Текст книги "Механизмы регуляции вегетативных функций организма"
Автор книги: Победа Глазырина
Соавторы: Николай Карауловский,Татьяна Бурмистрова
Жанр:
Медицина
сообщить о нарушении
Текущая страница: 7 (всего у книги 9 страниц)
Гормоны поджелудочной железы – инсулин, щитовидной железы – тироксин усиливают всасывание моносахаридов и аминокислот. Адреналин – гормон мозгового вещества надпочечников – тормозит всасывание глюкозы. Паратгормон, выделяемый паращитовидными железами, усиливает всасывание кальция. Гипофиз регулирует деятельность всех желез внутренней секреции путем выделения в кровь тройных гормонов и, таким образом, косвенно влияет на процесс всасывания.
Нервная регуляция процессов всасывания. В опытах на животных установлено, что раздражение различных структур мозга – коры больших полушарий, гипоталамуса, лимбической системы, ретикулярной формации, подкорковых узлов – может вызывать изменение всасывания слизистой оболочкой кишечника аминокислот, моносахаридов, жиров, солей, воды (Я. П. Скляров, 1966; Р. О. Файтельберг, 1970; П. Г. Богач, 1973, и др.). Большое значение в регуляции этих процессов имеет гипоталамус. Возбуждение вентромедиальных ядер гипоталамуса и серого бугра усиливает всасывание в кишечнике, а возбуждение задних ядер гипоталамуса тормозит процесс всасывания. Возбуждение гипоталамических ядер, регулирующих процессы всасывания, зависит от импульсации, идущей с рецепторов желудочно-кишечного тракта и с рецепторов сосудистой системы, чувствительных к изменению химизма крови. Доказано, например, что при увеличении концентрации глюкозы в крови происходит возбуждение хеморецепторов каротидного тельца и рефлекторно снижается скорость всасывания глюкозы в изолированном кишечнике по Тири – Велла (Р. О. Файтельберг, 1976).
Передача регулирующих влияний гипоталамуса на слизистую кишки осуществляется через вегетативную нервную систему – ее парасимпатический и симпатический отделы. Об этом свидетельствуют опыты с раздражением и перерезкой блуждающих и чревных нервов.
При раздражении блуждающих нервов всасывание усиливается, при перерезке – тормозится. При раздражении чревных нервов всасывание уменьшается; при перерезке – усиливается. При блокаде солнечного сплетения, как и при перерезке чревных нервов, всасывание усиливается.
Регулирующие влияния гипоталамуса на процессы всасывания могут передаваться и через гуморальное звено, т.е. через указанные выше железы внутренней секреции. Таким образом, нервная и гуморальная регуляции всасывания, как и в случаях регуляции других вегетативных функций, проявляется в виде единой нервно-гуморальной регуляции.
Контрольные вопросы
1. К регуляции каких процессов сводится регуляция интенсивности всасывания?
2. Какой отдел ЦНС играет ведущую роль в регуляции всасывания?
3. По каким нервам передаются на слизистую кишечника влияния центров, регулирующих всасывание?
4. Перечислите гормоны желез внутренней секреции, участвующие в регуляции всасывания.
5. Какой интестинальный гормон регулирует движение ворсинок?
6. Каков механизм влияния местных механических и химических раздражителей на всасывание в кишечнике?
7. Откуда исходят сигналы обратной связи в механизме регуляции всасывания?
Проблемные задачи
27. У собаки изучалось всасывание из изолированного и денервированного отрезка тонкого кишечника изотонического раствора хлористого натрия в исходных условиях и на фоне внутривенного введения крови, взятой у другой собаки на максимуме пищеварения. Во втором случае всасывание изотонического раствора хлористого натрия из изолированной петли кишки усилилось. Какой механизм регуляции всасывания мог проявиться в этом случае?
28. Во время акта еды и при следующем пищеварении у собаки наблюдается увеличение всасывания аминокислот из отрезка тонкой кишки, изолированного по методу Тири – Велла. Какой механизм регуляции может обусловить эту реакцию?
