Текст книги "Эврики и эйфории. Об ученых и их открытиях"
Автор книги: Уолтер Гратцер
сообщить о нарушении
Текущая страница: 10 (всего у книги 33 страниц)
Бен Франклин успокаивает волны
Бенджамин Франклин (1706–1790) испытывал ненасытное любопытство ко всем областям науки. Особенно он интересовался тем, что получило позже название поверхностных явлений. Именно Франклин изобрел знаменитый фокус с потряхиванием тростью над бурлящим потоком – волны исчезали, и поверхность воды мгновенно становилась гладкой. Секрет фокуса состоял в том, что трость была полой и, когда ею трясли, из нее успевали вытечь несколько капель масла. Вот как Франклин придумал свой фокус..
В1757 году он плыл в Англию в качестве дипломатического представителя Ассамблеи штата Пенсильвания
.
И вот, находясь на борту одного из 96 кораблей, вышедших из Луисбурга (Новая Шотландия), я заметил, что два судна идут плавно, тогда как все остальные раскачивает сильный ветер. Заинтригованный этим явлением, я в конце концов указал на него капитану и спросил, что все это значит. “Думаю, – сказал он, – это коки только что слили жирную воду в шпигаты, и она слегка измазала борта у кораблей”. В его ответе ощущалось легкое презрение, с каким знатоки доносят до людей невежественных то, что всем остальным давно известно. По-моему, сам я поначалу пренебрег таким объяснением, хотя и не смог выдумать другого. Однако я все-таки решил проделать опыт по воздействию масла на воду, как только представится такая возможность.
Обещанный опыт был поставлен в Лондоне, в Круглом пруду парка Клапам-Коммон.
Проведя много времени в Клапаме, где есть большой общественный пруд, я заметил, что в одни дни он спокоен, а в другие ветер заставляет его бурлить. Захватив с собой графинчик масла, я пролил немного на воду – и увидел, как оно с поразительной быстротой распространяется по поверхности, однако сглаживания волн не произошло; дело в том, что масло я пролил с подветренной стороны пруда, где волны были наибольшими, и они прибили мое масло к берегу. Тогда я отправился к наветренной, где они (волны) только начинали формироваться, и тут масло, которого было не больше чайной ложки, установило абсолютный штиль на участке в несколько квадратных ярдов. Зона штиля удивительным образом расширялась и наконец достигла подветренной стороны, так что вся поверхность пруда площадью в пол-акра (2 тысячи квадратных метров. – Прим. перев.) сделалась ровной как зеркало!
Франклин проделал множество наблюдений этого и родственных явлений и вплотную подобрался к версии, истинность которой докажут много лет спустя – масло образует на воде пленку толщиной в одну молекулу.
За описанием жизни, научной работы и личности Франклина стоит обратиться к замечательной книге: Tanford Charles, Ben Franklin Stilled the Waves (Duke University Press, Durham, NC and London, 1989;.
Иногда и ошибки приносят пользу
Оставлять банки с реактивами без этикеток – значит оскорблять богов науки. Английский физиолог A.C. Паркс, известный исследователь рождаемости у людей и животных, рассказывает, как такой тяжкий проступок привел к открытию, коренным образом изменившему целое научное направление.
Осенью 1948-го мои коллеги, доктор Одри Смит и мистер С. Поулдж (из Национального института медицинских исследований в Лондоне), пытались повторить чужой эксперимент – с помощью левулозы (фруктового сахара, который позже станут называть фруктозой) защитить птичьи сперматозоиды от разрушения при замораживании и разморозке. Особых успехов добиться не удалось, и в ожидании нового вдохновения растворы надолго отправили в холодильник. Через несколько месяцев работы возобновили. Результат снова был отрицательный – со всеми растворами, кроме одного, где подвижность птичьих сперматозоидов сохранялась неизменной после охлаждения до —79 °C. Этот весьма неожиданный результат указывал на химические изменения в составе левулозы, вызванные, вероятно, разросшейся за время хранения плесенью, которая, надо думать, и произвела неизвестное пока вещество с ошеломляющей способностью предохранять живые клетки от разрушения при заморозке и разморозке. Анализ, однако, не выявляет в загадочном растворе не только новых сахаров, но и сахара вообще. Тем не менее последующие биологические испытания показывают, что у сперматозоидов сохраняется не только подвижность, но и способность оплодотворять. Тогда, с некоторым беспокойством, немного оставшегося раствора (10–15 мл) отправляем на химический анализ нашему коллеге доктору Д. Эллиотту. Он сообщает: раствор содержит глицерин, воду и заметное количество белка! Тут мы понимаем: занимаясь морфологией сперматозоидов, мы применяли альбумин Майера – смесь глицерина и альбумина, какой пользуются гистологи, а поскольку опыты с альбумином и с левулозой ставились одновременно, реагенты оказались в одном холодильнике. Очевидно, склянки перепутали, хотя мы так и не выяснили, как именно это случилось. Анализ нового материала вскоре показал, что сам альбумин к защитному действию отношения не имеет, и нашей целью теперь было выяснить, как глицерин защищает живые клетки при низких температурах.
