Текст книги "Очевидное? Нет, еще неизведанное…"
Автор книги: Вольдемар Смилга
Жанр:
Физика
сообщить о нарушении
Текущая страница: 2 (всего у книги 16 страниц)
А как тяжело было разобраться в законах движения, можно судить уже по тому, что представления Аристотеля оставались незыблемыми около 2 тысяч лет.
Некоторые результаты исследований Галилея.
Изучая законы падения тел и рассмотрев вертикальное отвесное падение, Галилей, естественно, переходит к движению по наклонной плоскости. Он находит, что ускорение при падении постоянно во времени и тем меньше, чем меньше угол наклона. В предельном случае горизонтальной плоскости, утверждает Галилей, тело будет двигаться вообще без ускорения. И причиной движения тела по наклонной плоскости оказывается сила тяжести. При этом Галилей понимает, что когда тело находится на наклонной плоскости, то движение вызывается не всем весом, а лишь его частью, тем меньшей, чем меньше наклон.
Еще раз следует напомнить: Галилей не знает, почему тело падает на Землю. Более того, у него нет ясного понятия о силе, нет формулы, связывающей силу и ускорение, он не читал «Начал» Ньютона: они выйдут в свет лишь спустя 35 лет после его смерти.
Но его интуиция позволяет заключить: «Когда тело движется в горизонтальной плоскости, не встречая сопротивления своему движению… то движение его является равномерным и продолжалось бы бесконечно, если бы плоскость простиралась в пространстве без конца».
Итак, если отсутствует сила – скорость остается постоянной.
«Скорость, однажды сообщенная движущемуся телу, строго сохраняется, если устранены внешние причины ускорения или замедления».
Образно говоря, это утверждение ставит с головы на ноги всю механику.
Стоит обратить особое внимание на соотношение теорий Галилея и Аристотеля. Как уже упоминалось, Аристотель считал, что для поддержания постоянной скорости необходимо воздействие постоянной силы. Взгляды Галилея диаметрально противоположны.
Впервые формулируется положение, похожее на закон инерции.
Только в том случае, когда на тело не действуют никакие силы, скорость остается неизменной. Речь идет не об уточнении старой теории, не об ее развитии или ограничении области ее применения. Отнюдь нет! Вся механика Аристотеля начисто зачеркивается.
Подобные ситуации очень редки в истории наук и обычно встречаются в годы их юности. Чаще всего у открывателей есть точка отправления, есть отметки на том пути, по которому они идут. Лишь пионерам нечего взять от предшественников и приходится начинать на пустом месте.
Таким основоположником в физике был Галилео Галилей. Он заложил фундамент той механики, создать которую было суждено Ньютону.
Очень многое ему оставалось неясным. Часто он ошибался и сворачивал с правильного пути.
Трудно и ожидать чего-либо другого; сам Галилей лучше всех сознавал и значение и недостатки своих работ (вспомните его слова в эпиграфе).
И хотя в его трудах часто встречаются утверждения, прочитав которые можно подумать, что не только первый, но и второй закон механики были ему известны и, следовательно, Ньютон в известной мере был лишь популяризатором его идей, пожалуй, не стоит увлекаться переоценкой работ Галилея. Даже первый закон механики, тот самый закон инерции, который Галилей сформулировал, казалось бы, предельно четко, ни он, ни все остальные предшественники Ньютона не понимали до конца. И только у Ньютона законы механики принимают ту ясную, законченную форму, в которой они известны нам. (Впрочем, мы увидим в дальнейшем, что даже сам Ньютон не избежал ошибок.)
Возможно, подобная оценка творчества Галилея излишне сдержанна, однако детальный анализ его работ, к сожалению, увел бы нас слишком далеко в сторону, и потому… Пойдем далее.
Если следовать Галилею, между покоящимся и равномерно движущимся телом в известном смысле устанавливается равноправие. Равномерно двигающийся по поверхности моря корабль и корабль, мирно стоящий на якоре, в равной степени не подвержены «воздействию внешних причин, вызывающих ускорение или замедление». Более того, наша Земля может покоиться в пространстве или равномерно двигаться – в обоих случаях отсутствуют «внешние причины».
