355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Уолтер Гратцер » Эврики и эйфории. Об ученых и их открытиях » Текст книги (страница 13)
Эврики и эйфории. Об ученых и их открытиях
  • Текст добавлен: 21 октября 2016, 21:12

Текст книги "Эврики и эйфории. Об ученых и их открытиях"


Автор книги: Уолтер Гратцер



сообщить о нарушении

Текущая страница: 13 (всего у книги 33 страниц)

Как травили Дж. Дж. Сильвестра

Джеймс Джозеф Сильвестр (1814–1897) – ученый, заслуживший себе место в истории науки благодаря блистательным математическим талантам и многогранности интересов. Он был отличным юристом, лингвистом и писателем, сочинил множество стихов и даже трактат “Искусство стихосложения” Сильвестр родился в бедной семье в еврейском районе Лондона, Ист-Энде, и говорил на кокни. Антисемитизм помешал ему сделать академическую карьеру в Англии, хотя он и был избран членом Королевского общества в возрасте двадцати с небольшим. Когда ему исполнилось 27 лет, он уплыл в Америку, где ему предстояло стать профессором математики в Университете Виргинии.

Его лекции отличались ясностью и живостью изложения, и студенты полюбили молодого преподавателя. Однако скоро антисемитизм поднял голову и здесь: местная церковная газета сетовала на то, что влияние еврея и, более того, англичанина, который, возможно, даже осуждает рабство, пагубно скажется на американской молодежи. На Сильвестра обрушились нападки и оскорбления со стороны неуспевающих студентов – в особенности двух братьев, которых тот высмеивал за невежество. Факультет малодушно отказался защитить профессора, опасаясь студенческого бунта. Развязка произошла, когда Сильвестру стали угрожать уже напрямую.

Сильвестр приобрел себе трость-шпагу. Она была с ним, когда однажды братья преградили ему путь, причем в руках у младшего была дубина.

Поблизости случайно оказался близкий друг доктора Дэбни, священника, он и рассказал эту историю. Итак, младший брат шагнул навстречу профессору и потребовал извинений, а потом ударил Сильвестра, сбив с него шляпу, и в довершение нанес сокрушительный удар дубиной по неприкрытой голове профессора.

Тогда Сильвестр извлек шпагу и сделал выпад, попав студенту в грудь прямо над сердцем. Тот с отчаянным ревом упал на руки брата, крича: “Я убит! Он меня убил!” Сильвестр поспешил скрыться и, оставив все свои книги, отправился в Нью-Йорк, а там забронировал место на корабле, отплывающем в Англию.

Между тем врач, которого вызвали к студенту, застал того в ужасном состоянии – юноша был смертельно бледен, весь в холодном поту, и шептал молитву, прощаясь с жизнью. Врач разрезал ему жилет и рубаху – и констатировал, что раны по сути нет! Удар пришелся на ребро, шпага по нему лишь скользнула и слегка поцарапала кожу.

Удостоверившись, что рана его не серьезней комариного укуса, умирающий встал, поправил рубаху, застегнул жилет и удалился, все еще нервно дрожа.

А Сильвестр тогда так и не уехал в Англию. Он остался в Нью-Йорке, где рассчитывал поработать в Колумбийском колледже (сейчас это Колумбийский университет). Однако совет Университета Виргинии отказался засвидетельствовать, что никакой вины за ним нет. Пробыв в Нью-Йорке безработным больше года, Сильвестр все-таки отправился в Лондон, где открыл юридическую практику. Джордж Халстед, который позже стал его студентом и почитателем – благо Сильвестр все же вернулся в Америку и преподавал потом в Университете Балтимора, – пишет так:

Пять статей, написанных Сильвестром в 1841 году, до отъезда в Виргинию, дают представление о самых великих его открытиях. Затем вся его творческая активность внезапно прекращается. Ни статьи, ни единого слова. Только в 1844-м раненая птица снова начинает робко щебетать, и понадобится еще десятилетие, прежде чем она запоет в полный голос.