Сейчас такая неряшливость в постановке эксперимента вызвала бы оторопь. Применение глицерина, не замерзающего при -79 °C в качестве криопротектора, как выразились бы сейчас, стало началом новой эры в науке об искусственном оплодотворении и рождаемости – и все благодаря чистой безалаберности.
Это, конечно, не стоит считать оправданием профессиональных ошибок – они редко ведут к столь счастливому исходу. Вот что случилось в 2001 году. После эпидемии коровьего бешенства в Великобритании начали опасаться новых болезней, угрожающих человеку. Известно, что овцы подвержены почесухе – болезни, считающейся безвредной для человека. Однако ученые подозревают, что она способна спровоцировать BSE, губчатую энцефалопатию, уже опасную для людей. Возбудитель попадет в организм человека, если из скелета зараженной овцы приготовить корм для скота. Может ли видоизмененная почесуха, опасная для человека, как BSE, внезапно проявиться при таких условиях? Одной из государственных лабораторий было получено определить, нет ли в организме овец чего-либо, напоминающего BSE. Анализы приготовленной заранее пасты из мозга овец начались в 1987 году. За контрольный образец тогда взяли пасту из коровьего мозга. Три года спустя выяснилось, что образцы овечьего мозга были случайно загрязнены коровьими. Была ли это снова “путаница с этикетками”? Обвинения, заверения в невиновности и встречные обвинения к установлению истины так и не привели.
Рассказ A.C. Паркса приводится в: Proceedings of the yd International Conference on Animal Reproduction, Cambridge, 25–30 June 1956.
Любовь к энзимам
Артур Корнберг – один из великих биохимиков современности. В 1959-м ему вручили Нобелевскую премию за синтез ДНК (а лауреатом Нобелевской премии 2006 года стал его сын Роджер). Его подход к научным задачам всегда отличался тем, что Корнберг сначала выделял из биологических тканей чрезвычайно чистый материал, а затем привередливо, не пренебрегая ни единой деталью, изучал его. Свои мемуары он озаглавил так: “Во имя любви к энзимам”. Вот эпизод из этой книги, где Корнберг вспоминает своего учителя, испанского биохимика Северо Очоа и стажировку в его нью-йоркской лаборатории.
Очистка энзима была (и в некоторых случаях до сих пор остается) тяжелой работой, включающей длинную последовательность действий, в результате которых, например, часть смеси выпадает в осадок, а другая остается в растворе. Убедиться в присутствии энзима можно при помощи реакции, которую он катализирует в клетке: чем больше примесей уходит, тем выше активность в пересчете на единицу массы белка.
Теперь (дело происходило в декабре 1946-го) мы заканчивали масштабный препаративный эксперимент, исходным материалом которого были несколько сот голубиных печенок. Четверо из нас… потратили несколько недель работы, чтобы подобраться к последнему шагу: спиртом высадить осадок, который, как мы верили, основываясь на микропробах, и будет достаточно чистым энзимом. Оставалось только вписать несколько деталей в статью, которую мы уже подготовили к публикации.
Поздней ночью Очоа и я готовили раствор из итоговой фракции энзима, скопившейся в колбах центрифуги. Я только что слил раствор из последней колбы в мерный цилиндр, где находился весь запас энзима. Тут я задел одну из пустых колб, неудачно лежавшую на переполненном лабораторном столе. Колба толкнула другую, и, как это бывает с карточным домиком, в конце концов повалились все, включая мерный цилиндр с энзимом. Тот опрокинулся на пол, а весь бесценный материал разлился. Он был утрачен навсегда. Очоа пробовал как-то меня ободрить, однако я оставался безутешен. Прежде чем я добрался домой на метро через час, Очоа успел несколько раз мне позвонить, поскольку всерьез опасался за мою безопасность.
