355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Уолтер Гратцер » Эврики и эйфории. Об ученых и их открытиях » Текст книги (страница 15)
Эврики и эйфории. Об ученых и их открытиях
  • Текст добавлен: 21 октября 2016, 21:12

Текст книги "Эврики и эйфории. Об ученых и их открытиях"


Автор книги: Уолтер Гратцер



сообщить о нарушении

Текущая страница: 15 (всего у книги 33 страниц)

Сельский врач, столичный профессор и адреналин

История физиологии – и, разумеется, медицины – полна примеров смелых опытов на себе. Реже бесстрашные экспериментаторы делают невольными “подопытными кроликами” членов своей семьи. Эдвард Дженнер – сельский врач, который придумал прививки от оспы, – наверное, самый известный из людей, поступивших столь сомнительным образом. Вот еще пример безрассудного поступка, когда научное любопытство взяло верх над родительскими чувствами. В 1894-м этот поступок привел к решающему открытию в области физиологии:

Доктор Джордж Оливер, врач из Харрогейта, потратил свой зимний отпуск на опыты над домашними, в которых для клинических испытаний использовал самодельные приборы. В одном из таких опытов применялся инструмент для замера толщины лучевой артерии. Введя своему маленькому сыну (который заслуживает отдельного памятника) вытяжку из надпочечников (биоматериалами его снабжал местный мясник), Оливер решил, что наблюдает сжатие или, по версии других рассказчиков, расширение артерии. Как бы там ни было, он отправился в Лондон рассказать о своих результатах профессору физиологии Шаферу и застал того в лаборатории. Опыты были в самом разгаре – Шафер измерял кровяное давление у собаки. Профессор не поверил Оливеру, что, в общем, неудивительно, и был весьма раздосадован, что его отвлекли от работы. Однако Оливер никуда не спешил и настаивал только на том, чтобы вытяжку надпочечников (пузырек с нею он тут же извлек из кармана) ввели в его вену, когда профессор Шафер закончит свой опыт. Чтобы убедить настырного посетителя, что тот несет чушь, Шафер все же сделал укол – и с удивлением увидел, как ртуть в артериальном манометре ползет вверх, едва не выплескиваясь наружу.

Так было открыто невероятно активное вещество, которое образуется внутри определенного участка надпочечников. Теперь его называют адреналином.

Рассказ взят из лекции сэра Генри Дейл, Accident and Opportunism in Medical Research (British MedicalJournal, ii, 451 (1948).

Голос из прошлого

В конце жизни Андрей Сахаров, легендарный физик, отец советской водородной бомбы и убежденный диссидент, сообщил интервьюеру: “Знаете, что я люблю больше всего на свете? Реликтовое излучение – едва различимый след неясных космических процессов, которые завершились миллиарды лет назад”. Излучение это открыли (или, по крайней мере, предали этот факт огласке) в 1965 году, хотя предсказали его 20 годами раньше. Другой русский, физик-эмигрант Георгий Гамов (1904–1968), теоретически описал событие, которое сейчас называют Большим взрывом, – мгновение, когда Вселенная возникла из ничего. Эдвин Хаббл в калифорнийской обсерватории “Маунт Вильсон” обнаружил знаменитое красное смещение в свете далеких звезд, подсказавшее ему, что Вселенная расширяется. Отталкиваясь от скорости этого расширения, Гамов рассчитал, что происходило в первое мгновение, когда вся масса вещества, заполняющего Вселенную сейчас, вырвалась из исходной точки. Рождение вещества должно было сопровождаться потоком излучения, которое охватывало все вокруг. Пока Вселенная раздувалась, излучение уходило все дальше и дальше, теряя энергию, становясь более слабым.

