Текст книги "Механизмы регуляции вегетативных функций организма"
Автор книги: Победа Глазырина
Соавторы: Николай Карауловский,Татьяна Бурмистрова
Жанр:
Медицина
сообщить о нарушении
Текущая страница: 8 (всего у книги 9 страниц)
Контрольные вопросы
1. Что такое химическая терморегуляция?
2. Что такое физическая терморегуляция?
3. Какие процессы обеспечивают сократительный термогенез?
4. В чем суть несократительного термогенеза?
5. Перечислите способы отдачи тепла организмом.
6. Где расположены центры терморегуляции?
7. Опишите механизмы стимуляции гипоталамических центров терморегуляции.
8. Какими путями осуществляется регуляторное влияние гипоталамуса на уровень теплопродукции?
9. Какими путями осуществляется регуляторное влияние гипоталамуса на уровень теплоотдачи?
Проблемные задачи
32. Животному под кратковременным наркозом была произведена трахеотомия с целью перевода на искусственное дыхание. В дальнейшем условия опыта потребовали обездвиживания животного путем введения блокатора нервно-мышечной передачи возбуждения. Объясните, почему в данном опыте необходимо предпринять меры, направленные на борьбу со снижением температуры тела.
33. В эксперименте, проведенном на кролике при температуре среды 10°С, установлено повышение суммарной электрической активности мышц шеи и стопы, сужение сосудов ушей. Какие изменения химической и физической терморегуляции обусловили эти реакции?
34. У человека в закрытом помещении при температуре 30° С и 34° С и влажности 40% наблюдается покраснение кожи открытых поверхностей тела (лицо, шея, руки), обильное потоотделение. Температура кожи лба 33°С. Какие пути отдачи тепла с поверхности кожи эффективны в первом и втором случаях?
35. В морозный зимний день собака лежит «свернувшись в клубок», а летом в жару—«распластавшись», открыв живот. Чем объяснить позу животного характерную для различных температурных условий среды?
Глава 7. Регуляция выделительной и гомеостатической функций почек
Организм животных и человека нормально существует во внешней среде благодаря поддержанию постоянства внутренней среды. Гомеостаз может быть сохранен в норме при поддержании основных параметров внутренней среды и постоянном удалении продуктов обмена, вредных для организма.
В поддержании гомеостаза исключительную роль выполняют главные выделительные органы в организме человека и высших животных – почки. Анурия (прекращение выделительной функции почек) неминуемо ведет организм к смерти через четыре – шесть суток вследствие нарушения большинства констант гомеостаза и отравления организма продуктами азотистого обмена и солями калия, хотя при этом выделительная функция кожи и желудочно-кишечного тракта значительно увеличивается по сравнению с нормой. Почки участвуют в регуляции осмотического давления крови (осморегуляция), объема внеклеточной жидкости в организме (волюморегуляция), постоянства ионного состава крови, кислотно-щелочного равновесия и в экскреции жидких продуктов обмена, не пригодных для организма.
Функциональной единицей почки является нефрон. Современная наука рассматривает процесс мочеобразования как двуфазный процесс: процесс ультрафильтрации в клубочковом аппарате и процесс реабсорбции и секреции – в канальцевом отделе нефрона.
Фильтрация обеспечивается гидростатическим давлением крови в капиллярах клубочка и зависит от соотношения кровяного давления в капиллярах, внутрипочечного давления и онкотического давления белков плазмы. Из каждых 100 мл плазмы фильтруется 20 мл первичной мочи, всего за сутки фильтруется 150—180 л первичной мочи. Первичная моча идентична плазме крови, лишенной крупномолекулярных белков. Так как кровообращение в корковом слое почки благодаря ауторегуляции в значительной мере величина постоянная, то и уровень фильтрации при физиологических условиях является постоянным.
Образование конечной мочи в основном происходит путем обратного всасывания в канальцах воды и растворенных в ней веществ. Глюкоза, ионы натрия и другие вещества реабсорбируются благодаря активной деятельности почечного эпителия. Вода диффундирует через стенку канальцев пассивно, ее движением управляют осмотические закономерности. Активный транспорт ионов натрия через эпителий канальцев обеспечивает пассивный переход анионов хлора и гидрокарбонатов в том же направлении благодаря силам электростатического взаимодействия. Реабсорбция в проксимальных извитых канальцах сравнительно постоянна (облигатна), а в дистальных – изменчива, факультативна, так как именно здесь возможна регуляция ее интенсивности, определяемая изменением объема внеклеточной жидкости, уровнем осмотического давления, концентрацией в плазме крови различных ионов, и в первую очередь натрия.
