Текст книги "Эврики и эйфории. Об ученых и их открытиях"
Автор книги: Уолтер Гратцер
сообщить о нарушении
Текущая страница: 3 (всего у книги 33 страниц)
Болезненный ветер
Третьего декабря 1943 года, в 7.30 вечера, немецкие бомбардировщики возникли в небе над портом Бари, расположенным на кромке каблука итальянского “сапожка”. Их мишенью была гавань, где с кораблей сгружали продовольствие и боеприпасы для армий союзников, пытавшихся тогда прорваться в глубь Италии. Сирены, предупреждающие об авианалете, не сработали, так что укрыться успели немногие. Одна из бомб упала на палубу американского судна “Либерти”, доверху груженного взрывчаткой и, помимо нее, юо тоннами горчичного газа. Ни одна из сторон за всю войну так и не воспользовалась химическим оружием, но в то время противники были уверены, что рано или поздно это случится. И вот “Либерти” взорвался, и облако горчичного газа заволокло гавань. О газовой атаке оповестили, но, видимо, для многих слишком поздно. Среди врачей, отправившихся лечить пострадавших, оказался офицер-медик американской армии, доктор Корнелиус Роадс. Еще до войны он приобрел известность благодаря своим медицинским исследованиям.
Роадса поразило воздействие газа на организм: при его попадании в кровь число белых кровяных тел начинало расти, однако спустя несколько дней лимфоциты (от которых во многом зависит иммунный ответ организма), а вслед за ними и другие белые кровяные тела практически исчезали. Вскоре в крови появлялись незрелые клетки, свидетельствующие, что организм активно реагирует на перенесенный шок. Пациенты с легким отравлением выздоравливали за считаные дни или недели, а тяжелые больные либо гибли, либо приходили в себя после переливания крови. При этом, отметил Роадс, инфекции были редкостью даже у самых тяжелых пациентов, к тому же газ воздействовал лишь на их кровь, не нанеся вреда никаким другим тканям и органам. Возник вопрос, токсичен ли газ только для белых кровяных телец? И не пригодится ли он для лечения лейкемии – болезни, вызывающей перепроизводство этих клеток? Опыт Роадса лег в основу химиотерапии – нового метода в изучении и лечении рака. Спустя месяцы некий онколог из Чикаго уже использовал, и небезуспешно, азотистые иприты – горчичный газ и его производные – для лечения пациентов, страдавших лейкемией и лимфогранулематозом (болезнью Ходжкина).
Podolsky M.L, Cures out of Chaos (Amsterdam, Harwood, 1998).
Мария Кюри и Бессмертные
Открытие радия, за которое Марию и Пьера Кюри в 1903 году наградили Нобелевской премией (вместе с Анри Беккерелем), стало самым заметным событием во французской науке того времени. Мария Кюри, в девичестве Мария Склодовская, родилась в 1867 году в Польше, и потому ксенофобская правая пресса не упускала случая раздуть скандал вокруг ее имени. Так, например, темой множества газетных статей стал ее роман со знаменитым физиком Полем Ланжевеном (случилось это через много лет после гибели Пьера Кюри в дорожном происшествии). Жажда признания в неродной стране побудила Марию Кюри баллотироваться во Французскую академию наук. В этом ее поддерживали главные светила французской науки, включая величайшего из них – Анри Пуанкаре. Однако в те времена Академия состояла исключительно из мужчин и упорно отвергала всех претендентов-женщин.
Будучи одной из пяти академий, созданных еще в XVII веке при короле Людовике XIV, Академия наук погрязла в традициях и ритуалах.
В1911 году в ней состояли 68 человек, и со смертью одного из них образовалось вакантное место. Трижды в год пять академий собирались вместе на пленарное заседание, и по совпадению одно из таких заседаний последовало сразу же за выдвижением кандидатуры мадам Кюри. Возобновление вопроса о женском членстве вызвало оживление в прессе и в высшем обществе, поэтому на собрание явились сразу 163 академика – вдвое больше, чем обычно. Заседание началось с выступлений защитников мадам Кюри, потом сказали свое слово и ее противники. Президент Академии моральных и политических наук, заверив присутствовавших в том, что отцы-основатели Академии и не мыслили увидеть в своих рядах дам, предостерег коллег от страшной ошибки – “пробить брешь в единстве этого элитарного органа, Института Франции”. Речь его встретили бурными аплодисментами.