Коллегам Гамова, Ральфу Альферу и Роберту Герману, оставалось вычислить, какая энергетическая плотность у излучения сейчас. Ответ был такой: 2,7 градуса Кельвина (инженеры и астрономы сопоставляют энергии и температуру идеального нагретого тела, которое излучало бы точно так же). Статья с результатами появилась не в астрономическом, а в физическом журнале и потому осталась без внимания. Джереми Бернстайн, который наиболее ярко запечатлел сей эпизод, списывает это на свойственную физикам нелюбовь к космологии, причины которой удачнее всего выразил Лев Ландау: “Космологи часто ошибаются, зато никогда не сомневаются”.

Перенесемся теперь в лаборатории компании Веll в Нью-Джерси. На протяжении десятилетий компания была одним из лучших мировых научных центров, где совершалось множество открытий и изобретений. А объяснялось это тем, что Веll нанимала лучших ученых и позволяла им самостоятельно выбирать темы исследований, пусть даже они и не имели на первый взгляд очевидного прикладного смысла. В 1929 году в лабораториях компании уже сделали открытие, невероятно важное для астрономов. Тогда инженеру Карлу Янскому поручили отследить источники помех в коротковолновом радиодиапазоне, чтобы понять, как с ними бороться. Янский построил чувствительную антенну на крыше лаборатории в Холмдейле и вскоре обнаружил: главный источник помех – ближние и дальние грозы, но есть еще один, интенсивность которого колеблется с периодом в сутки. Наконец, он выяснил, что “шипение” приходит из центра Млечного Пути, и в итоге нечаянно основал новую науку – радиоастрономию.

Ученые Веll углубляться в эту тему не стали, однако 30 лет спустя радиоинженеры переключились на спутниковую связь и сначала решили поэкспериментировать с отражением микроволновых сигналов (это излучение с длиной волны от сантиметра до метра) от метеошаров. Чтобы ловить отраженный сигнал, построили гигантскую антенну; с инженерами сумели договориться, что, когда антенна выполнит свою прямую задачу, ее смогут использовать для астрономических наблюдений. Заинтересованной стороной были два физика, Арно Пензиас и Роберт Вильсон. Вычислив интенсивность фонового шума от всех известных источников в микроволновом диапазоне, Пензиас и Вильсон, к своему удивлению, обнаружили, что на самом деле антенна “шумит” куда сильней. Температура загадочного фона составляла примерно 2,7 градуса Кельвина. Физики испробовали все известные им способы устранить шум. Сначала выгнали голубей, устроивших внутри антенны гнездо, а также удалили оставшийся после них “белый диэлектрический осадок” Это не решило проблемы, а других источников шума не нашли: Нью-Йорк, расположенный поблизости, был ни при чем, равно как и эхо недавних атомных испытаний.

Пензиас и Вильсон чуть было не пришли в отчаяние, но тут вмешался случай. Как-то в 1964-м Пензиас болтал по телефону с приятелем-астрономом из Массачусетского технологического института. Тот поинтересовался, как у них продвигается работа. Пензиас поделился своей печальной историей, и тогда приятель-астроном вспомнил про разговор с коллегой из Института Карнеги в Питтсбурге. В Университете Джона Хопкинса в Балтиморе этот коллега попал на лекцию молодого астронома из Принстона по имени Джеймс Пиблз. Пиблз был аспирантом Роберта Дикке, который особенно интересовался предсказанным ранее микроволновым космическим излучением. Он не был знаком ни со статьей Гамова, ни со статьей Альфера и Германа, а прошел похожий путь самостоятельно и даже установил антенну на крыше своего факультета в Принстоне – просто чтобы узнать, что она способна зарегистрировать. (Как заметил один мудрый комментатор, “два месяца в лаборатории могут сэкономить час в библиотеке”.) Друг Пензиаса предположил, что ему и Дикке будет о чем поговорить.

Дикке и Пиблз быстро сообразили, что Пензиас и Вильсон напали на их добычу. Однако самих Пен-зиаса и Вильсона встреча не впечатлила, тем более что Вильсон учился космологии по Фреду Хойлу: этот британский астроном провозгласил теорию “стационарного состояния” и не признавал Большой взрыв. (К слову, само это название – Большой взрыв – Хойл придумал в порядке издевки над концепцией Гамова.) Так или иначе, в июле 1965 года обе группы опубликовали свои статьи в одном и том же журнале: Пензиас и Вильсон просто докладывали о своих наблюдениях, не делая никаких выводов, а Дикке с коллегами излагали теоретические основания, позволявшие отождествить открытое излучение как реликтовое. В1978 году нобелевские медали достались Пензиасу и Вильсону.

