Текст книги "Эврики и эйфории. Об ученых и их открытиях"
Автор книги: Уолтер Гратцер
сообщить о нарушении
Текущая страница: 21 (всего у книги 33 страниц)
Если умирать, то не от скромности
Немецкий ученый-эрудит Иоганн Генрих Ламберт родился в 1728 году в семье эльзасских бедняков. Интересы Ламберта, который был почти что самоучкой, распространялись на физику, математику и химию. Поселившись в Берлине, он привлек к себе внимание Фридриха Великого, который осыпал его всевозможными милостями. Но Ламберт был ненасытен:
Ламберт был невероятно тщеславен, и о его тщеславии ходит множество анекдотов. Как повествует один из них, Ламберта очень беспокоило, что король слишком уж медлит с его назначением в члены Королевской академии наук. Один из его друзей, некто Ачард, попытался ободрить приятеля: он, Ачард, уверен, что король наверняка назначит Ламберта академиком, и очень скоро.
– Я вовсе не так нетерпелив, как думают, – отвечал Ламберт. – Но это дело не моей, а его репутации.
Дни его правления сильно падут в глазах потомков, если я не стану академиком.
Назначение вскоре состоялось, и король Фридрих Великий спросил у Ламберта на одном из приемов, в какой области науки тот лучше всего разбирается, на что Ламберт застенчиво ответил:
– Во всех из них!
– Так вы еще и превосходный математик? – поинтересовался король.
– Да, Ваше величество.
– Кто же был вашим наставником в науках?
– Я сам, Ваше величество.
– Это значит, что вы – второй Паскаль?
– По меньшей мере, Ваше величество, – отвечал Ламберт.
Едва Ламберт ушел, король немедленно заявил, что, кажется, назначил в академики большого дурака.
Король был все же слишком скоропалителен в своих выводах: достижения Ламберта ничтожными никак не назовешь. Его работы по геометрии занимают достойное место в истории математики, его вклад в астрономию весьма значителен, а важная формула, описывающая поглощение света, носит его имя – закон Ламберта-Бэра.
Цит. по книге: Szabadvary Ferenc, History of Analytical Chemistry (Gordon and Breach London, i960).
Маленькие зеленые человечки, которых не было
В 1967 году Джослин Белл, аспирантка Кембриджа, занималась под руководством астронома Эндрю Хьюиша квазарами. Эти весьма активные источники радиоволн и излучений иного рода, открытые в 1963 году, оставались (и в какой-то мере остаются сейчас) загадкой для ученых. Теперь принято считать, что квазары – черные дыры – объекты настолько тяжелые, что они “схлопываются” под влиянием собственного притяжения и, ввиду невероятной плотности своего вещества, не выпускают наружу никакое излучение – как и следует из общей теории относительности[16]16
Зато излучает вещество, которое, разогнавшись, на них падает.
[Закрыть]. А поскольку они выглядят точечными источниками излучения, то, как и звезды, мерцают из-за искажений, вносимых земной атмосферой, которая отклоняет лучи то в одну сторону, то в другую, пока те не достигнут наконец телескопа.
Хьюиш полагал, что из амплитуды “мерцания” радиоволн можно легко определить размеры наблюдаемого объекта. Чтобы измерять мерцания (то есть перепады интенсивности за доли секунды), он изготовил радиодетекторы и разбросал их по участку площадью в 1,6 гектара. Джослин Белл, которой доверили делать замеры, варьировала временные интервалы и однажды утром, глядя на ленту самописца, с изумлением обнаружила: некий квазар каждые 1,34 секунды посылает один и тот же короткий сигнал. Первая мысль, что пришла ей в голову, – вероятно, запись испорчена наводкой от каких-нибудь приборов; но затем Джослин осознала, что квазар с его странной периодичностью входит в поле зрения телескопа каждые 23 часа 56 минут – это период обращения Земли относительно звезд. Неужели какой-нибудь прибор, изготовленный – людьми, тоже строго следует 24-часовому рабочему циклу? Радиотелескопы никакого излучения не испускают. Что же тогда шлет импульсы из пустоты с невероятно точными интервалами (возможное отклонение не превышало одной десятимиллионной)? Наверняка это послание внеземной цивилизации! Источник, соответственно, назвали LGMi (аббревиатура от Little Green Men – “маленькие зеленые человечки”).