Петля Генле и система прямых сосудов функционируют как поворотно-противоточная умножительная система, позволяющая почке выполнять очень большую работу по концентрированию мочи при сравнительно небольших энергетических затратах.
Канальцевый эпителий обладает не только реабсорбционной функцией, но и секреторной. Секреции подвергаются: калий при избытке его в рационе, ионы водорода, антибиотики, парааминогиппуровая кислота, некоторые посторонние коллоидные вещества, лекарства. Таким образом, после прохождения канальцев в конечной моче остаются истинные продукты выделения, некоторые чужеродные вещества и небольшой избыток обычно реабсорбируемых веществ. Объем конечной мочи составляет 1,5—2 л в сутки.
Наиболее изученными механизмами регуляции деятельности почек являются механизмы регуляции их водовыделительной и натрийуретической функции (схема 14).
Прямые эфферентные нервные влияния на функцию почек
Почки иннервируются симпатическими нервными волокнами – преимущественно ветвями чревных нервов, и парасимпатическими, в основном идущими в составе блуждающих нервов.
Раздражение симпатических эфферентных нервов почки приводит к сужению почечных сосудов наружной зоны коркового слоя и изменению фильтрации: сужение выносящей артериолы приводит к повышению фильтрационного давления и росту фильтрации, сужение приносящей артериолы сопровождается падением фильтрационного давления и фильтрации. В хронических опытах раздражение симпатических эфферентных нервов почки вызывает также стимуляцию реабсорбции воды, глюкозы, ионов натрия, увеличение секреции диодраста.
Прямые влияния симпатической нервной импульсации на канальцевые функции в этом случае подтверждаются тем, что их изменения не наблюдаются на противоположной почке и не совпадают по времени с сосудистыми эффектами. Результаты раздражения эфферентных волокон блуждающих нервов менее определенны.
Опыты с раздражением почечных нервов хотя и дают прямые доказательства существования эфферентных нервов, стимулирующих деятельность всех отделов нефрона, но не решают вопроса об удельном значении их в регуляции функций почек. Ответ на этот вопрос дает денервация почек. В лаборатории А. Г. Гинецинского (1958) исследовался объем фильтрации, реабсорбции и секреции интактной и денервированной почки у собак в обычных условиях и при нагрузке осмотически активными веществами, дегидратации и ацидозе. Во всех случаях функция денервированной почки несколько уменьшилась по объему, но в качественном отношении не отличалась от функции интактной почки.
Убедительны в этом отношении и опыты на собаках с аутотрансплантированной почкой (Г. М. Шпуга, 1947). Аутотрансплантация почки на шею (вторая почка удалялась) не вызывала у собаки никаких симптомов почечной недостаточности в течение 1,5—2 лет. Почка сохраняла способность реагировать значительным усилением объема диуреза на водную нагрузку и снижением диуреза, увеличением содержания мочевины и солей в моче при ограниченном поступлении воды в организм.
Из результатов опытов с денервацией становится очевидным, что в регуляции деятельности почек эфферентные нервные импульсы не единственные управляющие механизмы, особенно в условиях развитой гормональной регуляции. Это, однако, не умаляет роли нервных влияний в жизнедеятельности и развитии почки. В денервированной почке постепенно развиваются трофические нарушения, меняется чувствительность к катехоламинам. В случае денервации, произведенной на ранних этапах постнатального онтогенеза (опыты на щенках), развивается дегенерация почки вплоть до ее полной атрофии.
Гуморальная регуляция функции почек
В регуляции функции почек важная роль принадлежит железам внутренней секреции, особенно нейрогипофизу и коре надпочечников.
Нейрогипофиз (задняя доля гипофиза) – вырабатывает антидиуретический гормон (АДГ). АДГ усиливает реабсорбцию воды в дистальном сегменте нефрона. При усиленном поступлении этого гормона в кровь диурез уменьшается, а в отсутствие гормона диурез увеличивается. Предполагают, что АДГ влияет на процессы реабсорбции воды, изменяя состояние межклеточного вещества дистальных извитых канальцев и собирательных трубок (А. Г. Гинецинский, 1958).