Однако, отмечает Джереми Бернстайн, свидетельства о реликтовом излучении на самом деле даже опередили теорию: в 1941 году астроном по имени Эндрю Маккелар измерял длины волн света, приходящего из некоего созвездия и свидетельствующего о наличии органического вещества дициана. Анализ спектра показал, что температура газа – 2,3 градуса Кельвина. В классической книге про молекулярные спектры другой нобелевский лауреат, Герхард Герцберг, отметил этот результат, заметив, однако, что его смысл неочевиден. Герцберг не читал статей Гамова, Альфера и Германа, где этот смысл растолковывался. С другой стороны, и они не читали книги Герцберга.

Из этой саги о реликтовом излучении, которое сейчас считают неопровержимым доказательством теории Большого взрыва, можно сделать такой вывод: ученые, пожалуй, слишком редко покидают свои уютные каморки.

Забавное описание этого эпизода и его предыстории имеется в книге: Bernstein Jeremy, Cranks, Quarks, and the Cosmos (Basic Books, New York, 1993/

Лживые камни горы Эйвельштадт

Знаменитый случай, о котором пойдет речь ниже, произошел в XVIII веке и заставил весь мир смеяться над одним немецким ученым из Университета Вюрцбурга. Доктор Иоганн Берингер не только служил там профессором, но и числился доверенным лицом архиепископа, при котором состоял личным врачом. Кроме того, Берингер был самоотверженным палеонтологом и владел впечатляющей коллекцией ископаемых останков. В 1725 году местные жители принесли ему целый набор находок, якобы обнаруженных вблизи городка на горе Эйвельштадт. Находки те были подделкой: на камнях легко угадывались контуры современных животных и растений, а также и другие изображения. Тем не менее у Берингера они вызвали искреннее восхищение, и в 1726-м он издал книгу с их описанием:

Обнаружились четкие изображения луны и солнца, звезд и комет с их пышными хвостами. И наконец, то, чем Высший разум вверг меня и коллег в священный трепет: превосходные таблички, где нацарапано – арабским, латинским и еврейским письмом – немеркнущее имя Иеговы.

Берингер решил сам продолжить поиски. Кончилось все тем, что он нашел камень, на котором было высечено его собственное имя. Оскорбившись, ученый муж затеял расследование; вскоре было установлено, что добровольцев-археологов наняли два его университетских коллеги – они находили Берингера невыносимо заносчивым и решили немного сбить с него спесь. Зная, что розыгрыш более чем удался, они, однако, пытались намекнуть своей жертве, что книгу публиковать не стоит, поскольку камни могут оказаться подделкой. Уверенный в своей непогрешимости, Берингер не понял их вполне очевидных намеков. Говорят, что остаток жизни он посвятил попыткам собрать все напечатанные экземпляры книги. Пройдет 200 лет, и этот его поступок повторит один польский профессор, издавший свою книгу по генетике незадолго перед тем, как коммунистические власти запретили эту науку, поддавшись обаянию бредовой доктрины российского шарлатана Лысенко.

Beringer Adam, The Lying Stones of DrJohann Bartholomew (University of California Press, Berkeley, 1963,).

