355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ЛИ) » Текст книги (страница 28)
Большая Советская Энциклопедия (ЛИ)
  • Текст добавлен: 8 октября 2016, 13:15

Текст книги "Большая Советская Энциклопедия (ЛИ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 28 (всего у книги 67 страниц)

Линименты

Линиме'нты (лат., ед. ч. linimentum, от linio – мажу, натираю), одна из лекарственных форм; жидкие лечебные мази, плавящиеся при температуре тела. Втирают в кожу или наносят на пораженные места.

Линицкая Любовь Павловна

Лини'цкая (по мужу – Загорская) Любовь Павловна (27.12.1866, слобода Преображенская, ныне Васильковского района Днепропетровской области, – 5.2.1924, Киев), украинская советская актриса. Сценическую деятельность начала в 1886. Работала в труппах Н. К. Садовского, в товариществе под руководством И. А. Марьяненко и др. Игра Л. отличалась героическим пафосом и одновременно психологичской глубиной. Роли: Маруся Богуславка, Свиридиха, («Маруся Богуславка», «Оборона Буши» Старицкого), Татьяна, Варька («Бондаривна», «Бесталанная» Карпенко-Карого), Наталья («Лымеривна» Мирного) и др. Разоблачительной остротой отмечены комедийные роли – Проня Прокоповна («За двумя зайцами» Старицкого) и др.

  Лит.: Любов Павлiвна Лiницька. Нариси, Київ, 1957.

Линия апсид

Ли'ния апси'д в астрономии, отрезок прямой, соединяющий апсиды, т. е. две точки эллиптической орбиты небесного тела: наиболее близкую к центральному телу и наиболее удалённую от него. Эти точки лежат на концах большой оси эллипса, которая, следовательно, и есть Л. а. В орбитах планет Солнечной системы Л. а. ограничены перигелием и афелием, в орбитах Луны и искусственных спутников Земли – перигеем и апогеем, в орбитах двойных звёзд – пернастром и апоастром.

Линия (в генетике)

Ли'ния в генетике, размножающиеся половым путём родственные организмы, которые происходят, как правило, от одного предка или одной пары общих предков и воспроизводят в ряду поколений одни и те же наследственно устойчивые признаки. Характерные для Л. признаки искусственно поддерживаются путём отбора и близкородственного скрещивания. Различают чистые линии – генотипически однородное потомство самоопыляющихся растений, у которых почти все гены находятся в гомозиготном состоянии, и инбредные Л. – потомство перекрёстноопыляющегося растения, полученное путем принудительного самоопыления, или группа животных, полученная при близкородственном разведении (см. Инбридинг). Чем теснее родство родителей, тем выше степень гомозиготности потомства. И в чистых, и в инбредных Л. постоянно возникающие мутации нарушают гомозиготность. Поэтому для сохранения гомозиготности по генам, определяющим основные свойства Л., необходимо вести отбор. В животноводстве различают генеалогическую Л., т. е. группу животных, происходящую от общего предка, и заводскую Л. – однородную, качественно своеобразную, поддерживаемую отбором и подбором с использованием инбридинга группу высокопродуктивных животных, происходящую от выдающегося родоначальника и схожую с ним по конституции и продуктивности (см. Разведение по линиям). Чистые и инбредные Л. служат основой для получения высокопродуктивных гибридов в растениеводстве и животноводстве. В медико-биологических исследованиях важную роль играют Л. лабораторных животных, сохраняющие константность по определённым признакам.

  Лит.: Иогансен В. Л., О наследовании в популяциях и чистых линиях, пер. с нем., М. – Л., 1935; Медведев Н. Н., Практическая генетика, М., 1966.

  Ю. С. Демин, Е. Я. Борисенко.

Линия (геометрич. понятие)

Ли'ния (от лат. linea), геометрическое понятие, точное и в то же время достаточно общее определение которого представляет значительные трудности и осуществляется в различных разделах геометрии различно.