Механизм действия АДГ в настоящее время представляется следующим образом. АДГ взаимодействует с клеточным рецептором базальной плазматической мембраны клеток дистального канальца нефрона и собирательных трубок. Основной компонент рецептора – фермент аденилциклаза, под влиянием которого в клетке из АТФ образуется циклический 3,5-АМФ – внутриклеточный медиатор действия АДГ. 3,5-АМФ усиливает выработку ферментов, деполимеризующих гиалуроновые комплексы межклеточного вещества стенки дистального отдела нефрона, и стенка утрачивает свою герметичность. Через проницаемую стенку вода, повинуясь осмотическому градиенту, уходит из нефрона.
Кора надпочечников. В регуляции функции почек принимают участие минералкортикоиды и глюкокортикоиды. Минералкортикоиды (основной гормон группы – альдостерон) усиливают реабсорбцию натрия в дистальном отделе нефрона (Смит, 1951), так как они способствуют синтезу транспортных белков, необходимых для переноса натрия через клеточные мембраны. Через апикальную мембрану эпителия канальцев ионы натрия транспортируются пассивно (по электрохимическому градиенту) с помощью специальных переносчиков, а через базальную мембрану – активно. Роль натриевой помпы выполняет в основном натрий-калий' активируемая АТФаза, которая за счет энергии АТФ транспортирует натрий из клетки в межклеточную жидкость в обмен на ионы калия.
Глюкокортикоиды также могут усиливать реабсорбцию натрия в канальцах нефрона. Кроме того, они усиливают почечный кровоток и фильтрацию в клубочковом аппарате нефрона и уменьшают реабсорбцию воды в канальцах.
Вышеприведенные данные об участии коры надпочечников в регуляции функции почек объясняют клинические симптомы, развивающиеся у животных после адреналэктомии или у людей при надпочечниковой недостаточности. В том и другом случае происходит увеличение выделения с мочой натрия, хлора и гидрокарбонатов с эквивалентной потерей воды, уменьшение экскреции калия, мочевины и фосфора. Степень потери натрия определяет тяжесть клинических проявлений адреналовой недостаточности. Избыточная потеря натрия приводит также к уменьшению кислотообразующей и кислотовыделительной функции почек.
Адреналин – гормон мозгового слоя надпочечников; лучше всего изучено его действие на процессы клубочковой фильтрации. Адреналин суживает сосуды коркового слоя почки. В зависимости от преимущественного действия на приносящие и выносящие артериолы клубочка адреналин может уменьшать или увеличивать объем фильтрации в клубочке. При введении адреналина в кровь наблюдается также уменьшение диуреза и натрийуреза. Предполагают, что на канальцевые функции адреналин может оказывать непрямое действие – через ренин-ангиотензинную системы (см. ниже) и альдостерон.
Ренин-ангиотензинная система. В области сосудистого полюса мальпигиевых телец нефронов располагается юкстагломерулярный аппарат (ЮГА), ответственный за выработку ренина. ЮГА состоит из нескольких элементов, наиболее важными из них являются эпителиоидные клетки, окружающие приносящую артериолу у ее входа в клубочек и клетки плотного пятна части стенки дистального извитого канальца, примыкающей к сосудистому полюсу клубочка. В юкстагломерулярных клетках образуется ренин – фермент, катализирующий начальный этап образования ангиотензина из α2-глобулинов плазмы.
Ангиотензин-2 обладает выраженным сосудосуживающим действием на афферентные и эфферентные артериолы клубочка, в силу чего он обеспечивает ауторегуляцию коркового кровообращения в почках и процессы фильтрации в клубочках. Кроме того, ангиотензин-2 стимулирует секрецию альдостерона в коре надпочечников и регулирует, таким образом, транспорт натрия и воды в канальцах. В больших дозах ангиотензин-2 вызывает некоторое увеличение секреции и глюкокортикоидов.
Секреция ренина ЮГА стимулируется: а) падением артериального давления в сосудах почки, б) повышением внутриканальцевого и интерстициального давления в почках, в) уменьшением концентрации ионов натрия в крови, г) увеличением концентрации натрия в жидкости дистальных канальцев. Изменения первого и второго факторов воспринимаются эпителиоидными клетками приносящих артериол (выполняют функцию барорецепторов), а изменение баланса натрия между плазмой и жидкостью мочевых канальцев воспринимается клетками плотного пятна, выполняющими функцию хеморецепторов. Раздражение баро– и хеморецепторов юкстагломерулярного аппарата сопровождается увеличением выработки ренина и увеличением концентрации ангиотензина-2 в крови.
