355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Шон Кэрролл » Вечность. В поисках окончательной теории времени » Текст книги (страница 16)
Вечность. В поисках окончательной теории времени
  • Текст добавлен: 20 февраля 2018, 08:30

Текст книги "Вечность. В поисках окончательной теории времени"


Автор книги: Шон Кэрролл


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 16 (всего у книги 43 страниц) [доступный отрывок для чтения: 16 страниц]

Глава 8 Энтропия и беспорядок

Никому не дано представить в телесных образах обращение времени. Время необратимо.

Владимир Набоков. Смотри на арлекинов!

Почему обсуждения энтропии и второго начала термодинамики так часто заканчиваются разговорами о еде? Вот несколько популярных (и вкусных) примеров, когда энтропия увеличивается в ходе необратимых процессов:

    вы разбиваете яйца и готовите яичницу;

    смешиваете кофе с молоком;

    проливаете вино на новый ковер;

    вынимаете пирог из духовки, и его аромат распространяется по квартире;

    кидаете кубики льда в стакан воды, и они постепенно тают.

Честно говоря, не все эти примеры одинаково аппетитны; тот, что с кубиком льда, пресноват, – хотя это легко исправить, заменив воду джином. Кроме того, пример с приготовлением яичницы требует дополнительного разъяснения. На самом деле приготовление яиц нельзя считать прямолинейной демонстрацией второго начала термодинамики. Готовка – химическая реакция, вызываемая нагреванием, и этот процесс не был бы возможен, если бы яйца не были открытыми системами. Энтропия вступает в игру, когда мы разбиваем яйца и перемешиваем белки с желтками; смысл тепловой обработки получившейся смеси в том, чтобы избежать отравления сальмонеллой, а не продемонстрировать принципы термодинамики.

Взаимоотношения между энтропией и едой основываются по большей части на таком вездесущем процессе, как смешивание. На кухне мы очень часто именно этим и занимаемся – смешиваем два вещества, которые до этого существовали сами по себе или хранились раздельно. Это могут быть как две разные формы одной и той же субстанции (лед и жидкая вода), так и два совершенно разных ингредиента (молоко и кофе, белки и желтки яиц). Первопроходцы термодинамики были чрезвычайно заинтересованы в изучении влияния тепла на различные объекты из повседневной жизни, и таяние кубика льда стало бы для них проблемой первоочередной важности. Куда меньшее любопытство у них вызвали бы процессы, в которых принимают участие ингредиенты, имеющие одинаковую температуру, например пролитое на ковер вино. Однако совершенно очевидно, что независимо от температуры между всеми этими процессами есть нечто сходное: изначально субстанции разъединены, а в конечном состоянии перемешаны между собой. Смешать вещи очень легко, а вот разъединить куда труднее. Стрела времени накладывает свой отпечаток на все, что мы делаем на кухне.

Почему смешивать ингредиенты легко, а отделять их друг от друга сложно? Когда мы смешиваем две жидкости, мы видим, как разноцветные завихрения постепенно сливаются, образуя равномерно окрашенную текстуру. Это зрелище не слишком помогает разобраться, что именно там происходит. Так что давайте вместо этого рассмотрим смешивание песка двух разных цветов. Важно то, что песок состоит из дискретных частей – отдельных песчинок. Это ни у кого не вызывает сомнения. Смешивая, например, синий песок с красным, мы получаем песок фиолетового цвета. Но это не означает, что каждая песчинка из обеих порций окрасилась в фиолетовый цвет. Песчинки сохраняют индивидуальность – синие остаются синими, а красные красными; они просто беспорядочно перемешиваются. Только если мы глядим издалека («макроскопически») смесь кажется однообразно фиолетовой; если приглядеться (посмотреть на нее «микроскопически»), мы увидим те же самые синие и красные песчинки.