Но если это так, то, может быть (может быть!), все физические процессы, протекающие на равномерно движущемся теле, в частности на Земле (если она равномерно двигается, конечно), должны протекать так же, как на покоящемся?
И (внимание!) Галилей высказывает эту мысль.
Да, он полагает, что с точки зрения механики совершенно равноправны тело, находящееся в покое, и тело, которое равномерно движется.
Любой механической опыт, поставленный на равномерно и прямолинейно движущемся теле, будет протекать точно так же, как если бы оно покоилось.
Вот он – принцип относительности Галилея!
Это положение – принцип относительности Галилея – один из самых замечательных и удивительных законов природы.
Однако уже сейчас необходимо сделать несколько замечаний.
Во-первых, внимательный читатель, вероятно, обратил внимание, что мы еще не объяснили, что такое движение, а следовательно, наши рассуждения о движущихся и покоящихся телах пока, строго говоря, бессодержательны. В дальнейших главах подробно разбирается понятие движения в механике – вопрос не такой простой и очевидный, как может казаться. Пока же мы следуем за Галилеем, а у него (как ни странно!) не было четкого представления о понятии механического движения.
Во-вторых, позже, когда будут сформулированы законы Ньютона, мы увидим, как принцип относительности Галилея можно вывести из этих законов. Сейчас же заметим, что одного закона инерции еще недостаточно, чтобы утвердить принцип относительности. И хотя несколько выше мы как бы связывали в сознании Галилея закон инерции и принцип относительности, следует признаться, что это не более чем литературная вольность.
Между законом инерции и принципом относительности действительно очень тесная связь, но Галилей скорее всего просто гениально угадал свой принцип, «подглядел» его в природе, не связывая с законом инерции. В это можно поверить, прочитав те страницы «Диалога о двух главнейших системах мира», где, по существу, утверждается принцип относительности. (Вероятно, излишне пояснять, что в современном виде сам Галилей никогда не формулировал «принцип относительности Галилея».)
«Диалог» Галилея – работа, окончательно уничтожившая систему Птолемея, – замечателен не только содержанием, но и формой. Прямо проповедовать учение Коперника нельзя – это запрещено. Но при обширных связях Галилея можно добиться появления книги, где всего лишь обсуждается эта «еретическая» система. Такая книга и написана. Он не защищает Коперника. Нет! С внешней стороны абсолютно беспристрастно анализируется спор «Птолемей – Коперник». Автор со своим отношением к предмету как будто отсутствует. Никаких выводов вроде бы не сделано. Два ученых – сторонник Коперника и защитник Птолемея – спорят между собой, а он, Галилео Галилей, просто пересказывает их дискуссию. Читатель же волен судить, чьи доводы убедительней. И вот, как беспристрастный судья, Галилей разбирает попытки опровергнуть Коперника, использовав законы аристотелевой механики.
Ведь если какие-либо механические опыты, произведенные на Земле, дали бы возможность установить, что Земля не движется вокруг Солнца, а находится в покое, то спор бы был разрешен.
И Галилей в «Диалоге» прямо приводит, казалось бы, очень веские возражения против Коперника.
Если Земля движется, то камень, падающий с башни, должен отклониться в сторону, поскольку он стремится двигаться только к центру Земли, а за время падения камня Земля «проезжает» под ним. Снаряд, выпущенный из орудия вертикально вверх, по той же причине должен упасть далеко в стороне от жерла пушки. Ядро, пущенное на запад, пролетит значительно дальше, чем на восток, так как суточное движение Земли, если оно существует, увлекает орудие к востоку, и в первом случае пушка «уезжает» от ядра, а во втором «догоняет» его. Облака и птицы должны отставать от Земли и т. д. Но повседневный опыт убеждает нас в обратном. Следовательно, Земля покоится?!