Увы, сей поразительный вывод опровергли уже через несколько дней. Продолжив свои поиски, Джослин Белл открыла еще три источника пульсирующего излучения в разных частях неба. Объяснение этому явлению придумали два других астронома, Томас Голд и Франко Пачини: пульсары, как их теперь называют – это вращающиеся нейтронные звезды (“мертвые” звезды невероятно малого, по космическим меркам, размера, состоящие из нейтронов, стянутых притяжением в сверхплотный комок, итог взрыва медленно остывающей звезды). При диаметре до ю километров они способны вращаться с периодом порядка секунды, “выстреливая” наружу излучением, напоминающим пучок света от маяка. Позже было показано, что вращение пульсара замедляется по мере его старения, и по уменьшению частоты вращения можно рассчитать, когда пульсар появился на свет. Любопытно, что возраст пульсара в одной из туманностей (а именно, Крабовидной) оценили примерно в тысячу лет, а сам взрыв (который называют вспышкой сверхновой) на месте Крабовидной туманности упомянут в записях китайских и японских астрономов за 1054 год.
Открытие первого пульсара обернулось для Энтони Хьюиша Нобелевской премией в 1974 году. Джослин Белл, которой принадлежат исходные наблюдения, премии не досталось. Многие астрономы – и Фред Хойл в том числе – сочли это форменным безобразием, хотя сама великодушная Джослин Белл их возмущения не разделяла.
История открытия пульсаров рассказывается во множестве книг. Хорошее объяснение и краткий ее пересказ можно найти в книге: Leverington David, A History of Astronomy from 1890 to the Present (Springer-Verlag, London, 1995).
Блеск грязи
Жизнь Александра Флеминга (1881–1955) обросла множеством легенд, появившихся еще при жизни ученого. Флеминг совершил два важных, но случайных открытия, причем со второго из них началась новая эпоха в медицине.
Большую часть деятельной жизни Флеминг провел в грязноватой лаборатории больницы Святой Марии рядом с лондонским железнодорожным вокзалом Паддингтон. Его начальником был грозный профессор, полковник сэр Элмрот Райт – прототип сэра Колензо Риджона в пьесе Бернарда Шоу “Дилемма врача”. Райт свято верил, что единственное средство от бактериальных инфекций (и от многих других медицинских проблем) – это иммунизация. Напротив, изучение химических воздействий на организм (которые, благодаря работам Пола Эрлиха из Германии, уже спасли многие жизни), не поощрялось. Райт царствовал над отделением прививок. Методы, одобряемые им, были традиционными и даже старомодными. В 1921 году Флеминг сделал свое первое открытие – обнаружил лизоцим, фермент, который растворяет клеточные стенки у некоторых видов бактерий. Спустя много лет В.Д. Элисон, в те времена – молодой сотрудник Флеминга, вспоминал:
С самого начала Флеминг издевался над моей излишней аккуратностью в лабораторных делах. В конце каждого рабочего дня я тщательно очищал свой стол – выбрасывал пробирки и стекла с ненужными бактериальными культурами. Флеминг же сохранял свои культуры <…> по две-три недели. Их скапливалось по сорок – пятьдесят, и в конце концов весь стол оказывался забит чашками Петри. Только потом он их выкидывал, но сначала вглядывался в каждую, проверяя, не стряслось ли там чего необычного. Последующие события показали, насколько был он прав. Будь Флеминг так же аккуратен, как и я, два его великих открытия не состоялись бы. Лизоцим и пенициллин так и не появились бы на свет.
Однажды вечером, собираясь выбрасывать свои культуры, он некоторое время разглядывал одну, потом показал ее мне и произнес: “Любопытно”. Это была одна из тех пластинок, на которые он поместил слизь из собственного носа, когда двумя неделями раньше подхватил простуду. Теперь всю пластинку покрывали золотисто-желтые колонии бактерий и безвредные примеси, обязанные своим происхождением воздуху и пыли из лаборатории – или тому, что могло задуть в окно вместе с воздухом Прэд-стрит. Замечательной особенностью этой пластинки являлось то, что рядом с комком носовой слизи бактерий не было совсем; затем следовала зона, где бактерии сумели вырасти, но сделались прозрачными, стеклянистыми и безжизненными на вид; после этого следовал участок, где имелись вполне разросшиеся, типичные непрозрачные колонии. Очевидно, нечто, содержавшееся в носовой слизи, помешало микробам расти рядом с комком, а за этой зоной убило уже выросшие бактерии.