29. У собаки, предварительно накормленной белковой пищей, через ангиостомическую канюлю периодически берут пробу крови из воротной вены и определяют содержание в ней аминокислот. Одновременно ведется регистрация моторики кишечника электрографическим методом. После подкожного введения адреналина у собаки обнаруживается угнетение моторики кишечника, а затем значительное снижение содержания аминокислот в исследуемой крови. Могло ли торможение моторики в данном случае привести к снижению всасывания аминокислот? Поясните ответ.
ФУНКЦИОНАЛЬНАЯ СИСТЕМА ПИЩЕВОГО ПОВЕДЕНИЯ
Пищевое поведение – комплекс целенаправленных действий человека или животного, обеспечивающий поиск пищи, сближение с пищевым объектом, непосредственный захват пищи с последующим проглатыванием и обработкой в пищеварительном канале, т.е. вся совокупность реакций, осуществляющих перенос необходимых пищевых продуктов из внешней среды внутрь желудочно-кишечного тракта и пищеварительные функции.
В осуществлении такой целенаправленной деятельности принимает участие сложная функциональная система, включающая многие центральные нервные аппараты и большой комплекс периферических органов: скелетные мышцы, желудочно-кишечный тракт и ряд вегетативных систем, необходимых для энергетического обеспечения пищевого поведения. Графически такая система представлена на схеме 12.
Системообразующим фактором в функциональной системе пищевого поведения, т.е. полезным приспособительным результатом, является сохранение во внутренней среде организма постоянной концентрации пластического и энергетического материала.
Функциональная система пищевого поведения складывается на основе пищевой мотивации и обеспечивается деятельностью пищевого центра. И. П. Павлов определил пищевой центр как «нервный регулятор принятия жидких и твердых веществ, нужных для жизненного химизма» (Павлов И. П. Двадцатилетний опыт. Сборник статей, докладов, лекций и речей. М., 1951, с. 100), и подчеркнул чрезвычайную сложность и динамичность его структуры.
В конструктивном отношении пищевой центр представляет собой динамически складывающееся функциональное объединение различных структур мозга, участвующих в организации поиска пищи и акта еды.
На уровне продолговатого и спинного мозга организуются такие простые врожденные рефлексы, как глотание, жевание, рвота, слюноотделение, отделение желудочного и панкреатического сока, изменение моторики желудка и кишечника.
В промежуточном мозге – в гипоталамусе – расположены центры, имеющие более важную роль в регуляции пищевого поведения. Установлено, что в латеральных ядрах гипоталамуса находится центр питания, а в вентромедиальных – центр насыщения (Ананд и Бробек, 1964). Электрическое раздражение у животного ограниченного участка в области вентромедиальных ядер гипоталамуса вызывает отказ от еды даже в тех случаях, когда животное долго не получало пищи. Наоборот, разрушение этих ядер вызывает гиперфагию, увеличение массы и ожирение. Раздражение в области латеральных ядер гипоталамуса приводит к усиленному поглощению пищи, а их разрушение – к отказу от еды; животное может погибнуть от голода, хотя пища находится рядом с ним.
Гипоталамические центры питания и насыщения относятся к мотивационным центрам. Для них характерна высокая чувствительность к изменению в крови концентрации глюкозы, некоторых метаболитов цикла Кребса и интестинальных гормонов (прямое действие на гипоталамические центры, раздражение хеморецепторов сосудов и тканей) и импульсации с рецепторов пищеварительной трубки (через блуждающие и чревные нервы) при изменении интенсивности гидролиза питательных веществ и степени растяжения желудка и кишечника химусом.
Импульсация с рецепторов пищеварительной трубки формирует мотивацию голода по принципу «предупреждения», задолго до того, как концентрация питательных веществ существенно изменится не только в тканях организма, но и в кровеносном русле. Но это воздействие, как правило, нестабильно и может быть подавлено другими, более сильными раздражителями (например, болевыми). Включение гуморальных факторов обеспечивает доминантный характер такой мотивации (П. К. Анохин, 1970; К. В. Судаков, 1971).
Мотивационные центры гипоталамуса имеют обширные связи с ретикулярной формацией ствола и лимбической системой, через которые в формирование пищевой мотивации включается большой комплекс корково-подкорковых аппаратов. Образования лимбической системы (миндалевидный комплекс, ядра перегородки, гиппокамп) меняют уровень активности гипоталамических мотивационных центров и обусловливают соответствующий эмоциональный фон поведенческих реакций.