Между прочим, в «Диалоге» используется очень изящный прием спора. Все эти доводы против гипотезы о движении Земли высказывает и убедительно развивает Сальвиати – убежденный сторонник Коперника, а Симпличио – защитник Аристотеля – восхищенно слушает и поддакивает. И вот, продемонстрировав более глубокое понимание Аристотеля, чем его поклонники, использовав, казалось бы, неопровержимые аргументы в его пользу, Сальвиати – Галилей резко меняет фронт.
Провозглашая принцип относительности, он проводит аналогию между Землей и равномерно плывущим кораблем. Все тела на корабле ведут себя так, как будто он покоится: камень, падающий с мачты, всегда опускается у ее подножия; мяч, брошенный по движению или против движения корабля, полетит одинаково далеко. Ни один опыт на равномерно движущемся корабле не дает возможности установить: плывет корабль или покоится. А следовательно, ни один опыт на Земле не может сказать нам, покоится она или мчится в пространстве с колоссальной скоростью, вращаясь при этом вокруг оси.
Это утверждение Галилея, конечно, ошибочно.
Возможно, многие из вас с трудом сдерживают возмущение или, в лучшем случае, недоумение – ведь хорошо известны десятки опытов, проделанных на Земле и позволяющих установить ее суточное движение. Достаточно вспомнить о маятнике Фуко, о том, что камень, брошенный с вершины башни, отклонится к востоку[4]4
Вообще говоря, падающий предмет отклоняется к юго-востоку, но отклонение на юг очень мало по сравнению с отклонением на восток.
[Закрыть] и т. д. В наши дни проявлять подобную безграмотность, безусловно, неловко – эти факты известны любому десятикласснику. Эти факты известны и автору. Но Галилею они известны не были.
Ирония судьбы. Предлагая принцип относительности, Галилей не понимает, что он верен только для равномерного прямолинейного движения, и использует его для равномерного вращательного движения.
О принципе относительности подробно рассказывается в V главе.
Мы-то знаем, что механические явления на вращающемся теле будут протекать по-другому, чем на неподвижном или равномерно и прямолинейно движущемся.
Равномерное движение по окружности можно обнаружить благодаря центробежным силам и легко отличить от состояния покоя или равномерного прямолинейного движения. Но все эти азбучные для нас истины Галилею неведомы. Однако и в своих ошибках он значительно ближе к истине, чем Аристотель.
Уже сейчас уместно спросить, что означают слова: «тело равномерно движется»? Что значит: «тело вращается»? Ответ можно найти в IV и V главах.
Человек со средним образованием может легко увидеть ошибки и путаные места в его трудах. Но чтобы получить новые результаты такого же масштаба, необходим такой же «необыкновенный гений».
Вот и все о Галилее. В дальнейшем, вооруженные законами Ньютона, мы вернемся ко всем вопросам, которые нами разбирались. Мы четко сформулируем основные принципы механики, достигнем как будто предельной ясности и… особо остановимся на тех местах, которые остались неясными и Ньютону, – на его ошибках.
И далее мы увидим, как исследование, казалось бы, совсем другой области физики – учения об электромагнитных волнах – привело к необходимости полностью изменить все наши представления о пространстве и времени или, говоря точнее, заставить физиков задуматься над вопросом: «Что же такое время и пространство?»
Вероятно, через некоторое время произойдут новые революции в физике. Возможно, через несколько поколений взгляды нашего поколения будут казаться такими же наивными, какими представляются нам некоторые идеи Галилея, но физик любой эпохи будет с преклонением вспоминать Галилея – первого, который понял во всей глубине, что новые идеи надо искать в «великой книге – природе», опираясь только на факты.
В заключение стоит привести один пример, очень четко характеризующий строгий и честный стиль научного мышления Галилея. Многие слыхали, конечно, что гипотеза о бесконечности вселенной впервые выдвинута Джордано Бруно. Но это не совсем точно. Эта проблема, видимо, очень занимала Галилея, он неоднократно к ней возвращался. И пожалуй, пошел дальше Бруно.