Пусть Сильвестр и потратил бесцельно годы, которые у математиков считаются самыми продуктивными, но тем не менее американский философ Чарльз Сандерс Пирс отмечал, что с силой его логики “не могли сравниться удвоенные, а то и утроенные силы всех сынов человечества”. В поздние годы Сильвестр сделался предметом почитания в британских академических кругах, стал плодовитым писателем, а его публичные выступления пользовались большой популярностью.

История позаимствована из захватывающей статьи: Feuer Lewis S., The Mathematical Intelligencer, 9,13 (1987).

Тихий американец

Джон Бардин (1908–1991) дважды получил Нобелевскую премию по физике – в 1956-м и в 1972 году. Это был грузный, спокойный, слегка не уверенный в себе человек с мягким голосом. Студенты, посещавшие его лекции в Университете Иллинойса, называли его Шепчущим Джоном. Первую Нобелевскую премию он разделил с двумя коллегами из лабораторий компании ВеП — один, Уолтер Брэт-тайн, был его другом с детских лет, а другой, Уильям Шокли, руководил его подразделением. Бардин, который усвоил квантовую механику еще в студенческие годы в Принстоне, осознал, пытаясь разобраться с поведением полупроводников, что электрический ток будет испытывать возмущение на границе пары микроскопических участков кристалла. Такие границы встречаются в кристаллах, которые содержат примеси, и проведенный Барди-ном теоретический анализ показал, что плотность тока на таких участках будет меняться. Итогом его теоретических исследований и последующих экспериментов стало изобретение транзистора.

Жена Бардина вспоминала, как однажды в 1948-м ее муж приехал с работы, припарковал машину около дома и зашел на кухню, где она в это время готовила ужин. “Ты знаешь, – сказал он тихим, как обычно, голосом, – мы кое-что сегодня открыли” А однажды утром в 1956-м, когда он взбивал яйца на завтрак, по радио передали, что ему и его коллегам присуждена Нобелевская премия.

После вручения премии группа распалась: Шокли, понимая, насколько Бардин умнее и талантливее, явно ему завидовал, причем так, что даже запретил Бардину заниматься тем, что ему было интересно. (Позже Шокли станет печально известен своими яростными выступлениями в защиту евгеники и генетического детерминизма, а также превосходства белой расы. Следуя этим взглядам, он учредил банк спермы нобелевских лауреатов, дабы улучшать генофонд Америки.) В итоге Бардин ушел из компании и стал работать в Университете Иллинойса. Именно там, вместе с двумя своими студентами, он и нашел объяснение сверхпроводимости, которая 50 лет с момента открытия оставалась загадкой для теоретиков. Это принесло Бардину вторую Нобелевскую премию – которую он на этот раз разделил с парой молодых помощников. Вот как Бардин сообщил об открытии своему факультетскому коллеге, Чарльзу Слихтеру:

Бардин остановил меня в коридоре физического факультета Университета Иллинойса. Дело было утром, на следующий день после того, как Бардин, Купер и Шриффер окончательно сформулировали теорию БКШ (так, по именам ученых, эта теория вошла в науку). Было ясно, что ему есть о чем сказать, но он просто стоял на месте. Я молча ждал, и наконец он произнес: “Ну, мне кажется, мы объяснили сверхпроводимость” Хотя Бардин и был человеком стеснительным во многих отношениях, однако, если он понимал, что сделал нечто действительно важное, ему было необходимо с кем-то этим поделиться.

Бардин активно занимался наукой до самой смерти.

Кроме науки, единственным увлечением в его жизни был гольф. Слихтер рассказывает:

Однажды в гольф-клубе давний партнер по игре обратился к Бардину с вопросом: “Джон, я давно собирался спросить: а чем ты зарабатываешь на жизнь?” Вы можете такое представить? Думаю, будь у меня две Нобелевские премии, как у Джона, уж я бы нашел случай об этом обмолвиться.

Lubetkin Gloria В., Physics Today, 45, April, p. 23 (1992).