Одним из величайших достижений пионеров кинетической теории – Даниила Бернулли из Швейцарии, Рудольфа Клаузиуса из Германии, Джеймса Клерка Максвелла и Уильяма Томсона из Великобритании, Людвига Больцмана из Австрии и Джозайи Уилларда Гиббса из США – было то, что они первыми стали рассматривать все жидкости и газы так, как мы только что описывали песок: как наборы крохотных кусочков, сохраняющих свои отличительные черты. Разумеется, мы не ищем в жидкостях и газах песчинки; мы знаем, что они сделаны из атомов и молекул. Однако принцип остается неизменным. Когда мы наливаем молоко в кофе, не происходит никакого чудесного объединения отдельных молекул молока с отдельными молекулами кофе, и молекулы нового вида не появляются в этой смеси. Два набора молекул просто перемешиваются. Даже тепло – это свойство атомов и молекул, а не какая-то отдельная самостоятельная жидкость. Теплота объекта – характеристика энергии быстро движущихся молекул, из которых он состоит. Когда кубик льда тает в стакане воды, молекулы не меняются. Они всего лишь сталкиваются друг с другом, вследствие чего их энергия равномерно распределяется между всеми молекулами, содержащимися в стакане.

Не давая (пока что) точного математического определения энтропии, на примере смешивания песка двух цветов мы можем показать, что перемешивать вещи значительно проще, чем разделять их обратно. Представьте себе миску, в которую насыпали песок: все синие песчинки находятся у одного бортика, а все красные у противоположного. Очевидно, что эта конфигурация достаточно специальная: если потрясти миску или помешать содержимое ложкой, то красный песок начнет смешиваться с синим. Если же с самого начала насыпать в миску смесь двух типов песка, то конфигурация будет устойчива: сколько ни перемешивай, менее разнородной смесь не станет. Причина проста: для того чтобы разделить два типа песка, нам потребуется применить намного более точное действие, чем простое потряхивание или перемешивание. Нам придется взять увеличительное стекло и аккуратно поработать пинцетом, перенося красные песчинки к одному бортику миски, а синие к другому. Для создания нестабильного специального состояния необходимо вкладывать куда больше труда, чем для создания стабильной неразберихи.

Все то же самое можно изложить с ужасающе научной количественной точки зрения – что Больцман и другие, собственно говоря, и сделали в 1870-х годах. Мы тщательно изучим результаты их работы и попробуем понять, на какие вопросы они дают ответы, а на какие нет и насколько эти ответы согласуются с основополагающими законами физики, которые, как мы знаем, полностью обратимы. Однако уже сейчас должно быть понятно, что ключевую роль здесь играет большое количество атомов, составляющих макроскопические объекты в реальном мире. Если бы у нас была только одна красная песчинка и одна синяя, то между «смешанным» и «несмешанным» состояниями никакого различия бы не было. В предыдущей главе мы говорили о том, что физические законы работают совершенно одинаково как вперед во времени, так и назад (при условии, что мы дали надлежащее определение направлению времени). Это микроскопическое описание, требующее тщательного отслеживания каждой индивидуальной составляющей системы. Однако в реальном мире, где в различных процессах участвует невообразимое количество атомов, мы попросту не в состоянии обрабатывать такие объемы информации. Нам приходится прибегать к упрощениям – рассматривать средний цвет, или температуру, или давление вместо положения и импульса каждого атома. Когда мы мыслим макроскопически, мы забываем (или отбрасываем) детальную информацию об отдельных частицах, – и здесь на сцену выходят энтропия и необратимость.