Реализация целенаправленного пищевого поведения возможна только при включении в структуру пищевого центра многих образований новой коры: лобных долей, третичных зон височной, теменной и затылочной областей двигательной зоны. Кора больших полушарий обеспечивает активный поиск информации о месте нахождения пищи, оценку возможности добывания ее и выбор оптимального варианта поведения. Иначе говоря, в проекционных и ассоциативных зонах коры больших полушарий совместно с таламическими ядрами происходит оценка обстановочных и пусковых афферентных сигналов в соответствии с данным мотивационным возбуждением и предыдущим опытом индивидуума (афферентный синтез).
На основе афферентного синтеза с участием всех структур пищевого центра формируется целенаправленное пищевое поведение – внешнее звено саморегуляции – и ряд вегетативных реакций, направленных, с одной стороны, на энергетическое обеспечение поведенческих реакций (изменение минутного объема кровотока, перераспределительные сосудистые реакции, изменение легочной вентиляции и др.), с другой – на перераспределение питательных веществ в организме и приспособление системы пищеварения к переработке пищи до состояния, в котором она может быть усвоена, – внутреннее звено саморегуляции (К. В. Судаков, 1976).
В многочисленных экспериментах убедительно показано участие гипоталамических центров, лимбической системы и коры больших полушарий не только в формировании поведенческих реакций, но и в осуществлении комплекса пищеварительных реакций как при прямом раздражении данных структур мозга, так и при естественном пищевом поведении.
При стимуляции центров гипоталамуса, миндалин, премоторной области коры у животных наблюдается облизывание, жевание, глотание; выделяется слюна, желудочный и панкреатический сок; изменяется интенсивность секреции и выхода желчи, моторики желудка и кишечника, всасывания. Участие коры больших полушарий в регуляции всех пищеварительных функций желудочно-кишечного тракта наиболее адекватно доказывается путем выработки условных рефлексов.
Таким образом, в результате афферентного синтеза строится программа и осуществляется целенаправленная деятельность животного или человека, включающая внешнее и внутреннее звенья саморегуляции. Иначе говоря, формируется эфферентный интеграл, обеспечивающий достижение полезного приспособительного результата. В эфферентный интеграл входят не только исполнительные нервные центры различных отделов мозга, но и железы внутренней секреции, через гуморальное звено регуляции они поддерживают развившуюся деятельность длительное время. Формирование эфферентного интеграла устраняет многочисленные «степени свободы» организма и заставляет выполнять конкретную форму деятельности.
Одновременно с выработкой программы деятельности в мозге формируется еще один рабочий механизм функциональной системы пищевого поведения – акцептор результатов действия. Акцептор результатов действия – временное образование, сформированное экстренно по поводу определенной ситуации. В нем сравнивается «сенсорная модель» результата с наличным результатом. В случае функциональной системы пищевого поведения информация о результате поступает в акцептор в виде афферентных потоков нервных импульсов с дистантных рецепторов и рецепторов двигательного аппарата (оценка эффективности двигательного акта), с рецепторов ротовой полости, желудка и кишечника (оценка поступающей пищи по объему и вкусовым свойствам, оценка эффективности пищеварительного процесса), с хеморецепторов сосудов и тканей (оценка концентрации питательных веществ во внутренней среде и состояния гомеостаза). Кроме афферентных потоков нервных импульсов информация о характере деятельности поступает в акцептор и через гуморальные каналы обратной связи (воздействие на хеморецепторные клетки гипоталамуса гормонов энтериновой системы, глюкозы, метаболитов).
За счет афферентной импульсации с дистантных рецепторов и рецепторов желудочно-кишечного тракта пищевое поведение подвергается коррекции и может сниматься задолго до восстановления концентрации питательных веществ в крови – сенсорное насыщение. Вслед за сенсорным, наступает истинное, или метаболическое, насыщение, обеспечивающее восстановление исходного уровня питательных веществ в организме (П. К. Анохин, 1970; К. В. Судаков, 1971).
В формировании чувства насыщения, в переключении целенаправленного поведения, характерного для голодного животного, на целенаправленное поведение сытого животного в последнее время, наряду с нервной сигнализацией, большее значение придают энтериновой гормональной системе.