  1) В элементарной геометрии рассматриваются прямые Л., отрезки прямых, ломаные Л., составленные из отрезков, и некоторые кривые Л. Каждый вид кривых Л. определяется тем или иным специальным способом (например, окружность определяется как геометрическое место точек, имеющих заданное расстояние R от заданной точки О – центра окружности). Иногда в учебниках дают определение Л. как границы куска поверхности (поверхность определяется при этом как граница тела) или как траектории движущейся точки. Но в рамках элементарной геометрии эти определения не получают отчётливой формулировки.

  2) Представление о Л. как траектории движущейся точки может быть сделано вполне строгим при помощи идеи параметрического представления Л. Например, вводя на плоскости прямоугольные координаты (x, у), можно параметрически задать окружность радиуса R с центром в начале координат уравнениями

  x = R cos t, y = R sin t.

  Когда параметр t пробегает отрезок 0 £ t £ 2p, точка (х, у) описывает окружность. Вообще, Л. на плоскости задают параметрическими уравнениями вида

  x = j (t), у =

(t),

  где j (t),

(t) – произвольные функции, непрерывные на каком-нибудь конечном или бесконечном интервале D числовой оси t. С каждым значением параметра t (из интервала D) уравнения (*) сопоставляют некоторую точку M, координаты которой определяются этими уравнениями. Л., заданная параметрическими уравнениями (*) есть множество точек, соответствующих всевозможным значениям t из D, при условии, что эти точки рассматриваются в определенном порядке, именно: если точка M1 соответствует значению параметра t1, а точка M2 – значению t2, то M1 считается предшествующей M2, если t1 < t2 При этом точки, отвечающие различным значениям параметра, всегда считаются различными.

  Аналогично, в трёхмерном пространстве Л. задаётся параметрически тремя уравнениями вида

  x = j (t), у =

(t), z = c (t),

  где j (t),

(t), c (t) – произвольные функции, непрерывные на каком-нибудь интервале. В произвольном топологическом пространствеТ (которое, в частности, может быть плоскостью, поверхностью, обычным трёхмерным пространством, функциональным пространством и т. п.) Л. параметрически задают уравнением вида

  P = j (t),

  где j – функция действительного переменного t, непрерывная на каком-либо интервале, значения которой суть точки пространства Т. Считают, что два параметрических представления задают одну и ту же Л., если они определяют один и тот же порядок следования её точек (в смысле, указанном выше).

  В анализе и топологии рассматривают обычно случай, когда область изменения параметра t есть отрезок а £ t £ b. В этом случае условие того, чтобы два параметрических представления

  Р = j (t), a £ t £ b

  P = j1(t1), a1£ t1£ b1,

  изображали одну и ту же Л., заключается в существовании непрерывной и строго возрастающей функции

  t1 =  f(t),

  для которой

  f(a) = a1, f(b) = b1, j (t) = j1[f(t)].

  Такое понимание термина «Л.» наиболее естественно в большинстве вопросов анализа (например, в теории криволинейных интегралов) и механики. Так как Л. здесь рассматривается вместе с порядком, в котором пробегает её точки переменная точка М при возрастании t, то при этом естественно возникает вопрос о числе прохождений переменной точки Л. через какую-либо точку пространства. Кроме простых точек, проходимых один раз, Л. может иметь кратные точки, которые проходятся несколько раз (отвечающие различным значениям параметра).

  Например, при изменении t в пределах – ¥ < t < ¥ точка с координатами

  ,

  описывает строфоиду (см. рис. «Алгебраические кривые третьего порядка», № 5), попадая в положение х = 0, у = 0 два раза при t = – 1 и t = + 1.

  3) Из аналитической геометрии известен и другой способ задания Л. на плоскости уравнением

  F(x, y) = 0;

  в пространстве – двумя уравнениями

  F(x, у, z) = 0, G(x, y, z) = 0.

  Ограничиваясь случаем плоскости, укажем лишь, как строится понятие алгебраической Л. (кривой) – Л., определяемой уравнением

  F(x, y) = 0,

  где F(x, у) —целая алгебраическая функция, т. е. многочлен како-либо степени n ³ 1. В этом случае считают, что два многочлена F1(x, у) и F2(x, у) определяют одну и ту же алгебраическую Л. в том и только в том случае, когда существует такая постоянная с ¹ 0, что выполняется тождественно соотношение

  F1(x, y) = cF2(x, у).