Вернувшись в лабораторию следующим утром, я обратил внимание на маточный раствор, оставшийся от последней фракции. Мне следовало его вылить, поскольку в наших опытах он не проявлял активности. Однако вместо этого я поставил раствор в холодильник остывать до —15 °C и тут заметил, что прежде прозрачная жидкость мутнеет. Собрав осадок, я растворил его и решил оценить активность. “Святой Толедо!” – воскликнул я. Эта фракция вела себя ровно так, как энзим, который мы рассчитывали получить, и была на порядки чище всех предыдущих фракций. Северо, привлеченный “святым Толедо”, тут же подбежал узнать, что вызвало мой восторг.
Зачем, спрашивается, я сохранил и проанализировал фракцию, которую мы считали неактивной? Потому что энтузиазм и оптимизм Очоа был заразителен. Он учил меня, что, если быть упорным, что-нибудь хорошее да случится. Я был уверен, что со мной это правило сработает так же, как и с ним.
Корнберг мог бы добавить, что тут сыграли роль еще его благоразумие и осторожность.
КогпЬетуг А.,]оита 1 о/ВШо&са! СЬетхзЬу, 276, ю, 2001.
Полтергейст за стеной
Институт фундаментальных исследований в Принстоне в разное время давал приют многим знаменитым ученым – и, разумеется, Эйнштейну в том числе. За институтом закрепилась репутация чего-то рафинированного и бесконечно далекого от жизни: тут не было студентов, а общение со всем остальным научным миром сводилось к минимуму.
Вот зарисовка из жизни института; действующие лица – молодой физик Эндрю Ленард и Чжэньнин (Фрэнк) Янг, знаменитый теоретик, который разделил Нобелевскую премию по физике 1957 года со своим соотечественником Цзундао Ли, профессором Колумбийского университета в Нью-Йорке. (Когда стали известны имена лауреатов, хозяин маленького китайского ресторана поблизости, куда они приходили на ланч каждую неделю, вывесил табличку со словами “Обедайте здесь и получите Нобелевскую премию”.) Как правило, младшие сотрудники института редко общались со знаменитостями, которым полагалось их вдохновлять.
К счастью для Эндрю Ленарда, так случилось, что как-то в 1966 году к нему в дверь постучался Янг, которому захотелось поговорить. Янг собирался узнать, над чем Ленард работает, и тот рассказал ему о проблеме устойчивости вещества (это довольно сложный вопрос о том, почему вещество, составленное из атомов, которые сами почти целиком состоят из пустоты между разделенными громадными расстояниями элементарными частицами, осязаемо и стабильно). Янг заинтересовался. “Очень любопытно. Это либо банальная, либо весьма сложная задача”, – сказал он и отправился в свой кабинет (который находился как раз за следующей дверью). Скоро Ленард услышал стук за стеной. Он сообразил, что это Янг пишет мелом у себя на доске. Шум не прекращался – тук, тук, тук, – мел стучал себе по доске, и Ленард перестал обращать на него внимание. Но вдруг стук неожиданно оборвался, как если бы с несчастным ученым случился сердечный приступ. Воцарилась мертвая тишина.
Спустя несколько минут Янг просунул голову в двери кабинета Ленарда. “Это непросто”, – произнес он и исчез.
Реакция Янга напоминает реплику математика сэра Гарольда Джеффриса, оброненную им, когда он был консультантом Имперского химического треста. В один из его приездов физики компании обрисовали ему задачу, с которой, как они надеялись, он мог бы помочь им разобраться. Джеффрис терпеливо слушал, не произнося ни слова. Когда все уже было сказано, установилась гробовая тишина, и затем сэр Гарольд произнес: “Как славно, что это ваша проблема, а не моя” – и быстро удалился.
Regis Ed, Who Got Einstein’s Office (Simon and Schuster, London, 1988).
Тот, кто решает задачи
Фриман Дайсон, один из самых удивительных физиков-теоретиков и прикладных математиков нашего времени, как-то назвал себя “решателем задач”, имея в виду (с излишней скромностью), что его главное умение – не придумывать задачи, а решать их. (Еще он ярко и убедительно пишет о развитии науки и о будущем человечества как вида; Дайсон рисует широкими мазками. Он верит, например, что, окажись мы перед угрозой “тепловой смерти”, придется подумать о перемещении нашей планеты на более гостеприимную орбиту, а то и о скачке в параллельную Вселенную – если только она существует. По словам Дайсона, мысль, что мы заперты в одной-единственной Вселенной, вызывает у него клаустрофобию.)