Прохождение пищи через верхние отделы пищеварительного аппарата вызывает выделение интестинальных гормонов, которые снимают аппетит (арэнтерин), стимулируют энергетический обмен (динэнтерин), вызывают физиологическую дегидратацию (гастрин, секретин). Все эти эффекты через вентромедиальные ядра гипоталамуса влияют на появление чувства сытости (А. М. Уголев, 1978).
«Нервная модель» результата пищевого поведения закрепляется мозгом в аппаратах памяти и используется в последующих поведенческих реакциях.
Контрольные вопросы
1. Дайте определение понятия пищевой центр.
2. Назовите отделы ЦНС, участвующие в регуляции пищевого поведения.
3. Перечислите факторы, влияющие на функциональное состояние центров питания и насыщения в гипоталамусе.
4. Какова роль коры больших полушарий в регуляции пищевого поведения?
5. Что понимают под сенсорным и метаболическим насыщением?
6. С каких рецепторов тела поступает в пищевой центр информация о результатах действия функциональной системы пищевого поведения?
7. Какие рабочие органы включаются в функциональную систему пищевого поведения?
Проблемные задачи
30. У собаки выработан прочный условный пищевой рефлекс на свет. У голодной собаки при включении света наблюдается хорошо выраженное слюноотделение и движение к кормушке, у сытой собаки эти реакции «на свет» не возникают. Какой компонент, необходимый для формирования пищевого поведения, является различным в этих случаях?
31. У собаки условный сигнал «звонок» постоянно подкреплялся дачей 20 г сухарей и при изолированном действии вызывал хорошо выраженную пищевую реакцию. Подмена хлеба мясом в одном из опытов (методика «сюрприза») вызвала у собаки ориентировочно-исследовательскую реакцию и временный отказ от еды. Чем объяснить такую реакцию животного с точки зрения функциональной системы пищевого поведения?
Г л а в а 6. Терморегуляция.
Механизмы регуляции теплопродукции и теплоотдачи
Высшие животные и человек относятся к гомойотермным организмам. Температура «ядра» тела (центральная нервная система, внутренние органы, часть скелетных мышц) у этих организмов является одной из важных констант гомеостаза и поддерживается на определенном уровне, несмотря на значительные изменения температуры внешней среды и воздействие других факторов. Это очень важное приобретение эволюции, гарантирующее организму стабильное течение основных жизненных функций и позволяющее расширить зону обитания.
Температура ядра тела – константа гомеостаза и определяет скорость биохимических реакций, конформационных изменений биологически важных макромолекул, а следовательно, и уровень активности всех клеток органов и тканей организма. Оптимум метаболизма и функций сложноорганизованных тканей ядра тела наблюдается при сравнительно небольших колебаниях температуры, которая зависит от баланса процессов теплопродукции в организме в целом и теплоотдачи через оболочку толщиной в 2,5—3 см (кожа, подкожная клетчатка, часть скелетных мышц). В условиях стационарного состояния организма процессы теплопродукции равны процессам теплоотдачи. При переходных режимах теплообмена это равенство может нарушаться.
Теплообразование (химическая терморегуляция) обусловлено в основном экзотермическими обменными реакциями двух типов: окислительными реакциями и реакциями расщепления макроэргических связей АТФ.
Величина теплопродукции в животном организме прежде всего определяется состоянием скелетной мускулатуры (главный эффектор системы химической терморегуляции). Теплопродукция за счет сократительной деятельности мышц называется сократительным термогенезом. Теплопродукция всех немышечных органов и тканей (печень, почки, бурая жировая ткань и др.) и часть теплопродукции скелетных мышц, не связанная с их сокращением, называется несократительным термогенезом. В состоянии физиологического покоя в комфортных условиях среды доля несократительного термогенеза сравнительно велика. При остром охлаждении соотношение между несократительным и сократительным термогенезом меняется в сторону последнего. При адаптации к холоду теплопродукция вновь относительно возрастает за счет несократительного термогенеза.