Как Бунзен и Кирхгоф нашли решение задачи, решения не имеющей

Роберт Бунзен (1811–1899) и Густав Кирхгоф (1824–1887) – две ослепительные вершины в истории химии. Памятником Бунзену можно считать всю спектроскопию. Знаменитую горелку, которую назвали его именем, Бунзен сконструировал с целью получить бледное, практически бесцветное пламя, в котором проще различать цвета спектра. Родившийся в Геттингене в 1811 году, в зрелые годы Бунзен был обожаемым всеми приветливым холостяком с привычкой к неряшеству: жена одного из его коллег по Гейдельбергскому университету как-то сказала, что хотела бы его поцеловать, но прежде его нужно отмыть. Кирхгоф, друг и коллега Бунзена, на равных участвовал во многих работах по спектральному анализу и внес вклад во многие другие области физической химии. Лаборатории Бунзена и Кирхгофа во Фридрихсбау, в здании физического факультета, располагались по соседству.

Начиналось все в конце XIX века – с имени Кирхгофа, нацарапанного на окне комнаты, которую сейчас отвели старшему ассистенту. Из этого окна открывается вид на долину Рейна, где лежит город Мангейм, и именно в эту сторону смотрели Бунзен и Кирхгоф однажды вечером: там бушевал пожар, и спектроскопический анализ пламени позволил им определить, что в горящих материалах присутствуют барий и стронций. Если же выглянуть из окна в другую сторону, взгляду откроются река Неккар и Хейлинген-берг, где по склонам петляет “философская тропа” – главная из множества тропинок на лесистых холмах вокруг города, и именно там двое друзей имели привычку совершать свои ежедневные прогулки. Бунзен говорил, что как раз во время таких прогулок к нему и приходят самые умные мысли. Одна из них была такой: “Если мы смогли узнать, что за вещества горят в Мангейме, то отчего бы не проделать этот трюк с Солнцем? Только вот все скажут, что мы сошли с ума” Что произошло потом, знает теперь весь мир, однако прекраснее всего, надо думать, была минута, когда Кирхгоф сказал: “Бунзен, а я уже сошел с ума”, и когда Бунзен, сообразив, что это значит, ответил: “И я тоже, Кирхгоф!”

Свет Солнца, пропущенный сквозь спектрограф (простой инструмент, где призма раскладывает свет в цвета радуги), как оказалось, прерывается множеством узких черных полос. В 1802 году английский химик Уильям Гайд Воластон (главный повод вспомнить о нем сегодня – большая двояковыпуклая лупа, с которой изображают Шерлока Холмса) с удивлением обнаружил семь таких “зазоров” в солнечном спектре, ю лет спустя Йозеф Фраунгофер из Германии, вооруженный куда лучшей оптикой, зафиксировал не менее 300 таких линий (потом их станут называть фраунгоферовыми). Как установили Бунзен и Кирхгоф, две самые известные фраунгоферовы линии в точности соответствуют тем линиям из желтой части спектра, которые дает натрий в пламени горелки. Затем они стали находить в спектре Солнца все новые и новые следы присутствия других элементов, и в конце концов их методика позволила открыть прежде неизвестный, но имеющийся в изобилии на Солнце элемент – благородный газ гелий.

Чтобы оценить значение этого случая и понять, что привело друзей-ученых в восторг, стоит вспомнить влиятельного философа и математика Огюста Конта, который несколькими годами раньше провозгласил, что вопрос о составе Солнца – один из тех, на которые наука ответить не сможет никогда. Открытие того, что Солнце (и, как установили позднее аналогичным способом, далекие звезды) состоит из тех же элементов, что и Земля, стало невероятно важным событием в истории науки.

Отрывок про Бунзена и Кирхгофа – из анонимной статьи в Nature, 65,587 (1902;.

Как смутить скептика

Логан Перселл Смит – не ученый, а писатель, зато он приходился шурином выдающемуся ученому Бертрану Расселу. В университетские годы он подружился с Бенджамином Джоветом, грозным главой Бэллиот-колледжа, который преподавал древнегреческий. Джовет имел твердые убеждения о назначении университетов. Он считал, что главное – это образовательный процесс, а научную работу полагал никому не нужной и не видел в ней никакого смысла. Его взгляды прекрасно иллюстрирует приводимая ниже беседа с Логаном Перселлом Смитом. В те времена все говорили об открытиях физиологов, о нервной системе и нервных импульсах: совсем недавно двумя немецкими нейрофизиологами был обнаружен коленный рефлекс, и ученые обсуждали рефлексы – их определяли как импульсы, приходящие в центральную нервную систему и отражаемые ею в направлении мускулов, чтобы спровоцировать непроизвольное движение.