  Таким образом, все многочлены, определяющие одну и ту же Л., имеют одну и ту же степень n, называемую порядком соответствующей Л. Например, в аналитической геометрии принято считать, что уравнение

  (х – у)2 = 0

  определяет Л. второго порядка, а именно, дважды взятую прямую х – у = 0.

  В связи с последним примером необходимо заметить, однако, что часто целесообразно ограничиваться рассмотрением неприводимых алгебраических Л., т. е. таких Л., для которых многочлен не допускает представления F = GH, где G и Н – отличные от постоянных многочлены. Далее, в пункте 4, имеется в виду только этот случай.

  Говорят, что точка (x, y) кривой F(x, у) = 0 имеет кратность m, если разложение F(x, у) по степеням x = х – x, h = у – y начинается с членов степени m (по совокупности переменных x и h). В случае m = 2, т. е. в случае двойной точки

  F(x, у) = а11(х – x)2 + 2а12(х – x) (у – y) + a22(y – y)2 + ...,

  где многоточие означает, что далее следуют члены высших порядков. При помощи дискриминанта

  d = a11a22 – а122

  можно определить тип двойной точки (см. Особые точки).

  4) Часто, особенно при изучении алгебраической Л., целесообразно стать на точку зрения комплексной проективной геометрии, т. е. рассматривать, наряду с точками евклидовой действительной плоскости (или пространства), точки бесконечно удалённые и мнимые. Только при таком подходе (и надлежащем учёте кратности пересечения) становится верным, например, утверждение, что две Л. порядков n и m пересекаются в mn точках. В случае m = 1 это приводит к возможности определить порядок Л. как число n точек её пересечения с прямой.

  С проективной точки зрения естественно задавать Л. на плоскости однородным уравнением

  F(x1, x2, x3) = 0

  между однородными координатами x1, x2, x3 её точек. В силу принципа двойственности с этим заданием равноправно задание Л. уравнением

  F(x1, x2, x3) = 0,

  связывающим однородные координаты прямых, касающихся Л. Таким образом, наряду с порядком Л. (степенью уравнения F = 0) естественно возникает понятие класса Л. – степени уравнения F = 0. Класс алгебраических Л. можно также определить как число касательных, которые можно провести к Л. из произвольной точки. О параметрическом представлении Л. см. также Уникурсальные кривые.

  5) Рассмотренные выше (в пунктах 2—4) уточнения и обобщения понятия Л. существенно связаны с соответствующим алгебраическим и аналитическим аппаратом. В отличие от этого, современная топология выдвинула задачу уточнения представления о Л. как о множестве точек, независимо от алгебраического или аналитического способов задания этого множества.

  Если исходить из параметрического задания Л. в виде непрерывной функции P = j (t), где t пробегает отрезок а £ t £ b, но интересоваться только полученным множеством точек без учёта порядка их следования, то приходят к понятию Л., сформулированному в 80-x гг. 19 в. К. Жорданом (см. Жордана кривая). Оказывается, что таким непрерывным образом отрезка может быть любой локально связный континуум, в частности квадрат, треугольник, куб и т. п. (см. Пеано кривая). Поэтому теперь обычно предпочитают говорить не о Л. в смысле Жордана, а о локально связных, или жордановых, континуумах. Взаимно однозначный непрерывный образ отрезка называют простой дугой, или жордановой дугой. Взаимно однозначный непрерывный образ окружности называют простой замкнутой Л. Простые дуги и простые замкнутые Л. не исчерпывают, однако, точечных множеств, заслуживающих наименования Л.

  Избегая и чрезмерной общности, и чрезмерного сужения понятия Л., в современной топологии пользуются понятием Л., введённым в 1921 П. С. Урысоном, который определяет Л. (кривую) как произвольный континуум размерности единица. Континуум имеет размерность единица, если при любом e > 0 он может быть представлен в виде суммы конечного числа замкнутых множеств диаметра, меньшего e, обладающих тем свойством, что никакие три из этих замкнутых множеств не имеют общей точки (см. также Размерность в геометрии). Континуум, лежащий на плоскости, будет Л. в смысле Урысона тогда и только тогда, когда он не содержит внутренних точек. Этим свойством характеризовал ранее (70-е гг. 19 в.) Л., лежащие на плоскости, Г. Кантор. Хотя определение Кантора применимо только к Л., лежащим на плоскости, иногда и общие Л. в смысле Урысона называют «канторовыми кривыми».