Повышение теплопродукции при химической терморегуляции с целью поддержания нормальной температуры тела в естественных условиях обитания используется животным только как экстренная реакция на охлаждение. Длительное приспособление к холоду таким путем вряд ли имеет место, так как поддержание жизнедеятельности даже в условиях покоя и температурного комфорта среды требует значительных затрат энергии в силу низкого КПД биологической работы (К. П. Иванов, 1972). Гомойотермные организмы приспосабливаются к длительному пребыванию в условиях низкой температуры среды путем увеличения теплоизоляции и изменения поведения.
При сравнительно напряженном метаболизме организм животного имеет малую теплоемкость, поэтому образующееся при окислительных процессах и работе клеток тепло должно постоянно выводиться из организма. Это важнейшая функция теплорегуляции. Перенос тепла от органов с высоким метаболизмом к поверхностным частям тела (к оболочке) осуществляется кровью. С поверхности тепло отдается путем конвекции, радиации и испарения (физическая терморегуляция). Интенсивность теплоотдачи зависит от градиента температуры на границе организм – среда, размеров и свойств поверхности тела, влажности и движения воздуха. Основными эффекторами системы физической терморегуляции у человека являются гладкие мышцы кровеносных сосудов и потовые железы.
В естественных условиях существования тепловой баланс организма может изменяться при воздействии температуры окружающей среды, при физических нагрузках, при приеме больших количеств воды и пищи с разной температурой. Во всех случаях восстановление теплового баланса возможно тремя способами: а) изменением теплопродукции до уравнивания ее с измененной теплоотдачей; б) восстановлением прежнего уровня теплоотдачи; в) перемещением в среде с целью поиска комфортных температурных условий. Обычно гомойотермные организмы одновременно используют все способы.
Терморегуляция – совокупность механизмов, обеспечивающих сохранение постоянной температуры тела
(нормального теплосодержания системы) в условиях изменения температуры среды. Терморегуляция направлена на предупреждение нарушений теплового баланса организма или на его восстановление, если изменения уже произошли.
Механизм регуляции теплового баланса представлен на схеме 13.
Поддерживается постоянная температура тела сложной иерархически организованной системой нервных центров, особое положение в этой системе занимают центры терморегуляции гипоталамуса. Разрушение гипоталамуса делает животное пойкилотермным, т.е. неспособным сохранять постоянную температуру тела. В гипоталамусе имеется две области, раздражение которых приводит к изменению терморегуляции. В задней части гипоталамуса расположен центр регуляции теплопродукции. Его разрушение делает животное неспособным переносить холод. В передней части гипоталамуса расположен центр регуляции теплоотдачи. При разрушении этого центра животное хорошо переносит холод, на действие холода отвечает увеличением теплопродукции, но быстро перегревается при повышении температуры окружающей среды. Структуры переднего и заднего гипоталамуса, принимающие участие в терморегуляции, широко взаимодействуют и находятся между собой в сложных функциональных отношениях. Поэтому их можно объединить в единый центр, контролирующий все процессы терморегуляции.
Терморегуляторный центр гипоталамуса отличается хорошо выраженной терморецепцией, т.е. нейроны этого центра могут изменять свое состояние при изменении температуры крови, притекающей к мозгу. Наличие терморецепторной функции ядер гипоталамуса доказывается опытами с прямым охлаждением или нагреванием соответствующего участка путем вживления в мозг животного термодов. При этом наблюдаются изменения электрической активности гипоталамических нейронов и возникновение реакций, направленных на изменение теплопродукции и теплоотдачи: расширение сосудов при нагревании, мышечная дрожь и сужение сосудов при охлаждении. Порог температурной чувствительности «Холодовых» и «тепловых» нейронов гипоталамуса довольно низкий. По данным большинства исследователей, частота импульсации в этих нейронах изменяется при снижении или повышении температуры на 0,5—0,2°С, а по данным лаборатории терморегуляции Института физиологии им. И. П. Павлова АН СССР, пороговым может быть сдвиг температуры гипоталамуса в пределах 0,1 СС. В этой лаборатории в опытах на кроликах, спокойно сидящих в термонейтральной зоне среды, установлены непрерывные нерегулярные колебания температуры гипоталамуса вокруг какой-то средней величины («установочной точки») с амплитудой 0,1—0,3°С и периодом от 10 до 20 мин. Колебания температуры гипоталамуса были синхронны колебаниям температуры артериальной крови и тонуса сосудов уха (К. П. Иванов, 1972).