Помню, мы с ним стояли тогда возле Мальверн-колледжа (вероятно, это было в 1885 году), и я нечаянно произнес слово, которое не следовало произносить. “Исследования! – повторил он за мной. – Единственное оправдание безделью, вот что это. Исследованиями не добились, и никогда не добьются ничего путного” На это скоропалительное суждение я попробовал возразить, на что Джо-вет немедленно отреагировал: он попросил, если мне известен хоть один стоящий результат, назвать его без промедления. Мои познания в этой сфере едва ли были глубоки, и, как бы то ни было, трудно выдать конкретный пример для общего суждения по первому требованию. Единственным, что пришло мне в голову, было недавнее открытие (о котором я прочел не помню где), что удар по коленной чашечке пациента заставляет того непроизвольно дернуть ногой, и сила “коленного рефлекса”, как его называют, позволяет судить о состоянии здоровья в целом.

“Не верю ни слову, – сказал мне на это Джовет. – Ударь-ка меня по колену”

Мне было весьма неловко действовать столь непочтительно, однако, когда грозный профессор настаивает, студенту остается повиноваться. Нога профессора отреагировала с поразившей меня силой, и тем самым, подозреваю, сильно пошатнула взгляды немолодого и уважаемого противника научных исследований.

Smith Logan Pearsall, Unforgotten Years: Reminiscences (Constable, London, 1938; Little Brown, Boston, 1939).

Хорошие выводы из плохого опыта

В 1930-х, во времена расцвета ядерной физики, все знали Эрнеста Орландо Лоуренса (1901–1958). Он построил в Университете Беркли в Калифорнии первый циклотрон – установку, способную разгонять заряженные частицы, заставляя их двигаться по спирали. Протоны достигали невероятно высоких скоростей, которых им хватало на то, чтобы, врезаясь в специальную мишень, дробить атомные ядра. Первый циклотрон был предшественником нынешних гигантских коллайдеров, которые занимают многокилометровые подземные туннели. У ученых имелись все основания подозревать (и эта гипотеза позже оказалась верна), что дейтероны – ядра недавно открытого тяжелого водорода, или дейтерия, которые вдобавок к протону содержат нейтрон, – окажутся куда более действенным инструментом разрушения других ядер. Лоуренса, соответственно, охватило желание заполучить хоть немного дейтерия, который получал (в форме тяжелой воды) его коллега с химического факультета Гильберт Н. Льюис.

Лоуренс донимал Льюиса вопросами, сколько тяжелой воды тот способен произвести, пока примерно I марта Льюис не предъявил ему целый миллилитр. Этого хватило бы для ускорителя, однако тут Льюис лишний раз продемонстрировал, что в физики его записывать не стоит. Озабоченный тем, не яд ли это, всей имевшейся тяжелой водой он напоил мышь. Мыши не сделалось ни хуже, ни лучше, зато Лоуренса чуть не хватил удар. “Это был, наверное, самый дорогой из всех коктейлей, которые доводилось пробовать не только мышам, но и людям”, – жаловался он.

Льюис все же полагал, что признаки отравления у мыши были. На самом деле тяжелая вода абсолютно безвредна. Намного позже, уже в послевоенные годы, радиоактивностью занялись биологи. Биологически активные соединения с радиоизотопами стали незаменимы в изучении физиологических реакций. (В основе метода лежит простой принцип: раз у всех изотопов элемента одинаковая электронная оболочка, то и в химическом отношении они одинаковы; поэтому порция радиоактивных молекул может служить меткой, позволяющей отследить путешествие вещества по организму.) Сейчас радиоактивные биохимические реактивы – рядовой инструмент исследователя, однако первое время они были доступны немногим.