В своих мемуарах Дайсон вспоминает об идиллических временах молодости, когда сразу после Второй мировой он оказался окружен патриархами американской теоретической физики. В 1948 году, когда его совместная с Гансом Бете работа в Корнуоллском университете подходила к концу, юного Дайсона пригласили в Институт фундаментальных исследований в Принстоне. Тем временем Бете уговорил его посетить ежегодную летнюю школу для физиков под патронажем Университета Мичигана в Анн-Арборе – пятинедельное собрание, где молодым физикам давали возможность послушать лекции светил науки, задать вопросы и даже вступить с ними в спор. За две недели до начала школы Дайсон встретил Ричарда Фейнмана, который сообщил ему, что направляется на машине в Альбукерк, штат Нью-Мексико, и позвал съездить с ним.
Четыре дня подряд Дайсон и Фейнман беседовали и спорили. Их философские взгляды на физику были взаимно противоположны: Дайсон верил в уравнения, Фейнман – в картину, которая может уложиться в голове; он обладал почти мистическим убеждением в единстве природы и физических законов – том единстве, которое Эйнштейн безуспешно искал последние годы своей жизни – тогда как Дайсон просто нуждался в теории, которая будет работать в отведенных ей пределах. Фейнман не доверял математике Дайсона, а Дайсон относился с подозрением к интуиции Фейнмана. Фейнман сформулировал интуитивную картину того, что позже станет известно как квантовая электродинамика – это правила, управляющие взаимодействием частиц, для которых были придуманы знаменитые фейнмановские диаграммы. Теперь они – привычный инструмент любого специалиста по элементарным частицам. С другой стороны, было известно, что Джулиан Швингер разработал детальную, но, как считало большинство заинтересованных физиков, абсолютно неподъемную математическую теорию таких процессов и собирался представить результаты в летней школе Анн-Арбора. И вот Дайсон прибыл в Анн-Арбор на автобусе фирмы “Грэйхаунд” и отправился слушать Швингера. После лекции он решил поспорить с мэтром. Швингер был дружелюбен.
Я мог говорить с ним как угодно долго, и из этого разговора лучше, чем из лекции, понял, из чего появилась его теория. На лекциях она выглядела ограненным бриллиантом, ярким и ослепительным. В приватной беседе теория предстала передо мной необработанной, какой ее видел сам Швингер, прежде чем приступить к огранке и полировке. Теперь я куда лучше мог разобраться в ходе его мыслей.
Я извел на вычисления сотни страниц, пытаясь решать простые задачи методом Швингера. К концу летней школы я почувствовал, что понимаю теорию Швингера как никто другой – за исключением, может быть, самого Швингера. Ради этого, пожалуй, стоило приезжать в Анн-Арбор.
Уезжая, Дайсон снова сел на автобус “Грэйхаунд” и продолжил свое путешествие на запад – с недолгими остановками в Юте и Калифорнии. Озарение пришло на обратном пути.
За три дня и три ночи безостановочной езды я добрался до Чикаго. Все это время мне было не с кем поговорить. Автобус слишком трясло, из-за чего читать я тоже не мог, так что оставалось сидеть и смотреть в окно. Мало-помалу я впал в необременительный ступор. Когда на третий день мы вяло ползли через Небраску, что-то определенно случилось. Я не думал о физике две недели подряд, а теперь физика вызвала своего рода взрыв у меня в сознании. Картинки Фейнмана и уравнения Швингера начали выстраиваться в голове так ясно, как никогда раньше. Впервые я мог свести их вместе. Час или два я складывал и перетасовывал отдельные детали. Наконец я понял, как именно они примыкают друг к другу. У меня не было ни карандаша, ни бумаги, но все было настолько очевидно, что мне больше не требовалось что-либо записывать. Фейнман и Швин-гер просто смотрели на одни и те же вещи с разных сторон. Соединив их методы, вы получаете квантовую электродинамику со швингеровской математической точностью и фейнмановской гибкостью. В конце концов возникнет теория “срединных территорий” (так Дайсон называл состояния вещества между крупномасштабным – вроде небесных тел, которыми управляет гравитация, – и микроскопическим: неуловимыми и короткоживущими субатомными частицами, встречающимися среди продуктов высокоэнергетических столкновений и в атомном ядре. Последними управляют так называемые сильные взаимодействия). Мне потрясающе повезло оказаться единственным человеком, который имел продолжительную беседу как со Швингером, так и с Фейнманом, и я действительно понял, чем занимается каждый из них. В час озарения я был особенно благодарен Гансу Бете, который сделал это возможным. Весь остаток дня, глядя на закат над прерией, я выстраивал в голове структуру будущей статьи, которую напишу, как только доберусь до Принстона.