Очевидно, эти колебания отражают непрерывную работу центра терморегуляции по поддержанию нормальной температуры тела. Центр как физиологический термостат, используя отрицательную обратную связь, работает по принципу рассогласования.
Термочувствительные нейроны гипоталамуса не только обладают прямой температурной чувствительностью, но и способны интегрировать температурные сигналы от других термочувствительных структур тела: Холодовых и тепловых рецепторов кожи, подкожной клетчатки, кожных сосудов, внутренних органов и, возможно, с термочувствительных нейронов других отделов мозга. Процесс суммации имеет сложный нелинейный характер, зависящий не только от абсолютных значений градиента температуры, но и от скорости его изменений, характера теплового потока через оболочку тела. Таким образом, температурный гомеостаз регулируется центрами терморегуляции гипоталамуса не по температуре одного какого-либо отдела (части) тела, будь то температура гипоталамуса, прямой кишки, кожи и т.д. В выработке управляющего сигнала и включении терморегуляторных реакций, очевидно, имеет место синтез температурных сигналов от разных частей тела, и управление по рассогласованию всегда сочетается с управлением по возмущению.
Терморегуляторные центры гипоталамуса находятся в сложных субординационных взаимоотношениях со структурами лимбико-ретикулярного комплекса, зрительных бугров, подкорковых ганглиев и коры больших полушарий, формирующих изменение поведения в условиях среды, угрожающих сдвигом температурного гомеостаза.
Терморегуляция при изменениях температуры внешней среды
При действии холода происходит учащение импульсации с холодовых рецепторов кожи в центры терморегуляции гипоталамуса. В ответ на это воздействие наблюдается усиление сократительного термогенеза: а) развивается мышечная дрожь, б) нарастает мышечный тонус, в) усиливается общая двигательная активность. Эти реакции реализуются через супраспинальные двигательные центры и спинномозговые мотонейроны.
Одновременно через симпатический отдел вегетативной нервной системы и железы внутренней секреции происходит качественная перестройка системы термогенеза. При действии холода нарастает выработка катехоламинов в мозговом веществе надпочечников, тироксина в щитовидной железе, тропных гормонов в гипофизе. Норадреналин, адреналин, тироксин активируют ферменты, катализирующие липолиз и гликогенолиз в бурой жировой ткани, печени, мышцах. В крови повышается концентрация свободных жирных кислот и глюкозофосфатов, в клетках усиливается окисление. Под влиянием свободных жирных кислот, адреналина и тироксина происходит разобщение процессов окисления и фосфорилирования. Большая часть энергии окисления превращается в тепло. Физиологическая эффективность теплообразования увеличивается, теплопродукция нарастает.
Переход на преимущественное окисление жиров при действии холода биологически целесообразен, так как жиры образуют, основной запас химической энергии в организме, при их катаболизме не образуется токсических веществ и не нарушается гомеостаз, продукты окисления жиров выполняют роль своеобразных АТФаз и облегчают освобождение дополнительных количеств энергии из макроэргов (В.В.Хаскин, 1975).
Усиленный липолиз и окисление жирных кислот на холоде под влиянием симпатической нервной системы и катехоламинов интенсивно идет в бурой жировой ткани. Тепловыделение в ней сопоставимо с горением. Бурую жировую ткань поэтому называют специализированным органом теплопродукции. Масса бурого жира у взрослого человека составляет не более 0,1% от массы тела, но роль его в теплопродукции существенна. После удаления бурого жира устойчивость животных к холоду снижается.
Предполагают, что при окислении бурого жира вырабатываются какие-то вещества («нормальные пирогены»), стимулирующие несократительный термогенез в скелетных мышцах и других (немышечных) органах.
За счет сократительного и несократительного термогенеза теплопродукция на холоде у человека может увеличиваться в 3—4 раза.