Можно считать, что ядерная медицина как новая область науки возникла в университете Калифорнии, где искусственная радиоактивность была впервые использована в медицинских и биологических исследованиях. Глядя на молодых людей, которые работали с циклотроном, – они бомбардировали все новые мишени и измеряли радиоактивность счетчиками Гейгера и камерами Вильсона, – я быстро заразился духом тогда еще юной ядерной физики. О биологическом воздействии нейтронных пучков, которые генерировал циклотрон, тогда знали совсем немного, и это показалось мне важным моментом, с которого стоило начать.

Мы изготовили небольшой металлический цилиндр, куда умещалась крыса – ей предстояло испытать воздействие нейтронных пучков на себе, после того как цилиндр установят вблизи циклотрона. Когда крыса оказалась внутри, мы попросили персонал циклотрона включить его, а затем, две минуты спустя, выключить. Двухминутный срок выбрали наугад – у нас не было никаких данных, чтобы рассчитать дозу радиации, которая достанется животному. Как только время облучения истекло, мы забрались в узкий зазор между двумя 'D' (то есть полукруглыми электродами, сквозь которые проходит спиральная траектория ускоренных частиц) 37-дюймового циклотрона, вскрыли цилиндр и нашли крысу. Она была мертва. Все столпились вокруг поглядеть на крысу – так родилось в наших душах должное уважение к ядерному излучению. Сейчас, разумеется, меры по защите от радиации – обязательная часть любых ядерных исследований, но, я думаю, инцидент с крысой сыграл свою роль в том, что с радиацией в университете обращались предельно аккуратно. На самом деле, радиационных поражений не обнаружили даже у тех, кто работал с циклотроном в самом начале. Позже мы установили, что истинная причина смерти крысы – не радиация, а удушье. Впрочем, раз ошибка с воздухом для крысы так благотворно сказалась на разработке радиационной защиты, отчет о вскрытии животного особой огласке решили не предавать.

Писатель Джон X Лоуренс, однофамилец ученого, отмечает, что физики, гоняясь за результатами, с большой неохотой давали доступ биологам и врачам к своим установкам. Он допускает, что такое отношение могло усилиться после случая, когда он, Лоуренс, слишком близко подошел к циклотрону с зубоврачебным пинцетом, по забывчивости оставленным в кармане халата. Магнитное поле выдернуло пинцет из кармана, и тот в итоге застрял между D-образными электродами, где и пролежал три недели.

Первый отрывок – из книги: Davis Nuel Phar, Lawrence and Oppenheimer (Jonathan Cape, London, 1969); воспоминания Лоуренса цитируются no книге: Weber Robert L, Science With a Smile (Institute of Physics, Bristol and Philadeplphia, 1992).

Старые солдаты не умирают

Эрнест Резерфорд как-то заметил, что ученые (он, разумеется, имел в виду физиков) никогда не взрослеют, поскольку, не в пример менее удачливому большинству, у которого нет лабораторий для игр, сохраняют на всю жизнь детскую тягу к изучению реальности. Вот короткая история про шефа Резерфорда, Дж. Дж. Томсона, прославившегося многими открытиями, но прежде всего – открытием электрона. Когда в 1940-м 84-летний Томсон умер, немецкий теоретик Макс Борн (1882–1970), впоследствии – профессор физики Эдинбургского университета, написал в некрологе:

В 1906 году я приехал в Кембридж – туда меня привело желание увидеть Томсона…

Вернувшись в университет пятнадцать с лишним лет спустя, я встретил его сына (впоследствии – сэра Джорджа Пэджета Томсона, который тоже станет нобелевским лауреатом). Он отвел меня в Кавендиш-скую лабораторию. В подвальной комнате работал “Джи-Джи”, окруженный, как обычно, невероятной мешаниной приборов, стеклянных трубок и проводов. Меня представили: “Папа, вот твой студент – он учился у тебя много лет назад” Седая голова, склоненная над мерцающей вакуумной трубкой, на секунду приподнялась: “Как ваши дела? Кстати, посмотрите сюда – видите тут спектр?..” Атмосфера исследования поглотила нас сразу. Прошедшие годы, война и послевоенное время, которые разделяли этот день и день нашей первой встречи, больше не имели значения. Таким я застал Томсона в Кавендишской лаборатории – живым воплощением науки.