  Л. Н. Колмогоров.

  6) Ещё математики древности изучали линии второго порядка(эллипс, гиперболу и параболу). Ими же был рассмотрен ряд отдельных замечательных алгебраических Л. более высокого порядка, а также некоторые трансцендентные (неалгебраические) Л. Систематическое изучение Л. и их классификация стали возможными с созданием аналитической геометрии (Р. Декарт).

  Из Л. третьего порядка наиболее известны:

  Декартов лист (см. рис. «Алгебраические кривые третьего порядка», № 1). уравнение в прямоугольных координатах: x3 + y3 – 3аху = 0. Впервые кривая определяется в письме Р. Декарта к П. Ферма в 1638. Полная форма кривой с наличием асимптоты, проходящей через точки ( —а, 0) и (0, —а), была определена позднее (1692) Х. Гюйгенсом и И. Бернулли. Название «декартов лист» установилось в начале 18 в.

  Локон Аньези (см. рис. «Алгебраические кривые третьего порядка», № 2). Пусть имеется круг с диаметром OC = -а и отрезок BDM, построенный так, что ОВ : BD = OC : ВМ; геометрическое место точек М представляет собой локон Аньези (или верзиеру). уравнение в прямоугольных координатах: у = a3/(a2 + x2). Исследование этой Л. связано с именем итальянской женщины-математика Марии Аньези (1748).

  Кубическая парабола (см. рис. «Алгебраические кривые третьего порядка», № 3). уравнение в прямоугольных координатах: у = x3.

  Полукубическая парабола (см. рис. «Алгебраические кривые третьего порядка», № 4), парабола Нейля. уравнение в прямоугольных координатах: у = -сх3/2. Названа по имени английского математика У. Нейля (1657), нашедшего длину её дуги.

  Строфоида (от греч. stróphos – кручёная лента и éidos – вид) (см. рис. «Алгебраические кривые третьего порядка», № 5). Пусть имеется неподвижная прямая АВ и точка С вне её на расстоянии CO = а; вокруг С вращается прямая, пересекающая АВ в переменной точке N. Если от точки N отложить по обе стороны прямой АВ отрезки NM = NM' = NO, то геометрическое место точек М и М' для всех положений вращающегося луча CN и есть строфоида. Уравнение в прямоугольных координатах: ; в полярных координатах: r = —a cos 2j/cosj. Впервые строфоиду исследовал Э. Торричелли(1645), название было введено в середине 19 в.

  Циссоида Диоклеса (см. рис. «Алгебраические кривые третьего порядка», № 6) (греч. kissoeides, от kissós – плющ и éidos – вид), геометрическое место точек М, для которых OM = PQ (Р – произвольная точка производящего круга с диаметром а). Уравнение в прямоугольных координатах: y2 = х3/(а – х); в полярных координатах: r = asin2 j/cos j. Древние греки рассматривали только ту часть циссоиды, которая находится внутри производящего круга. Вместе с дугой окружности эта часть образует фигуру, напоминающую лист плюща (откуда название); наличие бесконечных ветвей было установлено в 17 в. французским математиком Ж. П. Робервалем и независимо от него бельгийским математиком Р. Ф. Слюзом.

  Из Л. четвёртого и более высоких порядков наиболее известны:

  Кардиоида (от греч. kardía – сердце и éidos – вид) (см. рис. «Алгебраические кривые четвертого и более высоких порядков», № 1), кривая, описываемая какой-либо точкой М окружности радиуса а, катящейся без скольжения по неподвижной окружности того же радиуса. уравнение в прямоугольных координатах: (x2 + y2 – 2ах)2 = 4a(x2 + y2); в полярных координатах: r = 2а (1 + cos j).