Несколько сентиментальные выводы.
Поскольку еще нет никаких опытных данных в пользу конечности или бесконечности вселенной, Галилей заключает: «Я остаюсь в нерешимости, какое из этих двух положений правильно, хотя мои личные доводы заставляют меня склоняться скорее к идее бесконечности мира…»
Глава II,
содержащая очень краткие сведения о жизни и характере Ньютона. В заключение читатель может узнать, что такое метод принципов
Вывести два или три общих начала движения из явлений и после этого изложить, каким образом свойства и действия всех телесных вещей вытекают из этих явных начал, – было бы очень важным шагом в философии, хотя бы причины этих начал и не были открыты.
Ньютон
Ньютон. Механика (метод)
Восхищение Ньютоном освящено традицией.
Еще его современники полностью исчерпали весь арсенал восторженных эпитетов, сравнений и гипербол, и потомкам оставалось только повторяться, что, впрочем, и делалось без опасения утомить человечество.
Вступление, ценное главным образом потому, что упомянута книга С. И. Вавилова «Ньютон» – может быть, лучшая работа по истории физики на русском языке.
Ньютоном восхищаются все: и ученые, по-настоящему понимающие подлинное значение его работ, и те, кто не очень представляет, что он, собственно, сделал, но, впрочем, твердо уверен, что восторгаться Ньютоном следует, – это признак хорошего тона.
Чтобы понять всю исключительность, аномальность личности Ньютона, следует прочитать блестящую книгу С. И. Вавилова. И после этой книги, вероятно, на всю жизнь вы не сможете отделаться не столько от чувства восторга, сколько от самого наивного удивления. На мой взгляд, восхищаться можно только понятными вещами, а творческий потенциал Ньютона, по-видимому, немыслимо воспринять человеческим разумом.
Жизнь и карьера Ньютона очень бедны внешними событиями и очень похожи (опять же с внешней стороны) на судьбы десятков добропорядочных английских джентльменов, упорных и часто довольно даровитых, добивавшихся всего своими руками, чтивших бога и короля («Да хранит его бог!») и глубоко убежденных, что нет страны лучше, чем старая добрая Англия с ее старыми добрыми традициями, и что не было, нет и не будет дела важней, чем обеспечить ее (и конечно, попутно свое) процветание.
Краткие сведения об Исааке Ньютоне.
Исаак Ньютон родился в 1643 году (через год после смерти Галилея) в семье с весьма средним достатком. Очевидно, ему повезло со школьным учителем. Судя по сохранившимся данным, это был культурный и умный человек. Сразу после школы – Кембриджский университет (точнее, Тринити колледж). Английские университеты того времени представляли собой сумму колледжей – почти независимых друг от друга учебных заведений. (Впрочем, в Кембридже и Оксфорде эта система сохранилась до наших дней.)
За восемь университетских лет (1661–1669) Ньютон прошел всю лестницу от студента до заведующего кафедрой. (Не надо думать, что это исключительная карьера: в ту эпоху на такой путь требовалось значительно меньше времени, чем сейчас.) Юноша очень серьезен, замкнут, пользуется всеобщим уважением, но вряд ли даже ближайшие друзья – их, кстати, очень мало – подозревают, что он уже создал анализ бесконечно малых величин, наметил невиданную программу дальнейших исследований и обладает рядом совершенно революционных идей и результатов в механике, оптике и теории тяготения.
Известные теперь каждому школьнику опыты по разложению солнечного света уже закончены, и получен закон убывания силы тяготения с расстоянием.
Все это было сделано за два года (1665–1667), не говоря о том, что одновременно он овладел экспериментальной техникой, в частности техникой изготовления телескопов – самых тонких приборов того века.
Ньютон не печатает своих работ. Еще больше, чем Галилей, больше, пожалуй, чем кто-либо из известных ученых, он придирчив к своим результатам, и работа не появляется на свет, пока он не убеждается до конца в ее полной и безоговорочной точности и законченности.