Следующим шагом Флеминга было проверить действие носовой слизи на микробов, но на этот раз он приготовил желтую мутную взвесь микробов в соляном растворе и добавил туда немного носовой слизи. К нашему удивлению, мутная взвесь меньше чем за две минуты сделалась прозрачной как вода… Эти минуты был восхитительны: с них началось наше многолетнее исследование.
Флеминг, судя по всему, верил (и записал в свой лабораторный журнал), что бактерии взялись из его носа. Это куда менее вероятно, чем версия Элисона. Отсюда и возникла история о том, как капля из носа простуженного исследователя случайно приземлилась на пластинку с агар-агаром, в то время как ученый занимался культурой бактерий. Каким бы ни было происхождение бактерий на пластинке, та была помечена как A.F. (т. е. “принадлежит Флемингу”) coccus (род бактерий) и использовалась в экспериментах с загадочным реагентом-расщепителем. Элисон и Флеминг принялись пробовать и другие жидкости, присущие как животным, так и растениям, и обнаружили, что подобная активность – не редкость; ее демонстрируют и слезы, и яичный белок. Флеминг подозревал, что этот таинственный “фактор” может быть ферментом, но доказывать эту гипотезу не стал. Протеин лизоцим выделили в оксфордской лаборатории Говарда Флори. В клинической практике ему не нашлось применения: лизоцим почти мгновенно расщепляется в организме, да и микробы быстро приобретают к нему устойчивость.
Второе счастливое открытие Флеминга оказалось куда важней. Удивительно, но и оно было сделано благодаря капризу фортуны. Поначалу, однако, ему никто не придал особого значения, даже сам Флеминг. А случилось вот что. В начале 1928 года Флеминг переключился на исследование предполагаемой связи между болезнетворной силой (вирулентностью) некоторых разновидностей стафилококка и цветом колоний, которые те образуют на пластинках с агар-агаром. Вместе со своим аспирантом Д.М. Прайсом Флеминг собирал образцы всевозможных инфекций – карбункулов и фурункулов, абсцессов и кожных нарывов, а также болезней горла – и высеивал их на агар-агаре. Летом Прайса сменил другой аспирант, которому Флеминг доверил всю работу, а сам же отправился на ежегодные семейные торжества в Шотландию. Как обычно, он оставил стопку пластинок с культурами в углу лаборатории.
Вскоре после возвращения Флеминга, в начале сентября, Прайс заглянул в лабораторию спросить, как продвигаются дела. Флеминг, учтивый как никогда, отправился к емкости, где лежали выброшенные пластинки с культурами, погруженные в лизол – дезинфицирующее вещество, которым стерилизуют стеклянные пластинки, прежде чем отмыть их и использовать по второму кругу. Часть пластинок в стопке не была погружена в лизол и оставалась сухой, и именно их Флеминг и решил показать Прайсу. Протягивая очередную пластинку Прайсу, он вдруг заметил нечто, что ускользнуло от его внимания прежде. “Это забавно”, – пробормотал Флеминг, указывая на крохотный нарост плесени, который образовался на агар-агаре: бактериальные колонии вблизи него исчезли. Не была ли плесень еще одним источником лизоцима?
Флеминг показал пластинку нескольким своим коллегам, которые отнеслись к этому с одинаковым безразличием. Однако Флеминг решил пойти дальше. Он подобрал пятнышко плесени стерильным проволочным кольцом и вырастил его отдельно. Образцы культуры, как и прежде, подавляли рост стафилококков, но с некоторыми другими видами бактерий не справлялись. Флеминг отнес плесень к штатному микологу, и тот смог установить ее вид – это был Pénicillium rubrum. Проверке подвергли и многие другие виды плесени, но большая часть никакой антибактериальной активности не проявляла. Воодушевляло то, что исходная плесень оказалась не токсична: Флеминг заставил своего аспиранта съесть немного, и тот доложил, что она абсолютно безвредна, а по вкусу напоминает стильтонский сыр. Животные, которым ввели отфильтрованный экстракт плесени, тоже остались здоровы. Флеминг выдал немного все тому же аспиранту – тот страдал от хронической инфекции в пазухах носа – но результат был неубедительным.