Стремление соревноваться было у Томсона в крови. Когда Фрэнсис Уильям Астон, создатель масс-спектрографа, инструмента для измерения веса атомов, пожаловался Резерфорду, что Томсон не верит в открытие очередного изотопа, Резерфорд ответил, что этому следует радоваться. Поверь Томсон в ваше открытие, пояснил он, “он бы увел его у вас из-под носу”.

Некролог Дж. Дж. Томсону за авторством Макса Борна опубликован в Nature, 146,356 (1940).

О важности регулярного питания

Как-то физиолог Эндрю Налбандов, сотрудник Университета Висконсина, в два часа ночи возвращался домой с вечеринки. Дело было в 1940-м. Дорога проходила мимо лаборатории, и, выглянув в окно машины, Налбандов с удивлением заметил, что в помещении, где держат животных, горит свет. Незадолго перед тем Налбандов взялся за неразрешимую задачу: он собирался выяснить назначение гипофиза (который, как мы знаем сейчас, производит семейство гормонов, контролирующих самые разные функции организма). Гипофиз, или питуитарная железа, расположен прямо под мозгом, и хирургу пробраться к нему довольно затруднительно. При попытках вырезать гипофиз у какого-нибудь животного, например курицы, подопытные гибли спустя считаные дни после операции, не давая ученым ни шанса узнать, как ведет себя лишенный гипофиза организм. Налбандов описывает свои затруднения так:

Не помогали ни замещающая терапия, ни прочие меры, и я почти готов был согласиться с A.C. Парксом и Р.Т. Хиллом (которые проделывали похожие операции в Англии), что куры после гипофизэктомии просто не способны выжить. Я сдался – решил прервать краткосрочные опыты и свернуть проект, – но вдруг 98 процентов из группы прооперированных животных сумели прожить три недели, а многие из них – и шесть месяцев. Единственное объяснение, которое пришло мне в голову, – это то, что мои хирургические навыки улучшились от частой практики. И тут, когда я был готов затеять долговременный эксперимент, куры вдруг начали умирать снова. Уже неделю спустя я нашел мертвыми обеих птиц, которых прооперировал недавно, и тех, которые прожили несколько месяцев. Это, безусловно, сводило на нет мысль о совершенстве моих хирургических навыков. Я продолжал работать, поскольку знал, что куры способны жить довольно долго при определенных условиях, которые, однако, оставались для меня загадкой. Тогда же случилась вторая волна удачных опытов с невысокой смертностью. Я тщательно проанализировал свой журнал операций (гипотеза про болезнь, как и многие другие, была изучена и отброшена), но так и не нашел никакого объяснения. Можете себе представить мое отчаяние! Как-то поздней ночью я возвращался домой с вечеринки и ехал по дороге мимо лаборатории. Было два часа ночи, однако в окнах комнаты с животными горел свет. Я решил, что причина этому – какой-нибудь забывчивый студент, поэтому остановил машину и погасил свет сам. Однако несколько ночей спустя я заметил, что свет снова горел всю ночь. При разбирательстве выяснилось, что сменный охранник, которому полагалось каждую полночь проверять, закрыты ли все окна и двери, имел привычку зажигать в этой комнате свет, чтобы ему было проще найти выход (выключатель не додумались разместить возле двери). Как оказалось, оба периода с низкой смертностью пришлись на дежурства этого охранника. Контрольные эксперименты доказали: куры без гипофиза, если держать их в темноте, умирали, а те, которых освещали лампой по два часа каждую ночь, могли жить сколько угодно. Причина была такой: поскольку в темноте птицы не едят, у них развивается гипогликемия (падение уровня сахара в крови), от которой сложно оправиться. Те же, которых подсвечивали, съедали достаточно для того, чтобы предотвратить гипогликемию. С тех пор мы могли продлевать жизнь в гипофизэктомированных птицах сколько угодно.

Так была открыта новая глава в изучении гормонов.

Beveridge W.IB., The Art of Scientific Investigation, (Heinemann, London, i960).


    Ваша оценка произведения:

Популярные книги за неделю