Мышление математика

Джон (а для друзей – Джонни) фон Нейман принадлежал к замечательной группе венгерских физиков и математиков, уехавших из Будапешта вскоре после Первой мировой войны. Его интересы были невероятно широки: потрясает вклад этого человека в теоретическую физику и в математическую теорию, на которой основаны современные компьютеры, во многие области чистой математики, в теорию игр и даже в экономику. Он был одним из ключевых участников Манхэттенского проекта и многих других военных проектов США. Едва окончилась Вторая мировая война, он взял на себя руководство работами по созданию самого быстрого в мире компьютера в Принстоне: это был “Джониак”, по поводу которого фон Нейман как-то обмолвился: “Не знаю, насколько полезным он окажется на практике, но при любом раскладе возможность пропустить сквозь него сто миллионов раз за час мантру “Ом мани падме хум” (“О ты, цветок лотоса”) несомненно вызовет глубокое почтение в душах тибетцев. В этом он обгонит любой молитвенный барабан” Его друг и коллега Герман Голдстайн провозгласил, что фон Нейман не человек, а полубог, который “детально изучил людей и в совершенстве овладел искусством подражать им” Джон фон Нейман скончался в 1957 году в возрасте 53 лет.

Абрахам Пайс, который был на короткой ноге с большинством великих физиков того времени, пишет о фон Неймане:

За свою жизнь я встречал людей большего, чем Джонни, масштаба, но ни одного столь же яркого. Причем блистал он не только в математике, но еще был полиглотом и отлично разбирался в истории. Одной из самых замечательных особенностей его интеллекта была невероятная память.

Примеры того, как проявлялась эта черта, можно найти в воспоминаниях Германа Голдстайна:

Насколько я могу судить, фон Нейману было достаточно единожды прочесть книгу или статью, чтобы потом цитировать ее дословно. Более того, он мог проделывать это и годы спустя без всяких затруднений. Также он умел переводить на лету с языка оригинала на английский. При случае я решил убедиться в этом сам, поинтересовавшись, с каких слов начинается “Повесть о двух городах” Диккенса. Тут же, без промедления, он начал декламировать первую главу и остановился, только когда его попросили прерваться через десять – пятнадцать минут. (Фон Нейман не единственный из великих математиков мог похвастаться феноменальной памятью. Готфрид фон Лейбниц, живший на три века раньше, мог в старости рассказать наизусть всю “Энеиду”, которую не перечитывал с детства.) В другой раз я застал его читающим лекцию, которую он сочинил на немецком двадцать лет назад. При этом фон Нейман использовал в точности те же обозначения и символы, что и в оригинале. Немецкий был его родным языком, и, казалось, он даже думал на немецком, а затем молниеносно переводил мысли на английский. Мне часто приходилось наблюдать, как он пишет и время от времени просит подобрать английский эквивалент для того или иного немецкого слова.

Еще фон Нейман умел невероятно быстро и точно считать в уме. Вот отрывок из воспоминаний Голдстайна:

Как-то один превосходный математик заглянул ко мне в кабинет обсудить беспокоившую его задачу. После долгой и бесплодной беседы он заявил, что возьмет домой настольный калькулятор, чтобы тем же вечером обсчитать несколько частных случаев. На следующее утро он, усталый и осунувшийся, появился у меня снова и радостно заявил, что за ночь работы разобрал пять частных случаев возрастающей сложности, закончив работать только в полпятого утра.

Чуть позже в то утро фон Нейман неожиданно зашел поинтересоваться, как идут дела. Я немедленно свел его с коллегой-математиком, чтобы тот мог обсудить с ним свою задачу. Фон Нейман произнес: “Ну что же, давайте разберем несколько частных случаев” Мы согласились, предусмотрительно не сообщив ему про численный эксперимент, отнявший полночи. Затем фон Нейман поднял глаза к потолку и за пять минут просчитал в голове четыре случая из тех, что были тщательно обсчитаны нашим другом ночью. Когда Нейман подумал еще пять минут над пятым, самым сложным, случаем, коллега внезапно во всеуслышание огласил окончательный ответ. Фон Нейман был возмущен, но быстро вернулся к своим вычислениям в уме – вероятно, слегка ускорившись. Еще через пять минут он сказал: “Да, это верный ответ” Затем мой коллега скрылся, а фон Нейман потратил еще полчаса серьезных умственных усилий, чтобы понять, как кто-либо другой мог найти лучший путь к решению. В конце концов ему рассказали, как все было на самом деле, и к фон Нейману вернулась прежняя самоуверенность.