Следующий рассказ о Дайсоне, математике-виртуозе, взят из мемуаров Джереми Бернштейна. Бернштейн пришел в Институт фундаментальных исследований молодым физиком-теоретиком в 1957 году и начал работать с Марвином Гольдбергером (известным под именем Мёрф), позднее – президентом Калифорнийского технологического института. В 1957 году Бернштейн и Гольдбергер как раз вступили в борьбу с задачей электромагнитных взаимодействий фундаментальных частиц.
Было, по меркам Института, раннее утро. Большинство сотрудников работало по ночам и не появлялось раньше полудня. Мерф явился в институт с отвратительного вида интегральным уравнением. Не важно, что это было – главное, что оно выглядело весьма неопрятно. Мерф разделил члены уравнения на две группы: одну обозначил G(x), что расшифровывалось как “хорошие (Good) по иксу”, а вторую – Н(х), что означало “ужасные (Horrible) по иксу”. Тут появился Дайсон с чашкой кофе в руках и принялся разглядывать наше уравнение. Мерф спросил: “Фримен, вам когда-то попадалось что-нибудь вроде этого?” Дайсон ответил, что нет, но, похоже, этим утром он был особенно в форме. Он переписал формулы и исчез. Примерно через двадцать минут он вернулся с решением. Позже его заново вывели другие люди, и уравнение носит их имя, однако тогда я увидел то, что показалось мне – и все еще кажется – невероятным колдовством. Год за годом я наблюдал, как Дайсон решает самые разные математические задачи, и до сих пор не могу себе представить, что значит думать с такой скоростью и такой математической четкостью. Кажется ли при этом, что все остальные заторможены? Такому нельзя научиться, по крайней мере я точно не смогу. Зато я достаточно обучен математике, чтобы радоваться каждый раз, когда такое происходит.
Bernstein Jeremy, The Life It Brings (Ticknor and Fields, New York, 1987). Мемуары Фримена Дайсона (Freeman Dyson) называются Disturbing the Universe (Harper and Row, New York, 1979).
Мост входит в резонанс
Хендрик Казимир, известный голландский физик и в течение многих лет глава исследовательского отделения компании Philips в Эйндховене, в молодости успел поработать в нескольких знаменитых европейских научных центрах. Особую привязанность он испытывал к Нильсу Бору – как, впрочем, и все, кто с Бором сотрудничал. Позже он вспоминал, какими лукавством и чувством юмора обладал знаменитый физик:
Рядом с Институтом Бора находился водоем – я затрудняюсь назвать его прудом или озером – трехкилометровой длины и 150–200 метров шириной, называвшийся Сортедамсе. Однажды Бор взял меня с собой на прогулку вокруг озера и повел на один из мостов, которых там было несколько. “Смотрите, – произнес он, – я покажу вам любопытный пример явления резонанса”. Парапет моста был устроен так: каменные столбики, метр двадцать высотой и на расстоянии метра три друг от друга, скреплялись у вершины прочными железными стержнями (или, скорее, трубками), уходящими в глубь камня. На полпути между столбиками в мост было вмуровано железное кольцо, а от него в обе стороны расходились две массивные цепи, каждую из которых особый хомут у вершины столба прикреплял к железному стержню. Бор дернул за звено неподалеку от бруска и оставил его раскачиваться, и тут, к моему удивлению, звено на другом конце цепи закачалось тоже. “Замечательный пример резонанса”, – сказал Бор. Я стоял потрясенный, и тут Бор внезапно рассмеялся. Разумеется, ни о каком резонансе не могло быть и речи: силы связывания были ничтожны, и колебания легко гасились. Просто Бор, одновременно с раскачиванием цепи, успел провернуть стержень, который, хотя и уходил в глубь столбиков, не был там закреплен – поэтому колебаться стали звенья на обоих концах сразу. Я слегка скис оттого, что сразу не послушался доводов своего здравого смысла, но Бор меня утешил тем, что на этот же трюк попался и Гейзенберг, и тут же прочел целую лекцию про резонанс.
В Институте Бора мост прозвали Резонансным Мостом. Казимир использовал этот рассказ, чтобы подчеркнуть не только юмор Бора, но еще и его практическую сообразительность. “В молодости, – пишет Казимир, – он сам ставил эксперименты на тему поверхностного натяжения, и построил большую часть приборов своими руками, а его понимание порядков физических величин распространялось на все масштабы – от атомного ядра до рутинных инженерных задач”.
Из: Casimir H.RB., Haphazard Reality: Half a Century of Science (Harper and Row, London and New York, 1983,).