Огрубление

Главное, что мы хотим понять, – это «как макроскопические характеристики системы, состоящей из множества атомов, меняются вследствие движения отдельных атомов?» (Я буду попеременно использовать все три термина – «атомы», «молекулы» и «частицы», подразумевая примерно одно и то же, так как для нас важно лишь то, что это крохотные объекты, подчиняющиеся обратимым законам физики, и что для того, чтобы сконструировать нечто макроскопическое, нужно взять необычайно много таких объектов.) Чтобы разобраться в этом, рассмотрим герметичный контейнер, разделенный на две части перегородкой, в которой проделано отверстие. Молекулы газа летают в одной половине контейнера и чаще всего отскакивают от центральной перегородки, однако периодически часть молекул пролетает сквозь отверстие на другую половину. Можно предположить, например, что молекулы отскакивают от перегородки в 995 случаях из 1000, но полпроцента из них при каждом столкновении (которое случается, скажем, каждую секунду) умудряется пробраться в другую часть контейнера.

Рис. 8.1. Контейнер, полный молекул газа, посередине которого установлена перегородка с отверстием. Каждую секунду у каждой молекулы есть крошечный шанс пролететь сквозь отверстие на другую сторону.

Этот пример весьма специфичен и тем удобен; мы можем в деталях изучить каждый вариант развития событий и описать, что при этом происходит.[127]127
  Почти такой же пример рассматривается Уилером в Wheeler, J. A. Time Today / In: Physical Origins of Time Asymmetry / J. J. Halliwell, J. Pérez-Mercader, W. H. Zurek, eds. – Cambridge: Cambridge University Press, 1994, p. 1–29. В этой книге авторство эксперимента приписывается Паулю Эренфесту. В сосуде, который Уилер называет «урной Эренфеста», на каждом шаге ровно одна частица перелетает на противоположную сторону, тогда как в нашем обсуждении у каждой частицы есть небольшой шанс пролететь сквозь отверстие в перегородке.


[Закрыть]
Про каждую молекулу в левой половине контейнера мы можем сказать, что каждую секунду с вероятностью 99,5 % она останется в своей половине, а с вероятностью 0,5 % переместится в противоположную; то же самое верно для правой половины контейнера. Это правило абсолютно инвариантно относительно обращения времени: если снять на пленку движение произвольной частицы, подчиняющейся этому правилу, то при просмотре фильма невозможно будет сказать, вперед или назад по времени воспроизводится запись. На уровне отдельных частиц прошлое и будущее совершенно идентичны.

На рис. 8.2 мы изобразили один из возможных вариантов; как всегда, значение времени увеличивается снизу вверх. В контейнере 2000 «молекул воздуха», и в момент времени t = 1 в левой части находится 1600 молекул, а в правой – только 400. (Пока что вы не должны спрашивать, почему первоначальная конфигурация выбрана именно такой, хотя позже, когда мы заменим «контейнер» на «Вселенную», мы начнем задавать подобные вопросы.) Итак, мы наблюдаем за молекулами, летающими внутри контейнера и отскакивающими от стенок, и то, что происходит далее, нас совсем не удивляет. Каждую секунду любая молекула с небольшой вероятностью может перелететь на другую половину, но поскольку в самом начале в одной части контейнера существенно больше молекул, чем в другой, в целом наблюдается тенденция к выравниванию. (В точности как с температурами в формулировке второго начала термодинамики, предложенной Клаузиусом.) Пока в левой части контейнера молекул больше, общее количество молекул, пролетающих сквозь отверстие слева направо, превышает количество молекул, перемещающихся в обратном направлении. Через 50 секунд мы увидим, что количества молекул в обеих частях начинают выравниваться, а через 200 секунд они станут практически равными.

Очевидно, что этот контейнер – еще одна иллюстрация существования стрелы времени. Даже если бы мы не указали моменты времени на различных конфигурациях, показанных на рисунке, большинство людей без труда угадали бы, что было в начале, а чем все закончилось. Нас не удивляет тот факт, что концентрация молекул воздуха выравнивается, но мы бы были поражены, если бы все (или почти все) молекулы внезапно собрались в одной половине контейнера. «Прошлое» – это с той стороны стрелы времени, где объекты находятся в более разделенном состоянии, тогда как «будущее» – это там, где они перемешались, а их концентрация выровнялась. То же самое происходит, когда вы наливаете в чашку кофе ложку молока и две жидкости смешиваются.