Цитаты приводятся по книгам: Pais Abraham, The Genius of Science (Oxford University Press, Oxford, zooo) и Goldstine Herman, The Computer (Princeton University Press, 1980).

Старая дыня

Адольф фон Байер (1835–1917) – выдающийся химик XIX века, один из основателей органической химии, области науки, где превосходство Германии неоспоримо. В1905 году Байер был награжден Нобелевской премией. Его лаборатория в Мюнхене была Меккой для талантливых химиков всего мира. Джон Рид, имевший счастье поработать у Байера, впоследствии профессор Абердинского университета, рассказал об этой лаборатории в своей книге “Юмор и гуманизм в химии”.

Посредством одного изящного хода, которым Байер был весьма горд (а именно, обработки амальгамой натрия в растворе бикарбоната натрия), дикетон превратили в циклогександиол-1,4. Впервые увидев кристаллы нового вещества, Байер торжественно снял свою шляпу!

Стоит пояснить, что черно-зеленая шляпа мастера – его неотъемлемый атрибут. Рассказывали, что в эфесе клинка Парацельса спрятана жизненная ртуть средневековых философов, а вот “старая дыня” (на немецком “дыня” обозначает котелок) Байера скрывала под собой один из лучших умов современной химии… С непокрытой головой Байер появлялся редко. Шеф снимал свою шляпу исключительно в моменты невероятного восторга или изумления.

К примеру, когда анализ подтвердил, что получен весьма важный диуксусный эфир циклогексан-диола-1,4, Байер снял свою шляпу в знак ликования и не произнес ни слова. Вскоре синтезировали первый дигидроксибензол (нагреванием дибром-циклогексана с хинолином): Байер в возбуждении бегал по лаборатории, размахивая “старой дыней” и восклицая: “Вот мы и получили первый терпен, основу всех терпенов!” (Терпен – класс важных природных веществ, из которых получают многие лекарства.) Так выглядела из-за кулис драматическая сцена, которой открывалась серия исследований мастера в области терпенов.

Пусть события такого рода не кажутся чем-то из ряда вон выходящим. Будучи сведенными вместе, они проливают свет на личность великого химика. Нет сомнений, к примеру, что шеф был весьма импульсивен. Однажды утром он ворвался в лабораторию, и, не зажигая сигары (что выдавало невероятную взволнованность), дважды приподнял “дыню” и провозгласил: “Господа (слушателей было двое – Кляйзен и Брюнинг)! Эмиль Фишер только что сообщил мне, что провел полный синтез глюкозы. Это означает, что органическая химия подходит к концу. Давайте заканчивать с терпенами: пусть остаются только грязные пятна (Schmieren)”. (Презрительным названием Schmierchemie (“химия грязных пятен”) химики-органики заклеймили физиологическую химию – то есть то, что сейчас называют биохимией.)

Байер предпочитал простые приборы, и появление в его лаборатории любого агрегата с намеком на сложность следовало обставлять предельно тактично. Однажды вечером туда тайком пронесли первые механические мешалки с водяным мотором. Утром следующего дня “дыня” застал их в действии. Какое-то время Байеру удавалось ничего не замечать, затем он с неохотой стал их разглядывать, без малейшего следа воодушевления на лице, затем последовало первое замечание, которого так жадно ждали: “И что, это работает?” – “Да, герр профессор, великолепно работает. Реакции восстановления вот-вот дойдут до конца”. В конце концов герр профессор так возбудился, что пошел на исключительные меры: он позвал фрау профессор (как было принято обращаться к женам профессоров). “Госпожа Лидия”, как ее звали в лаборатории, с немым обожанием уставилась на бодро постукивающий прибор, а затем произнесла незабываемые слова: “Это какой же майонез можно было бы приготовить!” Сколь многое, скажем мы, определяет точка зрения.

Этот день наверняка мог бы стать отправной точкой в истории кухонного комбайна.