Пуанкаре возразил, что автономия отдельных академий – нерушимая традиция и что члены других академий не вправе вмешиваться в решения Академии наук. На это ответил некий юрист из Академии моральных и политических наук, заметивший, что избрание женщины в Институт Франции (в состав которого входят все пять академий) касается всех сразу. Последствия могут быть пугающими, ибо если институт начнет опрометчиво принимать в академики женщин, то почему бы одной из них когда-нибудь не стать его президентом?
После нескольких таких перепалок в аудитории стало шумно, все жаждали высказаться по столь животрепещущему вопросу. Тогда председатель попытался призвать публику к порядку и, чтобы удержать ситуацию под контролем, даже встал на президентский трон. В итоге члены Академии наук проголосовали за “сохранение незыблемых традиций Института” 85 голосами против 6о. Мнения в прессе, разумеется, разделились.
И это было только начало: спустя несколько дней комитет Академии наук собрался рассмотреть кандидатуру Марии Кюри за закрытыми дверями. Невзирая на уже проведенное голосование, ее включили в список рекомендованных первой, а за ней следовали еще шестеро запасных (но определенно достойных) кандидатов. Голосование членов Академии наук, предваряемое жестокими спорами, состоялось неделей позже. Был озвучен, и не впервые, закулисный аргумент, что все выдающиеся работы Марии Кюри были выполнены совместно с мужем, которому, вероятно, она только помогала, а после его смерти – с другими ассистентами-мужчинами, которые, вероятно, тоже были достойными учеными. Кроме того, разве мало ей было оказано почестей? И не пришла ли теперь очередь новых имен? Возникло целое движение за то, чтобы избрать кандидата из “запасных”, а именно инженера-электрика Эдуарда Бранли, за которым числился важный вклад в создание беспроволочного телеграфа. Крайне правая газета L’Action Française, славившаяся шовинизмом и ксенофобией, представила мадам Кюри как выдвиженку дрейфусаров-леворадикалов, стремящихся не допустить избрания в академики католика и чистокровного француза Бранли. Какие бы резоны ни двигали блистательными академиками, именно Бранли и стал в итоге их законно избранным коллегой.
История целиком изложена в отличной биографии: Quinn Susan, Curie Marie (Simon and Shuster, New York, 1995/
“Каждое целое число – его друг”. Харди и Рамануджан
Выдающийся индийский математик Сриниваса Айенгор Рамануджан (1887–1920) был “открыт” Г.Х. Харди, кембриджским профессором математики, всю свою жизнь посвятившим науке. (Свое кредо он изложил в книге “Апология математика”, вышедшей в 1940 году.)
Юношей Рамануджан жил с родителями в маленьком индийском городке. Однажды ему в руки попался английский учебник математики. Мальчик увлекся и начал изучать одну за другой самые разные области этой науки, записывая свои размышления в школьные тетради. Тетради эти он разослал нескольким британским математикам, но только Харди обратил на них внимание и понял, что столкнулся с неграмотным гением. Он оплатил из собственного кармана Рамануджану дорогу в Кембридж, а там стал его наставником и другом. Позже Харди писал, что оценивает свой вклад в работы весьма скромно (во всяком случае, куда скромнее, чем вклад Рамануджана), однако высочайших похвал заслуживает уже то, что он сумел одновременно найти общий язык как с Рамануджаном, так и с Литтлвудом, своим знаменитым кембриджским коллегой.
Рамануджана приняли и в стипендиаты Кембриджа, и в Королевское общество, но в Англии он чувствовал себя глубоко несчастным. Брамин по рождению и по убеждениям, он придерживался строгой диеты и отказывался от английской пищи, однако купить привычные, традиционные индийские продукты нигде не мог. В прохладных помещениях Тринити-колледжа Рамануджан согревался, только сидя у угольной печи. Он постоянно мерз и простужался. Вскоре у него развился туберкулез, математик часто попадал в больницы[4]4
В 1919 году Рамануджан вернулся в Индию. На родине ему легче не стало – гениальный индийский математик умер в 1920 году. Ему было всего 32 года. (Прим. ред.)