Рис. 8.2. Поведение 2000 молекул газа в контейнере с перегородкой. В самом начале 1600 молекул находятся в левой части контейнера и 400 молекул – в правой. Через 50 секунд в левой половине остается около 1400 молекул, а в правой их число уже составляет 600. По истечении 200 секунд молекулы равномерно распределены между двумя половинами контейнера.

Конечно же, это всего лишь статистическая картина, а не абсолютная действительность. Я хочу сказать, что вполне вероятна ситуация, когда вначале слева и справа в контейнере будет одинаковое число молекул, а потом по удивительному стечению обстоятельств большинство частиц соберется в какой-то одной половине, образовав очень неравномерное распределение. Как мы увидим далее, вероятность такого исхода невелика, и чем больше частиц участвуют в процессе, тем она ниже; тем не менее нельзя сбрасывать ее со счетов. Однако пока что мы можем смело игнорировать такие редкие события и сконцентрироваться на наиболее вероятном варианте эволюции системы.

Энтропия по Больцману

Нам хотелось бы сделать нечто большее, чем просто заявить: «Вполне очевидно, что молекулы, скорее всего, будут перемещаться до тех пор, пока равномерно не распределятся по объему». Мы хотели бы уметь обосновывать это ожидание и заменять выражения типа «скорее всего» и «равномерно распределятся» строгими количественными характеристиками. Этим занимается раздел науки под названием «статистическая механика». Повторяя бессмертные слова Питера Венкмана: «С дороги, человек, я ученый!»

Первой крупной догадкой Больцмана было осознание того факта, что у молекул есть гораздо больше способов равномерно (более или менее) распределиться по объему контейнера, чем всем вместе скопиться у одной из его стенок. Представьте себе, что мы подсчитали имеющиеся молекулы и навесили на них номера от 1 до 2000. Нам интересно, сколько существует способов организовать молекулы так, чтобы в левой и правой половинах контейнера оказалось ровно требуемое число молекул. Например, сколько есть способов поместить 2000 молекул в левую часть и 0 в правую? Ровно один. Мы следим только за тем, в какой половине контейнера находится каждая молекула, и нас не интересуют ее точное положение и импульс, поэтому мы всего лишь берем и помещаем каждую молекулу в левую часть контейнера.

Теперь попробуем ответить на вопрос: сколькими способами можно поделить молекулы так, чтобы в левой части оказалось 1999 молекул, а в правой – ровно одна? Ответ: двумя тысячами способов, по одному на каждую молекулу, которой посчастливилось попасть в правую половину. А если мы хотим, чтобы в правой части всегда находилась пара молекул? Это можно сделать 1 999 000 способов. И в конце концов, если мы обнаглеем поместить в правую половину три молекулы, оставляя в левой 1997, то обнаружим, что вариантов такого размещения молекул целых 1 331 334 000.[128]128
  Когда справа находятся две молекулы, первой из них может быть любая из 2000, а второй – любая из оставшихся 1999. Таким образом, логично предположить, что существует 1999 × 2000 = 3 998 000 подобных комбинаций. Однако здесь кроется ошибка, так как две молекулы справа не должны там появиться в каком-то определенном порядке (заявление о том, что «справа находятся молекулы под номерами 723 и 1198» эквивалентно заявлению, что «справа находятся молекулы 1198 и 723»). Следовательно, первоначальный результат нужно поделить на два, и тогда мы получим правильный ответ: существует 1 999 000 способов перенести две молекулы в правую часть, оставив в левой 1998. Если мы перемещаем в правую половину три молекулы, то порядок вычислений следующий: 1998 × 1999 × 2000 необходимо разделить на 3 × 2 различных последовательностей. Вы уже видите закономерность: для четырех частиц произведение 1997 × 1998 × 1999 × 2000 следует разделить на 4 × 3 × 2 и т. д. У величин, которые мы получаем в результате, есть особое название: «биномиальный коэффициент». Они представляют собой число способов, которыми можно выбрать определенное количество объектов из более крупного набора.