Действие ангиотензина-2 на клубочки и канальцы способствует согласованному функционированию этих отделов нефрона и направлено на сохранение натрия в организме. Количество натрия, поступающее в канальцы в результате фильтрации должно соответствовать реабсорбционной способности канальцев. При нарушении этого соотношения (ускорение фильтрации при повышении системного давления крови; подавление активности ферментов, участвующих в транспорте натрия) концентрация натрия в начале дистальных канальцев повышается, выработка ренина и образование ангиотензина-2 усиливаются. Ангиотензин-2 вызывает две реакции: с одной стороны, он способствует сужению приносящих артериол клубочка и уменьшению фильтрации, а с другой – усиливает продукцию альдостерона корой надпочечников и повышает реабсорбцию натрия эпителием дистального отдела нефрона. Обе реакции способствуют восстановлению нормального соотношения между поступлением и реабсорбцией натрия в канальцах и предотвращают потерю натрия организмом.
Простагландины. В мозговом веществе почки осуществляется постоянный синтез простагландинов групп Е, Р и А. Первая группа отличается наибольшей активностью. Под влиянием простагландинов наблюдается увеличение кровотока в мозговом слое почки, увеличение диуреза и натрийуреза. Повышение экскреции воды и натрия при действии простагландинов может быть обусловлено, во-первых, усилением кровотока в мозговом слое почки («вымывание» ионов натрия, хлора и мочевины, создающих осмотический градиент в тканях сосочка), во-вторых, непосредственным действием на канальцевый эпителий. Предполагают, что простагландины находятся в конкурентных отношениях с АДГ при их совместном действии на клеточные рецепторы.
Гормональная регуляция процессов реабсорбции воды и солей в канальцевой части нефрона не является самостоятельным процессом, она подчинена центральной нервной системе, в частности гипоталамической области промежуточного мозга, и вовлекается в реакцию по принципу рефлекса. Такие реакции могут развиваться при изменении осмотического давления крови или при изменении объема жидкости, циркулирующей в организме. Подтверждением этого служат как экспериментальные, так и клинические данные. У животных при раздражении или разрушении ядер гипоталамуса, у больных с опухолями, локализованными в диэнцефальной области, часто наблюдаются нарушения водно-электролитного гомеостаза.
Нервно-гуморальная регуляция постоянства осмотического давления крови
Осмотическое давление крови и внеклеточной жидкости, определяемое суммарной концентрацией растворенных в них молекул и ионов, – одна из наиболее точно поддерживаемых констант организма. У здорового человека концентрация осмотически активных веществ в плазме крови составляет 290—300 мосм/л. Так как осмотическое давление крови и тканевой жидкости определяется главным образом содержанием в них хлористого натрия, то и регуляция постоянства осмотического давления заключается в поддержании определенного соотношения между натрием и водой. Любые, даже кратковременные отклонения осмотического давления от константного уровня вызывают изменения диуреза. При повышении осмотического давления диурез уменьшается, а при снижении – повышается. Регуляция постоянства осмотического давления крови осуществляется нейронами супраоптических ядер гипоталамуса. Функция этих ядер очень своеобразна. В них имеются нейроны, обладающие функцией осморецепторов (возможно, натриорецепторов), и нейроны, способные вырабатывать нейросекрет со свойствами АДГ гормона (аргинин-вазопрессин).
Нейроны-осморецепторы содержат вакуоль, заполненную жидкостью с постоянной осмолярностью, равной осмолярности плазмы крови. При повышении концентрации растворенных веществ вокруг нейрона-осморецептора вода из него выходит и вакуоль сморщивается, при понижении концентрации солей в окружающей среде вакуоль набухает. Колебания объема вакуоли осморецептора вызывают разряды нервных импульсов; импульсация поступает к нейросекреторным клеткам и изменяет выработку нейросекрета в них. Нейросекрет из нейронов супраоптических ядер по гипоталамо-гипофизарному тракту транспортируется с помощью аксоплазматического тока в нейрогипофиз, откуда после определенных изменений АДГ поступает в кровь и воздействует на процессы реабсорбции воды в дистальных канальцах и собирательных трубках.
