очевидно, это может быть только, если вперед свет распространяется с большей скоростью, чем назад.

Скорости эти можно найти совершенно просто. Как только что было сказано, скорость светового луча «вперед» равна c + v, а «назад» с – v (здесь v – скорость вагона).

Тот же самый вывод можно получить, рассуждая несколько иначе. Относительно источника света скорость света постоянна и в любой системе отсчета равна с (принцип относительности!).

Если луч света из фар паровоза «убегает» от поезда со скоростью c, а поезд «убегает» от наблюдателя на полотне со скоростью, v, то от наблюдателя на полотне свет «убегает» со скоростью c + v. Соответственно скорость луча света, посланного из фонарика на концевом вагоне, относительно полотна дороги равна с – v. В этом мы убеждаемся сразу, применив формулу сложения скоростей.

Весь предыдущий отрывок (как и все выводы) заведомо неправилен. Один принцип относительности отнюдь не приводит к тому, что скорость света зависит от движения источника. Но где ошибка в рассуждении? Что еще явно не использовано в выводе?

Говоря иначе, мы пришли к выводу, что скорость света зависит от движения источника. При выводе этого положения мы использовали только принцип относительности, и потому, если наше утверждение не оправдывается на опыте, принцип относительности для электромагнитных явлений несправедлив.


    Ваша оценка произведения:

Популярные книги за неделю