[Закрыть]

Очевидно, что эти числа увеличиваются очень быстро: 2000 намного больше 1, 1 999 000 намного больше 2000, а 1 331 334 000 еще больше. По мере того как мы в ходе своего мысленного эксперимента перемещаем все больше и больше молекул в правую половину, опустошая левую, они продолжают возрастать, а затем в определенный момент начинают уменьшаться. В конце концов, задавшись вопросом, много ли существует способов поместить все 2000 молекул в правую часть контейнера, оставив в левой ровно ноль, мы вновь вернемся к единственному уникальному варианту такой конфигурации.

Ситуация, соответствующая наибольшему числу всевозможных конфигураций, – очевидно, та, когда в каждой половине контейнера находится ровно по 1000 молекул. Создать такую конфигурацию можно в общем, очень большим количеством способов. Мы не будем приводить точное число; скажем только, что оно примерно равно 2 ∙ 10600 – двойка, за которой следует шестьсот нулей. И это всего лишь для двух тысяч частиц. Попробуйте вообразить приблизительное число возможных конфигураций атомов в комнате с обычным объемом воздуха или даже в стакане воды (предмет, который можно удержать в руке, состоит где-то из 6 ∙ 1023 молекул – это число Авогадро). Возраст Вселенной – всего лишь около 4 ∙ 1017 секунд, так что можете представить себе, как быстро вам придется двигать молекулы туда и сюда, для того чтобы изучить все возможные допустимые конфигурации.

Все это наводит на определенные мысли. Существует относительно немного способов собрать все молекулы в одной половине контейнера, но огромное число вариантов более или менее равномерного распределения их по доступному пространству. К тому же разумно ожидать, что очень неравномерное распределение с легкостью будет переходить в относительно равномерное, но не наоборот. Эти заявления похожи, но не эквивалентны. Следующим шагом Больцмана было предположение о том, что если у нас нет какой-то особой информации о состоянии системы, то следует предполагать, что она будет переходить от «специальных» конфигураций к «общим», то есть от ситуаций, соответствующих относительно небольшому числу вариантов расположения частиц, к ситуациям, соответствующим множеству способов их расположения.

Размышляя подобным образом, Больцман ставил целью объяснить на атомном уровне второе начало термодинамики – утверждение, что энтропия в замкнутой системе всегда увеличивается (или остается постоянной). Формулировки второго начала уже были даны Клаузиусом и другими учеными, однако Больцман хотел вывести их из некоего простого набора базовых принципов. Вы уже заметили, что статистическое мышление движет нас в правильном направлении: заявление о том, что «развитие систем происходит от специальных конфигураций к общим», весьма похоже на «развитие систем происходит от конфигураций с низкой энтропией к конфигурациям с высокой энтропией».

Таким образом, напрашивается определение энтропии как «количества перестановок микроскопических частей системы, при которых ее макроскопическое состояние не меняется». В нашем примере с перегородкой внутри контейнера это соответствует количеству способов разместить отдельные молекулы внутри сосуда так, чтобы общее число молекул в каждой половине осталось неизменным.

Мы почти подобрались к верному ответу, но все же не совсем. В действительности пионерам термодинамики было известно об энтропии не только то, что «она обычно увеличивается». Например, они знали, что если взять две разные системы и заставить их взаимодействовать, то общая энтропия будет равна простой сумме отдельных энтропий этих двух систем. Энтропия аддитивна, точно так же, как число частиц (в отличие, например, от температуры). Однако количество конфигураций совершенно точно свойством аддитивности не обладает: если соединить два контейнера с газом, то общее количество способов реорганизации молекул в двух контейнерах станет во много раз больше, чем в пределах одной емкости.