[Закрыть]. Известна история о том, как Харди пришел навестить Рамануджана в лондонской больнице (здесь она приводится в пересказе Чарльза Перси Сноу, который хорошо знал Харди):
Харди приехал в Пугни, как было у него заведено, на такси, и пошел в комнату, где лежал Рамануджан. Харди всегда было трудно начать разговор, и он произнес первое, что пришло ему в голову: “Номером моего такси было 1729. По-моему, довольно непримечательное число”. Рамануджан тут же воскликнул: “Нет, Харди, нет! Вы не правы! Ведь это наименьшее число, которое можно двумя разными способами представить в виде суммы двух кубов”.
Так тот диалог записал сам Харди. Наверняка он ничего не сочинил. Харди был честнейшим из людей, и, кроме того, никто просто не смог бы подобное выдумать.
Такая феноменальная способность к вычислениям, похоже, у лучших математиков не редкость. Вот другой пример.
Кто-то попросил у Александра Кейга Эйткена, профессора Эдинбургского университета, поделить 4 на 47. Через 4 секунды он стал произносить по цифре в три четверти секунды: “Ноль, запятая, 08510638297842340425531914’'. Он остановился, минуту пообсуждал задачу и продолжил: “191489, – пятисекундная пауза, – 361702127659574468. Тут заканчивается период, следующий снова начнется с 085. Итак, если тут 46 знаков, то я прав”. Многим из нас этот человек покажется инопланетянином, особенно после такого заключительного комментария.
А вот пример иного рода. Лорд Кельвин (1834–1907), известный как физик, был также недюжинным математиком. В Кембридже ему досталось почетное второе место на итоговом конкурсе Школы математики (рассказывают, что утром после экзамена он отправил слугу узнать, кто в списках второй – и был обескуражен, услышав ответ: “Вы, сэр"). Его идеалом в науке был француз Жозеф Лиувилль. Однажды посреди своей лекции в Глазго Кельвин спросил студентов: “Знаете ли вы, что такое математик?” – и написал на доске уравнение:
“Математик, – сказал он, указывая на доску, – тот, кому вот это ясно, как дважды два четыре – вам. Лиувилль был математиком”.
Цитата про Харди и Рамануджана позаимствована из книги: Snow С.Р., Variety of Men (Macmillan, London, 196 7; Penguin Books, London, 1969), а пример обращения Эйткена с числами – из книги: Smith Anthony, The Mind (Viking, New York, 1984; Penguin Books, London, 1985). Отрывки про Кельвина – из биографии Томпсона: Sylvanus Р. The Life of William Thompson Lord Kelvin of Largs, Vol. 2 (Macmillan, London, 1910) и Bell E.T., Men of Mathematics (Gollancz, London, 193 7).
Похвала Гильберта
Давид Гильберт (1862–1943), прославленный немецкий математик, глава Математического института при Гёттингенском университете, собрал вокруг себя лучших математиков того времени. Когда нацисты пришли к власти, Гильберт, достигший уже весьма преклонного возраста, открыто возражал против увольнений своих коллег-евреев.
О рассеянности Гильберта ходили легенды. Один из его студентов приводил такой пример: как-то супруги Гильберт ждали гостей к ужину. Увидев галстук мужа, госпожа Гильберт попросила его надеть другой, менее отвратительный. Гильберт послушно пошел в свою комнату менять галстук. И вот уже и гости пришли, но Гильберт все не появлялся. Вскоре его обнаружили спящим в спальне. Сняв галстук, он совершил привычную последовательность действий, которая оканчивалась надеванием пижамы и кроватью.
В 20-х годах прошлого века один из самых блестящих студентов Гильберта написал статью, в которой пытался доказать гипотезу Римана – давний вызов математикам, озабоченным одним важным аспектом теории чисел. Студент показал работу Гильберту, который изучил ее внимательно и был искренне впечатлен глубиной доводов, но, к несчастью, обнаружил там ошибку, которую даже он сам не мог устранить. Год спустя студент умер. Гильберт попросил у убитых горем родителей разрешения произнести надгробную речь. В то время как родные и близкие под проливным дождем рыдали у могилы юноши, Гильберт начал свою речь. “Какая трагедия, – сказал он, – что столь даровитый молодой человек погиб прежде, чем представилась возможность доказать, на что он способен. Но, – продолжил Гильберт, – хотя в его доказательство римановской гипотезы и вкралась ошибка, возможно, к решению знаменитой задачи придут тем же путем, каким к нему двигался покойный. Действительно, – продолжил он с оживлением, – рассмотрим функцию комплексной переменной…”
Reid Constance, Hilbert (Copernicus, Springer-Verlag, New York, 1996J.