Впоследствии интерес к экстракту плесени, теперь известному как пенициллин, возникал разве что время от времени, пока этой темой в 1938 году не занялся в Оксфорде Говард Флори. Еще раньше его заинтересовал лизоцим, и он пригласил Эрнста Чейна, биохимика-эмигранта, заняться изучением его свойств. Спустя некоторое время Флори и Чейн решили распространить свои исследования на более широкий круг природных бактерицидных соединений, которые, как они предполагали, в общем случае тоже будут белковыми. Им попалась статья Флеминга про пенициллин, опубликованная девятью годами раньше, и они сочли, что его экстракт плесени заслуживает внимания. Оба уверяли, что даже не задумывались о возможном медицинском применении препарата. “Полагаю, мысль о страдающем человечестве тогда едва ли могла прийти мне в голову, – настаивал Флори. – Это было просто занятным научным упражнением”.
Пенициллин, разумеется, оказался вовсе не белком, но Флори и Чейн, к которым присоединился другой способный биохимик, Норман Хитли, быстро продвигались в деле выделения чистого препарата. Первый образец чистого вещества испробовали на мышах, предварительно зараженных стрептококком. Всю субботнюю ночь Флори и Хитли сидели и смотрели, как контрольная группа мышей страдает от болезни, в то время как животные, получившие дозу пенициллина, радостно резвятся в своих клетках. Годы спустя Флори вспоминал: “Должен признаться, что мы были потрясены до глубины души, когда утром обнаружили мертвыми всех мышей, которым не дали лекарства, зато живыми – всех тех, кому ввели пенициллин”. Это, говорит он, казалось чудом. Первым человеком, испытавшим силу пенициллина, стал полицейский из Оксфорда, страдавший тяжелым сепсисом – он быстро пошел на поправку, но, к сожалению, умер, когда закончился небольшой запас лекарства.
В 1940 году авианалеты начали опустошать британские города, все понимали, что вскоре госпитали заполнят множество раненых, и среди них будут и солдаты, и гражданское население. После отступления из Дюнкерка замаячил призрак опасности: если гитлеровские войска вторгнутся на территорию Британии, культуры и экстракты могут достаться немцам. “В те дни, – вспоминает Норман Хитли, – каждый в лаборатории смазывал грибком подкладку своего пальто”, – чтобы восстановить образцы, когда вокруг будет безопасно.
Терапевтические перспективы пенициллина были теперь очевидны, однако необходимость синтезировать и хранить существенные количества материала создавала новые трудности. Чтобы поставить синтез на промышленные рельсы, требовалась помощь американцев, и Флори с Хитли отправились в США – разъезжая по Нью-Йорку с драгоценной плесенью в такси, они искали холодильник, чтобы спрятать образец, прежде чем 32-градусная жара ее убьет. Иначе производство будет просто не с чем запускать.
Прошло еще несколько месяцев, и пенициллин, став относительно общедоступным, совершил настоящую революцию в медицине.
История выделения пенициллина оксфордской группой – общего достижения блестящих химиков и биохимиков – рассказывается часто, однако хотя все трое – Флори, Флеминг и Чейн – и получили Нобелевскую премию одновременно, миф о том, что результат принадлежит одному Флемингу, еще окончательно не развеян. Флеминг, несомненно, талантливый экспериментатор, но он не дотягивает до уровня Флори. Сам Флеминг, похоже, никогда об этом не забывал. Его современник вспоминал:
Флеминг часто говорил мне, что не заслуживает Нобелевской премии, а я вынужден был с пеной у рта доказывать ему обратное. Он ничуть не актерствовал, он действительно так думал, по крайней мере в 1945-1946-м. В то же время он искренне признавался, что получает удовольствие от своей незаслуженной славы, и мне это в нем нравилось. Не знаю, вел ли он себя иначе с другими, но, пожелай он изображать из себя великого ученого при мне или В присутствии других коллег-ученых, он понял бы, что мы не больше впечатлены его заслугами, чем он сам.