Из обзора Джона Рида в Nature, 131, 294,1933.

Сильнодействующее средство

Химики из немецкой фармацевтической компании “Бёрингер и сын” искали препарат-вазоконстриктор, способный смягчить симптомы простуды. Такое вещество, способное проникать сквозь слизистую оболочку, после закапывания в нос заставило бы сжиматься тонкие сосуды, открывая дыхательные пути. Гельмут Стале синтезировал ряд похожих друг на друга веществ (химики-органики называют их производными имидазолина) и надеялся, что наконец попал в точку. Однажды в 1962 году образцы отправили доктору Вольфу, медицинскому директору компании. Секретарь доктора Вольфа, фрау Швандт, как раз тогда тяжело простудилась. Рассудив, что маленькая доза нового лекарства, которое считалось безвредным, не создаст особых проблем, она закапала немного разбавленного раствора себе в нос. Затем фрау Швандт зевнула и погрузилась в глубокий сон. Прошел день, а ее все никак не могли разбудить. Разгорелся скандал: прибывший врач пришел к выводу, что у подопытной резко упало давление. К счастью, лекарство не вызвало у фрау Швандт долговременных последствий и она все-таки проснулась. А препарат тот был выпущен на рынок под названием клонидин[6]6
  В России его называют клофелином.


[Закрыть]
. Как выяснилось, он действует на периферическую нервную систему и потому стал применяться при лечении гипертонии и ряда других расстройств.

Есть, разумеется, бесчисленные примеры героических опытов физиологов, фармакологов и врачей на себе и на коллегах. Так, например, был открыт радикально новый способ лечения алкоголизма (едва ли такое придумали бы специально). Главный героем этой драмы был фармаколог Эрик Якобсен, директор исследовательского подразделения датского фармакологического концерна. События разворачивались во время Второй мировой войны.

У Якобсена с коллегами (лаборантов это тоже касалось) вошло в привычку испытывать на себе все новые вещества, синтезированные в медицинских целях. Как-то он и его друг Йенс Хальд заинтересовались мазью от чесотки дисульфирамом. Чесотку, как известно, вызывает клещ-паразит, распространившийся тогда по всей оккупированной Европе. Разузнав о препарате, Хальд решил, что тот поможет бороться и с паразитами кишечника. Опыты на кроликах обнадеживали: даже при больших дозах побочных эффектов замечено не было. Пройдя курс лечения дисульфирамом (в таблетках), Якобсен и Хальд заключили, что вещество, судя по всему, безвредно. Затем в один из дней Якобсен решил запить припасенный на обед бутерброд пивом: то и другое он употребил, сидя в библиотеке в компании коллег. К концу обеда он ощутил сильное опьянение и тошноту. Голова раскалывалась. Симптомы постепенно сошли на нет, и вскоре Якобсен решил, что здоров и готов продолжить работу. Гипотезу про пищевое отравление он отбросил сразу, потому что жена и дочь, которые на обед ели то же самое, чувствовали себя прекрасно. Несколько дней спустя Якобсен обедал в ресторане с управляющим компанией. Оба приобщились к живительной влаге, а затем Якобсен вернулся в лабораторию. Коллег его вид напугал: лицо невероятно раскраснелось. Голова снова раскалывалась, болезнь вернулась. В конце недели все повторилось снова.

В пятницу за дружеским обедом у сослуживца-фармаколога Якобсен глотнул пива и съел сандвич с тефтелями, приготовленный женой. Новый приступ заставил его отправиться домой раньше времени. Ему предстояло проехать несколько километров, и, петляя на велосипеде по узким улочкам Копенгагена, Якобсен задавался вопросом: неужели дело в тефтелях? Он поинтересовался у дочерей, что им досталось на обед. Тефтели, как и их отцу. С тефтелями все было в порядке, значит, они ни в чем не виноваты.