Раби встречает равного
Исидор Раби, в 1930-х годах глава физического факультета Колумбийского университета и лидер американских физиков, так описывал свою первую встречу с выдающимся физиком Джулианом Швингером. Шел 1935 год, и Раби был занят обдумыванием противоречивой статьи, только что опубликованной Эйнштейном, Подольским и Розеном. Одним парадоксом эта статья ставила под удар все основания квантовой теории.
Я читал статью, а мой способ читать статьи заключается в том, чтобы привести кого-нибудь из студентов и объяснить ему суть. Тогда таким студентом оказался некто Ллойд Мотц (ныне профессор астрономии Колумбийского университета). Мы немного поспорили, и вдруг Мотц заявляет, что один человек дожидается за дверью и спрашивает, можно ли его впустить. И тут он вводит этого ребенка". Швин-геру тогда было 16. Итак, я велел ему присесть где-нибудь, и он присел. Мотц и я продолжали спорить, и вдруг этот мальчик вмешивается и расставляет все по местам при помощи теоремы о полноте. Теорема о полноте – важная математическая теорема, часто используемая в квантовой теории. И тут я говорю: кто это, черт возьми, такой? Оказывается, второкурсник из Сити-колледжа, двоечник, который проваливает все свои экзамены – пусть и не по физике – короче, учится из рук вон плохо. Наша короткая беседа произвела на меня сильнейшее впечатление. Он уже к тому времени написал статью по квантовой электродинамике. Я спросил, хочет ли он перейти к нам, и он ответил: “Да”.
Раби – с большим трудом и благодаря рекомендательному письму от другого великого физика, Ганса Бете, добился, чтобы Швингера перевели в Колумбийский университет.
Позже Швингер стал одним из самых знаменитых физиков-теоретиков XX века. Во время Второй мировой войны он работал в лаборатории излучений в МIТ, Массачусетском технологическом институте, над созданием радара и другими задачами. Раби, который состоял там же заместителем директора, вспоминал о привычке Швингера работать ночью и спать днем:
В пять, когда все расходились, можно было встретить Швингера у порога. Мне как-то сказали, что люди имели обыкновение оставлять нерешенные задачи на столах или на доске – и обнаруживали, когда возвращались следующим утром, что Швин-гер уже все решил… Задачи, которые он решал, были на самом деле фантастическими. Дважды в неделю он делал доклад о своей текущей работе. Стоило Швингеру в чем-то продвинуться, парни по соседству – Дикке и Эд Перселл (два выдающихся физика-экспериментатора, известные в особенности своими работами по ядерному магнетизму) – тут же начинали изобретать с бешеной скоростью разные штуки.
В 1965 году Джулиан Швингер, уже профессор Гарварда, получил Нобелевскую премию, а заодно стал ходячей легендой – никто не мог, как он, вести теоретический спор прямо на лекции, не пользуясь при этом никакими записями.
В лаборатория излучений MIT родилось множество изобретений и открытий. К примеру, одно из них, радар, сыграло в победе над Германией и Японией куда большую роль, чем атомная бомба. Не менее важным достижением стал полостной магнетрон, собранный Джоном Рэндаллом и Гарри Бутом в Англии. Этот инструмент, устройство которого, казалось, не подчиняется никакой логике, был первым источником излучения высокой плотности в сантиметровом диапазоне, необходимым для воздушных и морских радаров. Его пучок мог поджечь сигарету и издалека заставить машины мигать фарами. Когда прибор привезли в MIT и представили на суд американской физической элиты, группа включала нескольких лучших ядерных физиков страны. Кое-что о высокочастотном излучении они знали по опыту работы над циклотроном, но магнетрон поначалу озадачил даже их.
“Это очень просто, – сказал Раби теоретикам, собравшимся за одним столом разглядывать детали разобранной лучевой трубки. – Это нечто вроде свистка”.
“Хорошо, Раби, – спросил Эдвард Кондон, – а как работает свисток?”
Удовлетворительного объяснения у Раби не нашлось.
Истории о Швингере и Раби позаимствованы из книги: Berstein Jeremy, Experiencing Science (Dutton, New York, 1978), а эпизод с магнетроном – из: J.Kevles Daniel, The Physicists: The History of a Scientific Community in Modem America (Harvard University Press, Cambridge Mass., 1971).