  Конхоида Никомеда (от греч. konchoeides – похожий на раковину) (см. рис. «Алгебраические кривые четвертого и более высоких порядков», № 2), кривая, получающаяся при увеличении или уменьшении каждого радиус-вектора точек данной прямой на одну и ту же величину d, т. о., OM = OP – d или OM' = OP + d. Если расстояние от полюса О до данной прямой равно а, то уравнение в прямоугольных координатах: (х – а)2(х2 + y2) – d2x2 = 0, в полярных координатах: r = a/cosj ± d. Впервые рассматривалась древнегреческим геометром Никомедом (около 250—150 до нашей эры), который использовал её для решения задач о трисекции угла и удвоении куба.

  Лемниската Бернулли (см. рис. «Алгебраические кривые четвертого и более высоких порядков», № 3) (от лат. lemniscatus, буквально – украшенный лентами), кривая, имеющая форму восьмёрки; геометрическое место точек, произведение расстояний которых от фокусов F1 ( – а, 0) и F2 (а, 0) равно а2. уравнение в прямоугольных координатах: (x2 + y2)2 – 2a2(x2 – y2) =0, в полярных координатах: r2 = 2а2 cos 2j. Впервые рассматривалась Я. Бернулли(1694). Лемниската является частным случаем овалов Кассини и синус-спиралей.

  Овалы Декарта (см. рис. «Алгебраические кривые четвертого и более высоких порядков», № 4), геометрические места точек М, расстояния которых от двух фиксированных точек F1 и F2, называемых фокусами, умноженные на данные числа, имеют постоянную сумму с, то есть mMF1 + + nMF2 = с. уравнение в прямоугольных координатах:

  (x + y’’ —2rx)2 – l2(x2 + y2) – k = 0,

  где r, l и k – некоторые постоянные, связанные с параметрами m, n и d; в полярных координатах:

  (n2 – m2)(2 + 2((mc – n2d cos () + n2d2 – с2 = 0.

  Помимо фокусов F1 и F2, имеется и третий фокус F3, равноправный с каждым из них. При m = 1, n = 1 овал Декарта превращается в эллипс; при m = 1 и n = —1 – в гиперболу. Частным случаем овала является также улитка Паскаля. Овалы впервые исследовались Р. Декартом (1637).

  Овалы Кассини (см. рис. «Алгебраические кривые четвертого и более высоких порядков», № 5), геометрические места точек М, произведение расстояний которых от двух данных точек постоянно. Пусть F1 и F2 точки на оси абсцисс, F1F2 = 2b, а произведение MF1×MF2 = а2. уравнение в прямоугольных координатах:

  (x2 + y2)2 – 2b2 (a2 – y2) = a4 – b4.

  Если , то овал Кассини – выпуклая кривая; если b < a < , то кривая имеет вид овала с двумя утолщениями; при а = b овал Кассини превращается в лемнискату, наконец, при b > а овал Кассини является двусвязной кривой. Впервые рассмотрена Дж. Кассини (17 в.).

  Улитка Паскаля (см. рис. «Алгебраические кривые четвертого и более высоких порядков», № 6), геометрическое место точек М и M', расположенных на прямых пучка (центр которого О лежит на окружности радиуса R) на расстоянии а по обе стороны от точки Р пересечения прямых с окружностью; т. о., PM = PM' = а. уравнение в прямоугольных координатах: (x2 + y2 – 2Rx)2 – а2(х2 + y2) = 0, в полярных координатах: r = 2R cos j + а. При а = 2R петля стягивается в точку, в этом случае улитка Паскаля превращается в кардиоиду. Название по имени французского учёного Э. Паскаля (1588—1651), впервые изучавшего её.

  Астроида (от греч. ástron – звезда и éidos – вид) (см. рис. «Алгебраические кривые четвертого и более высоких порядков», № 7), кривая, описываемая точкой подвижной окружности, которая касается изнутри неподвижной окружности вчетверо большего радиуса и катится по ней без скольжения. уравнение в прямоугольных координатах: x2/3 + y2/3 = а2/3, где а – радиус неподвижной окружности. Астроида – линия 6-го порядка.

  Розы (см. рис. «Алгебраические кривые четвертого и более высоких порядков», № 8), кривые, полярное уравнение которых: r = a sin mj; если m – рациональное число, то розы – алгебраической Л. чётного порядка. При m нечётном роза состоит из от лепестков, при m чётном – из 2m лепестков; при m рациональном лепестки частично покрывают друг друга.