Осморецепторную функцию выполняют не только нейроны-осморецепторы гипоталамуса. Сеть осморецепторов имеется и в периферическом сосудистом русле: в сосудах печени, селезенки, поджелудочной железы и др. (Я. Д. Финкинштейн и сотр.). Раздражение осморецепторов сосудов вызывает рефлекторную реакцию на почку через тот же центральный нейро-гормональный аппарат, что и раздражение нейронов-осморецепторов гипоталамуса. Возможно, что в обычных условиях жизнедеятельности контроль через осморецепторы сосудов портальной системы имеет ведущее значение, так как из кишечника в процессе пищеварения всасывается большое количество растворенных веществ и воды.
Нервно-гуморальная регуляция объема внеклеточной жидкости
Постоянство объема внеклеточной жидкости определяет постоянство параметров системы кровообращения, а следовательно, и нормальную работу всех органов и систем организма. При изменении объема циркулирующей крови или объема воды в межклеточном пространстве наблюдаются реакции, направленные на изменение работы сердца, емкости сосудистого русла, объема депонированной крови. Наряду с этим меняются диурез и натрийурез. Если объем внеклеточной жидкости увеличивается, наблюдается увеличение диуреза и натрийуреза, при уменьшении объема развиваются противоположные реакции.
Регуляция диуреза и натрийуреза осуществляется рефлекторным путем. Рецепторы, воспринимающие изменение объема циркулирующей крови и внеклеточной воды, расположены в стенках предсердий, в сосудах и в интерстиции различных органов и тканей. Эти рецепторы называют волюморецепторами, а регуляцию объема жидкостей тела – волюморегуляцией. Наиболее изучена волюморегуляция с рецепторов предсердий. Изменения диуреза при волюморегуляции реализуются через нейроны супраоптических ядер гипоталамуса и нейрогипофиз. Изменение объема циркулирующей крови в организме или ее перераспределение меняют растяжение стенок предсердий. Импульсация с рецепторов предсердий передается по блуждающим нервам в продолговатый мозг, а оттуда – в супраоптические ядра гипоталамуса. При перерастяжении стенок предсердий секреция АДГ тормозится и диурез усиливается, а при уменьшении объема предсердий, наоборот, секреция АДГ усиливается и диурез уменьшается.
Относительно механизма изменений натрийуреза высказано несколько гипотез. 1. Импульсы с волюморецепторов при гиповолемии поступают в гипоталамус и через выработку адренокортикотропного гормона (АКТГ) аденогипофизом стимулируют образование альдостерона в коре надпочечников. 2. Предполагают, что уровень продукции альдостерона контролируется и адреногломерулотропным гормоном (АГТГ), вырабатывающимся в эпифизе под влиянием нейросекрета стволовых структур мозга (средний мозг, район сильвиева водопровода). При уменьшении объема циркулирующей крови происходит уменьшение растяжения стенок предсердий (особенно правого), стимулируется выработка АГТГ, приводящая к увеличению продукции альдостерона, повышению реабсорбции натрия в дистальном сегменте, снижению натрийуреза и вторично – к снижению диуреза. 3. При увеличении объема циркулирующей крови в заднем отделе гипоталамуса вырабатывается специальный натрийуретический гормон (третий фактор). Он тормозит проксимальную реабсорбцию натрия. Поскольку объем проксимальной реабсорбции натрия и воды сравнительно велик, уменьшение реабсорбции натрия только на 1% приводит к значительному увеличению натрийуреза и диуреза.
Наряду с центральными нейрогормональными механизмами в волюморегуляции может принимать участие и ренин-ангиотензинная система. При гиперволемии тормозится выработка ренина, что приводит к усилению диуреза и натрийуреза, а при гиповолемии наблюдаются противоположные реакции.
Гипоталамические центры являются первичными мотивационными центрами, регулирующими водно-солевое равновесие организма и побуждающими животное или человека к реализации поведения, направленного на поиск факторов среды, необходимых для его восстановления. В организации целенаправленного поиска воды и в согласовании вегетативных и соматических компонентов этой реакции, как и в организации других мотиваций, принимают участие лимбическая система и кора больших полушарий. Регуляция диуреза также не сводится только к подкорковым механизмам. Кора больших полушарий принимает участие в условно-рефлекторной регуляции выделительной функции почек. Об этом свидетельствуют результаты опытов с гипнотическим внушением, с условно-рефлекторным изменением диуреза у собак при многократном введении в желудок воды в сочетании с каким-либо «сигналом», условно-рефлекторная болевая анурия. Условно-рефлекторное влияние коры больших полушарий на почку также осуществляется через вовлечение в реакцию нейрогипофиза и изменение интенсивности продукции АДГ.