Бакленды опровергают чудо
Уильям Бакленд (1784–1856) был первым главой кафедры зоологии в Оксфорде. Его склонность к предельной эксцентричности передалась сыну, зоологу Фрэнсису Бакленду, автору “Курьезов естественной истории” и в течение нескольких лет инспектору лососевых промыслов. В семействе Бакленд было принято поедать, в порядке научного эксперимента, любое животное, которое им попадалось. Бакленд-сын договорился с лондонским зоопарком получать по куску от всякого существа, которое там погибнет. Гостям дома Баклендов приходилось не только мириться с выходками ручного осла и ему подобных питомцев, каких не ждешь встретить в гостиной, но и всегда быть готовыми к деликатесам вроде запеченной мыши или шинкованной дельфиньей головы. Бакленд-отец признавался, что ему не случалось есть ничего отвратительней жареного крота, пока он не попробовал тушеных трупных мух. Когда старый приятель, архиепископ Йоркский, показал ему забальзамированное сердце Людовика XVI, которое прелату продали в Париже в дни революции, Уильям Бакленд воскликнул, что прежде не ел королевских сердец, и, не дожидаясь возражений, выхватил его и проглотил!
Ничто в природе не казалось Баклендам чуждым. Когда местный священник (и заодно усердный натуралист) с восхищением принес Уильяму Бакленду откопанную им древнюю кость, тот подозвал семилетнего сына и спросил: “Фрэнки, как ты думаешь, что это?” Сын ответил без колебаний: “Позвонок ихтиозавра”. Миссис Бакленд также разделяла семейные увлечения. Разбуженная однажды словами мужа: “Я полагаю, милая, что следы хиротериума похожи на черепашьи”, она спустилась вместе с ним по лестнице и, пока муж ловил черепаху в саду, приготовила на кухне немного клейстера; и действительно, к радости обоих, отпечаток в клейстере практически совпал с древним следом из окаменелости.
Фрэнсис Бакленд вспоминал, как однажды он возвращался в Англию из Германии, где собирал красных слизней (себе ли на ужин или нет – история умалчивает). Вместе с ним в купе поезда ехал незнакомец. Оба задремали. Проснувшись, Бакленд не особенно удивился, увидев, как слизни медленно ползут по лысой макушке соседа. Не дожидаясь скандала, Бакленд предпочел сойти на ближайшей станции.
Однажды в Италии любознательным Баклендам показали пятно на полу церкви, выстроенной на месте казни какого-то святого. Каждое утро, объяснили им, кровь чудесным образом выступает на прежнем месте. Уильям тут же опустился на колени и дотронулся до пятна языком. “Это никакая не кровь”, – заявил он столпившимся вокруг. Не узнать вкуса мочи летучих мышей мог кто угодно, но только не он!
Burgess G.H.O., The Curious World of Francis Buckland (John Baker, London, 1967).
Термодинамика на скотном дворе
Вальтер Нернст (1864–1941) – выдающийся немецкий физик и физикохимик. Наиболее весомый вклад он внес в термодинамику (Нернст – автор третьего закона термодинамики) и электрохимию. В 1920 году он приобрел Цибелле, огромное поместье в Восточной Пруссии. Там, на нескольких тысячах акров земли, водились коровы и свиньи, имелся пруд с карпами, пшеничные поля и много чего еще. К занятиям фермерством Нернст подошел с характерным для него энтузиазмом.
Рассказывают, что как-то однажды, обходя владения зимой, Нернст заглянул в коровник и поразился – там было очень тепло. Он принялся расспрашивать, в чем дело, и услышал в ответ, что единственный источник тепла – сами коровы, или, строго говоря, метаболизм в их организме. Нернст был ошеломлен настолько, что немедленно решил продать коров. Все вырученные деньги он потратил, купив карпов: разумные люди, пояснил он, заводят таких животных, которые пребывают в термодинамическом равновесии с окружающей средой, а не отапливают за его, Нернста, деньги Вселенную. Поэтому вскоре все пруды поместья были забиты карпами, которые если и нагревали воду, то весьма незначительно.
Из книги: Mendelssohn Kurt, The World of Walther Nernst: The Rise and Fall of German Science (MacMillan, London, 1973).