  Синусоидальные спирали, синус-спирали (см. рис. «Алгебраические кривые четвертого и более высоких порядков», № 9), кривые, полярное уравнение которых rm = am cosmj; если m – рациональное число, то эти Л. – алгебраические. Частные случаи: m = 1 – окружность, m = – 1 – прямая, m = 2 – лемниската Бернулли, m = —2 – равнобочная гипербола, m = 1/2 – кардиоида, m = – 1/2 – парабола. При целом m > 0 Л. состоит из m лепестков, каждый из которых лежит внутри угла, равного p/m, при рациональном m > 0 лепестки могут частично покрывать друг друга; если m < 0, то Л. состоит из от бесконечных ветвей.

  Большой интересный класс составляют трансцендентные Л. К ним относятся графики тригонометрических функций (синусоида, тангенсоида), логарифмической функции, показательной функции, гиперболических функций, а также следующие Л.:

  Квадратриса (см. рис. «Трансцендентные кривые», № 1). Пусть прямая MN равномерно вращается против часовой стрелки вокруг точки О, а прямая А'В' равномерно движется справа налево, оставаясь параллельной OC. Далее, пусть за время движения A'B' от AB до OC прямая MN поворачивается на прямой угол и переходит из положения OA = r в положение OC. Геометрическое место точек Р пересечения прямых MN и A'B' и есть квадратриса. уравнение в прямоугольных координатах: ; в полярных координатах: . Часть квадратрисы, заключённая в квадрате OABC, была известна древнегреч. математикам. Открытие квадратрисы приписывается Гиппию Элидскому (5 в. до н. э.), использовавшему её для решения задачи о трисекции угла. Динострат (4 в. до н. э.) с помощью квадратрнсы выполнил квадратуру круга.

  Трактриса (см. рис. «Трансцендентные кривые», № 2), кривая, для которой длина отрезка касательной от точки касания М до точки Р пересечения с данной прямой есть величина постоянная, равная а. Уравнение в прямоугольных координатах:

  .

  Цепная линия (см. рис. «Трансцендентные кривые», № 3), кривая, форму которой принимает гибкая однородная и нерастяжимая тяжёлая нить, концы которой закреплены в двух точках. уравнение в прямоугольных координатах: у = a

= а (ex/a + е-х/a)/2.

  Циклоида (от греч. kykloeides – кругообразный) (см. рис. «Трансцендентные кривые», № 4), кривая, которую описывает точка Р, расположенная на расстоянии а от центра круга радиуса r, катящегося без скольжения по прямой линии. Если Р лежит на окружности круга (r = а), получают обыкновенную циклоиду (см. рис. «Трансцендентные кривые», № 4а), если она лежит внутри круга (r > а), – укороченную циклоиду (см. рис. «Трансцендентные кривые», № 4б), если точка вне круга (r < а), – удлинённую циклоиду (см. рис. «Трансцендентные кривые», № 4в). Две последние Л. называют трохоидами. Уравнение в параметрической форме:

  , .

  Среди трансцендентных Л. особый класс составляют спирали (от греч. spéira, буквально – витое), плоские кривые линии, бесчисленное множество раз обходящие некоторую точку, с каждым обходом приближаясь к ней или с каждым обходом удаляясь от неё. Если выбрать эту точку за полюс системы координат, то полярное уравнение спирали r = f(j) таково, что f(j + 2p) > f(j) или f(j + 2p) < f(j) при всех j. Из спиралей наиболее известны:

  Архимедова спираль (см. рис. «Трансцендентные кривые», № 5), кривая, описываемая точкой, равномерно движущейся по прямой в то время, как эта прямая равномерно вращается в плоскости вокруг точки О. уравнение в полярных координатах: r = aj, где а – постоянная. Эта спираль изучалась Архимедом (3 в. до н. э.) в связи с задачами трисекции угла и квадратуры круга.

  Гиперболическая спираль (см. рис. «Трансцендентные кривые», № 6), кривая, описываемая точкой М, движущейся по вращающейся прямой OA, так, что её расстояние от центра вращения меняется обратно пропорционально углу поворота. Уравнение в полярных координатах: r = а/j.