Регуляция ионного состава крови
Участие почек в регуляции ионного состава крови имеет большое значение для нормальной жизнедеятельности организма, так как стабильный электролитный состав внутренней среды определяет не только водно-солевое равновесие и объем внеклеточной жидкости, но и активность всех ферментных систем, трофику тканей, кислотно-щелочное равновесие.
Возможны раздельная и избирательная регуляция выделения почкой различных электролитов, но механизмы регуляции ионного состава крови в настоящее время изучены недостаточно. Лучше всего изучена регуляция баланса натрия в организме – основного катиона внеклеточной жидкости. Регуляция функции почек по выведению из организма натрия нами уже рассмотрена; она теснейшим образом связана с регуляцией объема внеклеточной жидкости и осмотической концентрации внутренней среды. Необходимо еще раз подчеркнуть, что изменение концентрации натрия в плазме крови может вызвать возбуждение волюмо– и осморецепторов, а возможно и специализированных натриорецепторов. Увеличение концентрации натрия в крови усиливает секрецию АДГ и реабсорбцию воды в нефроне. Уменьшение концентрации натрия, наоборот, снижает секрецию АДГ и увеличивает выведение воды из организма. В этих условиях одновременно усиливается поступление в кровь альдостерона, ренина и стимулируется всасывание натрия в почечных канальцах. В настоящее время в регуляции баланса натрия в организме предполагается участие и третьего фактора – натрийуретического гормона.
Так как с переносом натрия через мембрану почечных канальцев сопряжен перенос ионов хлора, то во всех перечисленных случаях возможны изменения его транспорта. Наличие специализированных систем транспорта и регуляции баланса хлора в настоящее время неизвестно.
Относительно роли почек в регуляции уровня калия во внеклеточной жидкости сведений пока крайне мало. Показано, что калийуретическая функция почек может регулироваться гормонами коры надпочечников и инсулином – гормоном поджелудочной железы. Альдостерон активирует натрий-калиевый насос в базальной мембране, увеличивает проницаемость апикальной мембраны почечного эпителия дистального канальца и тем самым способствует секреции калия в обмен на реабсорбируемый натрий. Инсулин уменьшает калийурез; он усиливает переход глюкозы и калия в клетки. Предполагают наличие и других гуморальных регуляторов калийуреза, так как реабсорбция и секреция калия необязательно сопряжены с переносом натрия через мембраны почечного эпителия.
На строго константном уровне в плазме крови удерживается концентрация двухвалентных катионов – кальция и магния. Степень участия почек в регуляции их баланса определяется гормоном паращитовидных желез – паратгормоном и щитовидной железы – тирокальцитонином. Возможно, изменения в реабсорбции магния под влиянием этих гормонов – явление вторичное, связанное с изменением реабсорбции кальция. Паратгормон способствует активации холекальциферола и усиливает реабсорбцию кальция в дистальных почечных канальцах, а тирокальцитонин повышает его фильтрацию через клубочки и, возможно угнетает реабсорбцию в канальцах. Оба гормона участвуют также в регуляции выведения из организма фосфатных ионов, тормозя их реабсорбцию в проксимальных канальцах.
Оценивая роль почек в регуляции ионного состава крови, необходимо иметь в виду общую закономерность, установленную для животных различных филогенетических линий: трансмембранный перенос большой группы органических и неорганических соединений (глюкоза, аминокислоты, мочевина, парааминогиппуровая кислота, магний, кальций) прямо связан с транспортом натрия. Поэтому регуляция баланса натрия в организме имеет важное значение в регуляции гомеостатической функции почек и по отношению к перечисленным выше веществам.
Выведение мочи
Образующаяся в канальцах почки моча непрерывно, по мере образования, поступает через мочевыводящие Пути (чашечки, лоханки, мочеточники) в мочевой пузырь.