Возбуждение терморегуляторных центров гипоталамуса при действии холода наряду с увеличением сократительного и несократительного термогенеза приводит к уменьшению теплоотдачи путем рефлекторного усиления тонуса периферических сосудов и общих изменений в системе кровообращения и дыхания. Влияние на сосудистый тонус может осуществляться как через бульбарный отдел сосудодвигательного центра, так и непосредственно через симпатические нейроны спинного мозга. При действии холода мелкие артерии и артериолы кожи суживаются, открываются артериовенозные анастомозы, масса крови, циркулирующей в оболочке тела, уменьшается, тепло консервируется в ядре тела. Градиент температуры на Границе организм – среда падает, и потери тепла организмом за счет проведения и излучения снижаются. Урежение дыхания на холоде уменьшает теплоотдачу за счет уменьшения массы нагреваемого вдыхаемого воздуха и уменьшения испарения воды с поверхности дыхательных путей. У животных эти реакции координируются с пиломоторным рефлексом, изменяющим наклон волос шерсти и увеличивающим теплоизоляционный воздушный слой в шерстном покрове.
При действии тепла поддержание температурного гомеостаза осуществляется главным образом за счет регуляции интенсивности теплоотдачи, снижение теплопродукции по сравнению с уровнем основного обмена незначительно. Повышение температуры среды воспринимается тепловыми рецепторами кожи, подкожной клетчатки, кожных сосудов. Импульсация с них в центры терморегуляции гипоталамуса увеличивается. В ответ на эту импульсацию наблюдается рефлекторное расширение сосудов кожи вследствие снижения симпатического вазоконстрикторного тонуса. Объем крови, циркулирующей в оболочке, возрастает, тепло энергично переносится из мест теплопродукции к месту теплоотдачи. Температура кожи повышается и если температура кожи становится выше температуры внешней среды, то отдача тепла путем проведения и излучения увеличивается.
Одновременно с расширением сосудов при действии тепла наблюдается рефлекторное усиление секреторной функции потовых желез. Потовые железы иннервируются холинэргическими симпатическими нервными волокнами, нейроны которых расположены в грудном и поясничном отделах спинного мозга и возбуждаются под влиянием нервных импульсов, идущих из центров терморегуляции гипоталамуса. Пот с поверхности кожи может «снимать» от 80 до 600 ккал/ч (330—2500 кДж/ч) в зависимости от интенсивности его выделения и испарения. В условиях высокой температуры и низкой влажности воздуха отдача тепла путем испарения пота – единственный надежный способ регуляции теплоотдачи и теплового баланса организма. В насыщенном водяными парами теплом воздухе потоотделение не эффективно для теплоотдачи, так как испарение жидкости с поверхности кожи ухудшается. В таких условиях теплоотдача затрудняется и температурный гомеостаз может нарушиться.
У животных, не имеющих потовых желез, при высокой температуре среды развивается рефлекторная одышка – терморегуляторное полипноэ. Учащение дыхания до 120—160 дыхательных движений в минуту (2—2,7 Гц) сопровождается уменьшением его глубины, открыванием рта, высовыванием языка, отделением большого количества жидкой слюны. Все это ведет к испарению с поверхности слизистой рта и верхних дыхательных путей значительного количества жидкости и увеличению теплоотдачи.
Таким образом, любые сдвиги температуры внешней среды по сравнению с термонейтральной зоной включают рефлекторные и гуморальные механизмы терморегуляции, предупреждающие нарушение температурного гомеостаза ядра тела. Подобный процесс терморегуляции (управление по возмущению) в нормальных условиях при изменении температуры среды занимает ведущее положение.
Возбуждение с терморецепторов кожи через сенсорные переключательные ядра зрительных бугров передается в соматосенсорную зону коры больших полушарий. Кора больших полушарий, участвуя в переработке температурной информации с рецепторов тела, обеспечивает условнорефлекторную регуляцию процессов теплопродукции и теплоотдачи. Наиболее сильные терморегуляторные реакции вызывают природные условные раздражители, сопровождающие на протяжении всей жизни организма его охлаждение или нагревание (вид льда, снега, яркое солнце и т.п.). Совместно с гипоталамическими центрами и лимбической системой кора больших полушарий участвует также в организации мотивационного возбуждения и поведения, направленного на поиск среды с комфортной температурой. У человека зрительные бугры и кора полушарий ответственны за формирование субъективного ощущения холода или тепла.