В один из дней Якобсен наткнулся в коридоре на Хальда, и они тут же принялись обсуждать итоги опыта с дисульфирамом. Как признался Хальд, он испытывал те же трудности, что и Якобсен. Подозрение пало на таблетки препарата. Вдвоем они предприняли более тщательное исследование, чтобы перепроверить свои выводы, Якобсен принял очередную порцию таблеток и ввел себе немного алкоголя внутривенно. Результат ошеломлял: кровяное давление у Якобсена упало скачком почти до нуля, и ученый едва не умер. Теперь было ясно: алкоголь реагирует с дисульфирамом или с продуктом его расщепления в организме, и продукт этой реакции высокотоксичен. Вскоре после пугающих опытов на себе Якобсен случайно встретился со старым другом, химиком, который сразу же заметил, что от Якобсена пахнет ацетальдегидом – ядовитым веществом, первым в цепочке продуктов окисления спирта. В нормальных обстоятельствах ацетальдегид быстро окисляется до уксусной кислоты (именно так из вина образуется уксус). Ацетальдегид и заявил о себе теми неприятными ощущениями, которые пришлось пережить Якобсену и Хальду.

Вскоре Якобсен прочел перед публикой лекцию, в которой рассказал о своих злоключениях с дисульфирамом. Он не знал, что среди слушателей есть журналист, и потому появление статьи об этом в ведущей копенгагенской газете уже на следующий день Якобсена искренне удивило. Там ее увидел психиатр, лечивший алкогольную зависимость средствами “терапии отвращения”, методики неприятной и редко когда успешной. Психиатр связался с Якобсеном, и скоро дисульфирам уже применяли (и применяют до сих пор) при лечении хронических алкоголиков. Дисульфурамовым препаратам Якобсен придумал коммерческое название Antabuse (что можно расшифровать как “противозависимость”).

Но, вероятно, самый знаменитый эксперимент над собой поставил биолог Джон Бертон Сандерс Холдейн, сделавший себе имя работами по физиологии, генетике и биохимии; не стоит также забывать про его математические таланты и блестящее знание античной литературы. Он, твердо верящий в коммунистические идеалы, был весьма несдержан и часто конфликтовал с академической элитой. Холдейн принадлежал к тем немногим, кому Первая мировая война пришлась по вкусу: возможность в ней поучаствовать казалась ему почетным правом. В отличие от большинства физиологов, он избегал опытов на животных, предпочитая опыты на людях и прежде всего на себе самом. Привычку так поступать он унаследовал от отца, Джона Скотта Холдейна, профессора физиологии в Оксфорде, прославившегося работами о воздействии на организм газов, скапливающихся в шахтах. Эти работы спасли немало жизней. Однажды Холдейн-старший сам вдыхал смесь кислорода с угарным газом до тех пор, пока молекулы этого газа не перепортили половину гемоглобина у него в крови. Этот опыт мог стоить физиологу жизни. Холдейн-младший сопровождал отца в шахты, будучи еще маленьким мальчиком: ему отводилась роль ученика, ассистента и, нередко, подопытного кролика. Вот его воспоминания об одном из таких путешествий. Сначала их с отцом спустили вниз в гигантской бадье, а потом им пришлось ползти через узкий лаз.

Наконец мы оказались там, где свод достигал 2,5 метра в высоту: взрослому было где распрямиться. Один из сопровождающих поднял свой “безопасный светильник” – он тут же наполнился голубым пламенем и с хлопком погас. Окажись вместо него свеча, взрыв был бы неизбежен и нас наверняка убило бы на месте. Тут пламя взрыва удержала внутри светильника проволочная сетка. Под сводом было полно метана – газа, который легче воздуха и потому собирается сверху. Прилегающий к полу слой воздуха опасности не представлял.

Чтобы показать, чем чревато вдыхание рудничного газа, отец велел мне подняться и прочесть речь Марка Антония из шекспировского “Юлия Цезаря” начиная со слов “О римляне, сограждане, друзья!” Скоро я начал задыхаться, и где-то на словах “Честный Брут” мои ноги подогнулись, и я свалился на пол, где, разумеется, с воздухом все было в порядке. Так я узнал, что рудничный газ легче воздуха и что вдыхать его опасно.