Мочевой пузырь – полый мышечный орган, служащий резервуаром для мочи. Мышцы пузыря в функциональном отношении представляют единое целое. У места выхода из пузыря мочеиспускательного канала расположен сфинктер мочевого пузыря. Несколько ниже его расположен второй сфинктер, образованный поперечнополосатой мускулатурой, – сфинктер мочеиспускательного канала. Сфинктеры препятствуют вытеканию мочи из пузыря.
Мочевой пузырь имеет двойную эфферентную иннервацию: парасимпатическую и симпатическую. Парасимпатические нервные волокна идут в составе тазового нерва; при раздражении их происходит сокращение мышц пузыря и расслабление сфинктера, т.е. создаются условия для опорожнения пузыря. Симпатические нервные волокна идут от нижнего брыжеечного узла и почечного сплетения; при раздражении их, наоборот, мускулатура пузыря расслабляется, а тонус сфинктера повышается. Таким образом создаются условия для наполнения пузыря. Сфинктер мочеиспускательного канала иннервируется двигательными соматическими нервными волокнами. Афферентные волокна от пузыря и сфинктеров идут в составе тех же нервов.
При постепенном наполнении пузыря мочой полость его увеличивается. Когда содержимое пузыря увеличивается до 250—300 мл, давление в нем довольно круто растет. Растяжение стенок и повышение давления в мочевом пузыре до 15—16 см водного столба (1,5– 1,6 кПа) вызывает раздражение механорецепторов, и поток импульсов по центростремительным нервным волокнам направляется к спинному мозгу. В спинном мозге на уровне II—IV крестцовых сегментов находится рефлекторный центр мочеиспускания, от которого по центробежным нервным волокнам импульсы поступают к мочевому пузырю и его сфинктеру. Мышцы пузыря сокращаются, а сфинктер расслабляется.
Спинальный центр мочеиспускания находится под контролем импульсов, приходящих из продолговатого и среднего мозга, а также от коры головного мозга. Корковые влияния определяют возможность «произвольной» задержки или, наоборот, «произвольного» мочеиспускания. Импульсы, возникающие в рецепторах мочевого пузыря при его растяжении и достигающие по восходящим проводящим путям коры больших полушарий, обусловливают ощущение позыва к мочеиспусканию. В соответствии с обстоятельствами, при которых возникает позыв, акт мочеиспускания может произойти или может быть задержан.
Контрольные вопросы
1. Перечислите показатели гомеостаза, уровень которых зависит от функции почек.
2. Какой отдел ЦНС играет основную роль в регуляции водно-солевого обмена?
3. Какие железы внутренней секреции принимают участие в регуляции водовыделительной и натрийуретической функции почек?
4. С каких рецепторов осуществляются рефлекторные влияния на уровень водно-солевого обмена?
5. Опишите гипоталамо-гипофизарные взаимоотношения и их роль в осмо– и волюморегуляции.
6. Опишите механизм действия антидиуретического гормона.
7. Какова роль альдостерона в регуляции натрийуреза?
8. Каково значение ренин-ангиотензинной системы в регуляции функции почек?
9. Какие железы внутренней секреции принимают участие в регуляции выведения кальция почками?
10. Опишите рефлекторную регуляцию мочевыведения.
Проблемные задачи
36. В эксперименте собаке вводится 2,5%-ный раствор хлористого натрия в сонную артерию (артерия выведена в кожный лоскут на шее). Отмечается торможение диуреза. Какое приспособительное значение имеет эта реакция? Опишите ее механизм.
37. Производится эксперимент на собаке. В нижнюю полую вену введен зонд. Обтурация просвета вены с помощью зонда приводит к снижению диуреза и натрийуреза. Почему развивается данная реакция?
38. Известно, что при кровопотере, длительном лишении питьевой воды, при ортостатическом рефлексе (переход из положения лежа в положение стоя), при окклюзии мочеточников у человека наблюдается снижение диуреза и натрийуреза. Что общего и различного в основных механизмах реакций при указанных выше состояниях?
39. Установлено, что у здоровых людей концентрация АДГ в крови оказывается наивысшей в вертикальном положении (при спокойном состоянии) и наиболее низкой в положении лежа. Каковы причины изменения продукции АДГ в указанных условиях?
40. В эксперименте после введения животному в кровь раствора с повышенным содержанием белков у него наступает кратковременное снижение диуреза. Как объяснить эту реакцию?