Карьеру Ньютона, как и Галилею, создает телескоп. Совершенно новый по своей идее телескоп-рефлектор приносит Ньютону звание члена Королевского общества, президентом которого он будет впоследствии. Это происходит 11 января 1672 года. А уже 6 февраля этого же года Ньютон докладывает на заседании общества свой мемуар «Новая теория света и цветов» – мемуар, который, по словам С. И. Вавилова, «впервые показал миру, что может сделать и какой должна быть экспериментальная физика».
С этого времени Ньютон непрестанно поражает мир обилием и качеством своих работ.
Его общественное положение делается все более блестящим. В частности, в 1686–1689 годах он – депутат парламента от университета. Правда, злые языки утверждают, что в парламенте он выступал всего один раз – с просьбой закрыть окно, «ибо с Темзы дурно пахнет», но, очевидно, Ньютон не был таким ученым «не от мира сего», каким часто принято его представлять. Во всяком случае, получив должность хранителя Монетного двора (1696 год), он великолепно справился с весьма тяжелыми задачами (перечеканка всей английской монеты), которые требовали больших административных способностей.
В 1705 году Ньютон получает дворянство, он принят при дворе; официально и неофициально, друзьями и врагами признан первым натурфилософом мира. Его богословские работы также получают восторженные оценки, хотя сэр Исаак и отклоняется в них очень часто от канонизированных взглядов. Нам, конечно, трудно представить, что Ньютон тратил массу времени и сил на исследования различных богословских проблем. Но факт остается фактом: сэр Исаак Ньютон был глубоко религиозен и, пожалуй, склонен был рассматривать всю свою научную работу как посильный вклад в познание божьего провидения. Правда, тогда подобное совмещение профессии – физик и богослов – было в порядке вещей, но в наши дни его богословские увлечения вызывают только чувство недоуменного и горького сожаления.
Забавно, что и в области теологии взгляды Ньютона оказали большое влияние на последующие поколения.
В последние годы жизни Ньютона часто отвлекают от работы административные и общественные обязанности; да и, самое главное, возраст начинает брать свое. Сказывается переутомление от исключительных по интенсивности трудов прежних лет. Однако старик не бросает науку и даже продолжает экспериментировать. Но в основном он занимается шлифовкой своих прежних результатов и прежде всего труда его жизни – «Математических начал натуральной философии».
Эта книга вышла в свет в 1687 году. В ней дана теория тяготения и движения небесных светил и сформулированы все основные законы механики, которые оставались незыблемыми до Эйнштейна.
Итак, механика. Прежде всего – о методе.
Эта и несколько следующих страниц посвящены методу Ньютона. Их можно опустить без вреда для читателя. Но можно и прочитать, тоже, надеюсь, без вреда.
«Я не измышляю гипотез, – любил повторять на склоне лет Ньютон. – Все, что не выводится из явлений, должно называться гипотезою, гипотезам же метафизическим, физическим, механическим, скрытым свойствам не место в экспериментальной философии».
Следовательно, гипотеза не вытекает непосредственно из опыта. Гипотезу выдвигают по интуиции, используя какие-то аналогии, а потом уже пытаются согласовать с известными фактами. Так, например, атомистическая структура материи до недавнего времени оставалась гипотезой.
Часто гипотеза полностью рушится под давлением фактов; причем иногда проходит не одна сотня лет, прежде чем эти факты появятся. (Вспомним о гипотезе Канта – Лапласа.)
Иное дело принципы. Они создаются на основе опытных данных, в результате их тщательного анализа.
Принципы недоказуемы логически, но обязательно имеют в основе прочную базу эксперимента. Поэтому в той или иной форме они остаются в науке навсегда. Хотя, конечно, дальнейшие исследования могут ограничить область их применения, обнаружить, что принципы носят не абсолютный, а имеют приближенный характер.