  Жезл (см. рис. «Трансцендентные кривые», № 7), кривая, уравнение которой в полярных координатах: . Каждому значению j соответствуют два значения r – положительное и отрицательное. Кривая состоит из двух ветвей, каждая из которых асимптотически приближается к полюсу.

  Логарифмическая спираль (см. рис. «Трансцендентные кривые», № 8), кривая, уравнение которой в полярных координатах: r = аекj. Была известна многим математикам 17 в.

  Спираль Корню (см. рис. «Трансцендентные кривые», № 9), клотоида, кривая, состоящая из двух ветвей, симметричных относительно начала координат. уравнение в параметрической форме:

  , y = a.

  Использовалась французским физиком М. А. Корню (1874) для графич. решения некоторых задач дифракции света.

  Si-ci-спираль (см. рис. «Трансцендентные кривые», № 10), кривая, параметрическое уравнение которой имеет вид

  ,

  ,

  si(t) и ci(t) – интегральный синус и интегральный косинус.

  К циклоиде по способу построения примыкает класс циклоидальных кривых, которые могут быть как алгебраическими, так и трансцендентными. Среди них:

  Гипоциклоида (см. рис. «Циклоидальные кривые», № 1а, 1б), кривая, описываемая точкой окружности, катящейся без скольжения по другой окружности внутри её. Уравнение в параметрической форме:

  ,

  ,

  где А – радиус неподвижной, а а – подвижной окружности. Вид кривой зависит от отношения А/а.

  Эпициклоида (см. рис. «Циклоидальные кривые», № 2а, 2б), кривая, описываемая точкой окружности, катящейся без скольжения по другой окружности вне её. Уравнение получится из уравнения гипоциклоиды заменой а на – а.

  Удлинённая гипоциклоида (эпициклоида), кривая, описываемая точкой, лежащей вне окружности, которая катится без скольжения по другой окружности внутри (вне) её (см. рис. «Циклоидальные кривые», № 3а, 4д). Аналогично определяется укороченная гипоциклоида (эпициклоида) (см. рис. «Циклоидальные кривые», № 3б, 4б). Удлинённые и укороченные гипоциклоиды и эпициклоиды иногда называются гипо– и эпитрохоидами.

  В. И. Битюцков, Ю. А. Горьков, А. Б. Иванов.

  Лит.: Маркушевич А. И., Замечательные кривые, 2 изд., М. – Л., 1952; Савелов А. А., Плоские кривые. Систематика, свойства, применения (Справочное руководство), М., 1960; Пархоменко А. С., Что такое линия, М., 1954; Погорелов А. В., Дифференциальная геометрия, 5 изд., М., 1969; Уокер А., Алгебраические кривые, пер. с англ., М., 1952; Loria G., Spezielle algebraische und transzendente ebene Kurven. Theorie und Geschichte, 2 Aufl., Bd 1—2, Lpz. – B., 1910—11.

Алгебраические кривые третьего порядка: 1 – декартов лист; 2 – локон Аньези; 3 – кубическая парабола; 4 – полукубическая парабола; 5 – строфоида; 6 – циссоида Диоклеса.

Алгебраические кривые четвёртого и более высоких порядков: 1 – кардиоида; 2 – конхоида Никомеда; 3 – лемниската Бернулли: 4 – овалы Декарта; 5 – овалы Кассини; 6 – улитка Паскаля; 7 – астроида; 8 – розы; 9 – синус-спираль.

Циклоидальные кривые: 1 а, б – гипоциклоиды; 2 а, б – эпициклоиды; 3 а – удлинённая гипоциклоида; 3 б – укороченная гипоциклоида; 4а – удлинённая эпициклоида; 4б – укороченная эпициклоида.

Трансцендентные кривые: 1 – квадратриса; 2 – трактриса; 3 – цепная линия; 4 – циклоида; 5 – архимедова спираль; 6 – гиперболическая спираль; 7 – жезл; 8 – логарифмическая спираль; 9 – спираль Корню; 10 – si-ci-cпираль.


    Ваша оценка произведения:

Популярные книги за неделю