Не до конца ясно, при каких обстоятельствах все бремя славы открывателя пенициллина свалилось на плечи Флеминга. Именно его имя, и ничье другое, стало ассоциироваться в массовом сознании с изобретением антибиотиков, что не могло не вызвать обиду у Флори и его коллег. Тут, конечно, приложила руку вторая жена Флеминга Амалия, однако авторитетный биограф Флеминга и Флори Гвин Макфарлейн возлагает вину за это в первую очередь на сэра Элмрота Райта, приписавшего открытие одному Флемингу (и, соответственно, отделению прививок больницы Святой Марии) в экстравагантном письме, направленном в редакцию газеты The Times; второй виновник – уважаемый декан Медицинской школы больницы Святой Марии Чарльз Макморан Вильсон, лорд Моран, стремившийся, чтобы львиная доля почестей досталась именно его учреждению.
Моран, прозванный коллегами Чарли-штопор (он славился своей поразительной изворотливостью), во время Второй мировой войны и после был личным врачом Уинстона Черчилля; особое осуждение он навлек на себя, когда опубликовал интимные подробности болезней Черчилля и тем самым нарушил принцип врачебной тайны. Возвращаясь в 1944 году с Тегеранской конференции, после исторической встречи со Сталиным и Рузвельтом, Черчилль заболел воспалением легких. Военный доктор в Каире, где лечился премьер-министр, настаивал на лечении пенициллином, но Моран, который наверняка пребывал в неведении относительно эффективности нового препарата, эту идею не поддержал; Черчилль принимал суль-фонамид и выздоровел. Однако позже пустили слух, который лукавый Моран опровергать не стал, что именно пенициллин чудесным образом спас Черчиллю жизнь. Несмотря на все усилия Морана, Нобелевский комитет все-таки вспомнил про заслуги Флори и Чейна.
Успех пенициллина подвиг ученых на поиски новых антибиотиков. Сейчас их открыто уже несколько тысяч, однако по большей части токсичных и вызывающих побочные эффекты. Поэтому, хоть они и приносят пользу исследователям, применения в клинической практике пока не находят.
К числу самых мощных антибиотиков относят цефалоспорины, открытые еще в 1945 году Джузеппе Бротцу, который тогда возглавлял кафедру бактериологии в университете Кальяри на острове Сардиния. Бротцу заметил, что море вокруг города, несмотря на сброс сточных вод, по необъяснимой причине не содержит болезнетворных бактерий. Бротцу уже читал про пенициллин и задался вопросом, не может ли какой-нибудь микроорганизм в этих сточных водах производить свой антибиотик. Бесстрашный профессор сам лично спустился к сточной трубе и взял пробы воды. Посев позволил обнаружить плесень, Cephalosporium acremonium, которая действительно выделяла вещество, действенное против некоторых видов патогенов. При испытании на пациентах со стафилококком оно показало умеренную эффективность.
Пробудить к нему интерес фармакологической промышленности Бротцу не удалось. Все ограничилось публикацией научных результатов в сардинском журнале. Этой публикацией Бротцу, разумеется, не смог оповестить весь мир о своем открытии. Но у него хватило ума послать копию статьи в британское представительство – доктору, который работал в Кальяри. В итоге статья добралась до Медицинского исследовательского совета в Лондоне, и вскоре Эдвард Абрахам и Гай Ньютон из Института Флори в Оксфорде принялись за обзор, посвященный плесени рода Cephalosporium. В результате из плесени того же рода, но другого, чем у Бротцу, вида выделили цефалоспорин-С, один из самых полезных антибиотиков: он годится для борьбы с целым рядом патогенов, в том числе и со стафилококком, выработавшим устойчивость к пенициллину.
Полное описание жизни и заслуг Александра Флеминга, на котором основано все вышеизложенное, дано в превосходной биографии: Macfarlane Gwyn, Alexander Fleming: The Man and the Myth (Chatto and Win dus, London, 1984); также см. его же образцовую биографию Говарда Флори. Об открытии других антибиотиков можно прочесть в увлекательной книге: Dixon Bernard, Power Unseen: How Microbes Rule the World (Oxford University Press, Oxford, 1994).