Примеры принципов: аксиомы геометрии Эвклида, ньютоновские законы механики, закон всемирного тяготения, законы сохранения…
Итак, выдвигая гипотезу, мы должны допускать, что новые факты могут полностью ее опровергнуть.
Формулируя принцип, мы уверены, что хотя в дальнейшем он, возможно, окажется верен лишь приближенно и область его применения значительно ýже, чем мы полагали, тем не менее в какой-то форме в науке он останется.
Однако, если вдуматься, разница между принципом и гипотезой представится несколько условной – ведь гипотеза также должна быть согласована с опытными данными и опираться прежде всего на опыт. С другой стороны, никто не гарантирован от неправильного вывода при анализе опыта – от формулировки неправильного принципа, который будет опровергнут новыми фактами.
Впрочем, наша задача не давать идеальные определения (занятие вообще весьма неблагодарное), а разобраться, в чем существо метода Ньютона – метода, которому он сам дал название «метода принципов».
Попробуем подойти к вопросу с иной стороны. Обратимся к словам Ньютона, взятым в качестве эпиграфа: «Вывести два или три общих начала движения из явлений и после этого изложить, каким образом свойства и действия всех телесных вещей вытекают из этих явных начал, – было бы очень важным шагом в философии, хотя бы причины этих начал и не были открыты».
Мне кажется, что в последних словах этой фразы скрыта суть метода принципов, основное его отличие от метода гипотез. Ньютон в своих исследованиях совершенно сознательно отказывается объяснить, почему явления происходят именно так, а не иначе, какова их природа, какие свойства материи приводят к тем общим закономерностям, которые можно извлечь из наблюдений. Он удовлетворяется тем, что формулирует общие законы.
Великолепная иллюстрация – закон тяготения. Что говорит теория Ньютона о природе тяготения? Какие теоретические соображения подтверждают, что сила взаимодействия двух тел пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними? Абсолютно никаких. Ньютон не знает и, более того, не желает знать, почему закон тяготения имеет именно такой вид. Ньютону достаточно на основе наблюдений сформулировать сам закон.
Но есть и другой путь научного исследования. Установив, например, закон тяготения, можно выдвигать различные предположения о природе гравитации, предлагать теоретические схемы, из которых вытекал бы этот закон. Можно пойти еще дальше и, даже не зная самого закона, строить различные гипотезы о природе тяготения.
Физика гипотез, метод гипотез состоит как раз в том, что ученый стремится проникнуть в природу явления глубже, чем позволяют накопленные опытные факты; причем ему, естественно, приходится делать смелые и часто ошибочные предположения.
Невольно закрадывается мысль, что метод гипотез привлекательнее, изящнее, чем метод принципов, и что большая наука должна идти именно таким путем. Впрочем, это риторический вопрос. Оба метода равно используются в научной работе. Вообще говоря, и сам Ньютон, как мы увидим в дальнейшем, часто прибегал к методу гипотез. Но его нелюбовь к ним вполне объяснима и имеет совершенно реальную основу.
До Ньютона в ясной форме метод принципов, или, как часто говорят, индуктивный метод, не существовал[5]5
Можно считать, правда, что Галилей и здесь отчасти предвосхитил Ньютона.
[Закрыть]. В научном мире бушевали гипотезы. Крупнейшие ученые века, посредственности от науки, полуграмотные невежды – все создавали системы; при этом каждый стремился объяснить ни много ни мало, как все известные явления природы. Физика гипотез осталась в наследство от греков, страстных любителей абстрактных рассуждений и домыслов. И лишь работа предшествующего Ньютону поколения отчасти подготовила почву для новых методов работы.
Нужна была удивительная смелость и трезвость мысли, чтобы выскользнуть из плена очень привлекательной внешне физики гипотез и в основу творчества положить метод принципов, сухой, трезвый и сдерживающий полет фантазии.
Но, может быть, прав С. И. Вавилов, считавший, что именно в выборе метода скрыт секрет вечного значения наследия Ньютона.
Зная стиль строителя, рассмотрим само здание.