Отец Холдейна был консультантом Адмиралтейства, при нем были переписаны и правила безопасности под водой, и инструкции, как сбрасывать давление на поверхности. В 1908 году пятнадцатилетнему Холдейну-младшему разрешили участвовать в подводных испытаниях.

Случай представился, когда Джона Скотта Холдейна пригласили на испытания новой субмарины Адмиралтейства. Ему требовался помощник, и как-то он пожаловался домашним: корабль секретный, поэтому список кандидатов ограничен. Когда вопрос о помощнике стал беспокоить Холдейна всерьез, супруга спросила его: “Почему бы тебе не взять с собой Мальчика?” (так родные звали Холдейна-младшего). “Разве он уже достаточно взрослый? – возразил Джон Скотт Холдейн и повернулся к сыну: – Какая формула у натронной извести[7]7
  Натронная известь – смесь едкого натра NаОН и гашеной извести Са(ОН)2


[Закрыть]
?” Холдейн-младший ответил правильно и некоторое время спустя совершил свое первое путешествие на подводной лодке.

Когда началась Первая мировая война, Холдейн-младший вступил в “Черный дозор” (легендарный шотландский полк, основанный в 1739 году) и в звании командира взвода отправился сражаться во Францию. Там он получил несколько ранений и устроил несколько безрассудных вылазок, не спросив разрешения командира.

В 1915-м первые газовые атаки застали британскую армию врасплох. Лорд-канцлер Холдейн телеграммой вызвал из Оксфорда своего брата, Холдейна-старшего, и тот немедленно отбыл во Францию. Там он обнаружил, что 90 тысяч противогазов, которые раздали солдатам, действуют совсем не так, как задумывалось. По его просьбе из Оксфорда приехал профессор Ч.Дж. Дуглас, а вслед за ним и Холдейн-младший ненадолго покинул окопы. Вместе с группой добровольцев трое ученых собрались в камере, куда закачали хлор. Холдейн-младший пишет:

Нам предстояло сравнить действие, которое оказывали на нас (в респираторах и без них) разные дозы газа. Газ резал глаза и при вдыхании вызывал удушье с кашлем. Именно поэтому требовалось участие подготовленных физиологов. Обычный солдат наверняка справится с желанием хватать воздух ртом и кашлять, когда в разгар битвы ощущает себя машиной убийства, но не в лаборатории в ходе опыта, когда ничто не отвлекает его от собственных переживаний. Опытный физиолог владеет собой лучше. Еще важно было выяснить, получится ли в респираторе работать или бегать. Поэтому в газовой камере имелось специальное колесо, которое полагалось крутить руками, кроме того, за стенами камеры нас ждали 45-метровые пробежки в респираторах.

Длительного ухудшения здоровья не последовало, продолжает Холдейн, поскольку все знали, когда стоит остановиться, но он “обнаружил у себя затрудненное дыхание и еще месяц с небольшим не мог бегать”. В таком состоянии Холдейн вернулся в свой полк и принял участие в битве при Фестуберте, где был дважды ранен. Его биограф высказывает предположение, что двухдневный эксперимент спас тысячи жизней и, возможно, предотвратил немедленный разгром.

Перед самым началом Второй мировой войны Холдейн снова отправился служить Родине. Новая подводная лодка “Тетис” утонула тогда во время испытаний в Мерси. Вместе с ней пошли ко дну 99 человек – моряков и штатских, и Холдейна пригласили расследовать неисправности в системе аварийной эвакуации судна. Последовал ряд опасных опытов, где изучалось длительное воздействие на человека высоких давлений и высоких концентраций углекислого газа. Опасность всегда привлекала Холдейна, работа приносила ему огромное удовольствие, и за это, наверное, можно простить некоторую демонстративность его поступков. Среди его ассистентов был молодой корабельный хирург, лейтенант Кеннетт Дуглас.


    Ваша оценка произведения:

Популярные книги за неделю