Больцману удалось справиться с задачей формулировки определения энтропии в терминах микроскопических перестановок. Мы будем использовать букву W (от немецкого Wahrscheinlichkeit – «вероятность») для обозначения количества перестановок микроскопических составляющих системы без изменения ее макроскопических свойств. Последним шагом Больцмана было взятие логарифма от W и объявление о том, что результат пропорционален энтропии.

Слово «логарифм» звучит очень по-научному, но это всего лишь способ показать, как много цифр понадобится для написания числа. Если число представляет собой степень 10, то его логарифм равен всего лишь этой степени,[129]129
  Разумеется, здесь мы подразумеваем логарифм по основанию 10, так как в общем случае в качестве основания может использоваться любое число. «Логарифм по основанию 2» от 8 (то есть 23) равен 3; логарифм по основанию 2 от 2048 (то есть 211) равен 11. Захватывающие подробности вы найдете в приложении.


[Закрыть]
то есть логарифм 10 равен 1, логарифм 100 равен 2, логарифм 1 000 000 равен 6 и т. д.

В приложении мы более подробно обсудим некоторые математические тонкости. Они не очень важны для составления глобальной картины; если вы притворитесь, что не замечаете слова «логарифм», то ничего особо не потеряете. В действительности важно знать только лишь две вещи:

    по мере увеличения чисел возрастают и их логарифмы;

    но не слишком быстро; сами числа становятся неимоверно больше, однако их логарифмы увеличиваются довольно медленно. Один миллиард намного больше тысячи, однако 9 (логарифм миллиарда) не сильно больше 3 (логарифм 1000).

Когда дело доходит до огромных чисел, например таких, с которыми мы сталкиваемся в этой игре, последнее свойство здорово нам помогает. Поделить 2000 частиц поровну можно 2∙10600 способов – просто невообразимое число! Но логарифм этого числа равен всего лишь 600,3 – с этим еще можно иметь дело.

Формула Больцмана для энтропии, традиционно обозначаемой буквой S (букву E мы использовать не хотим, потому что она обычно обозначает энергию), гласит, что энтропия равна произведению некоторой константы k, которая называется постоянной Больцмана, на логарифм W, где W – число микроскопических состояний системы, неразличимых с макроскопической точки зрения.[130]130
  В числовом выражении k составляет около 3,2∙10-16 эрг на кельвин, где эрг – единица энергии, а кельвин, конечно же, – единица температуры (в большинстве справочников вам будет встречаться другое значение; причина в том, что мы используем логарифмы по основанию 10, а формулу чаще всего записывают с использованием натуральных логарифмов). Говоря «температура есть мера средней кинетической энергии движущихся в веществе молекул», в действительности мы имеем в виду, что «средняя энергия на степень свободы составляет половину произведения температуры на постоянную Больцмана».


[Закрыть]
Таким образом[131]131
  Мы обозначили логарифм «lg», так как он десятичный. Для обозначения логарифма по другому основанию, например по основанию 2, в русскоязычной литературе применяется обозначение «log». – Примеч. пер.


[Закрыть]
,

S = k lg W

Это, без сомнения, одно из важнейших уравнений за всю историю науки – триумф физики XIX века, которое можно поставить в один ряд с ньютоновским описанием динамики в XVII веке и революционными открытиями в области теории относительности и квантовой механики в двадцатом. Посетив могилу Больцмана в Вене, вы увидите, что это уравнение выгравировано на его надгробном камне (см.главу 2).[132]132
  Настоящая история физики куда запутаннее, чем базовые понятия, удивляющие своей красотой. Больцман додумался до идеи S = klgW, но для ее описания он использовал совсем другие символы. В знакомую нам форму ее облек Макс Планк, также предложивший выгравировать уравнение на могильном камне Больцмана; кроме того, именно Планк впервые предложил использовать константу, которую мы сегодня зовем постоянной Больцмана. И чтобы окончательно все запутать, скажу, что уравнение на могильном камне представляет собой совсем не то, что обычно называют «уравнением Больцмана». Под этим понимается другое открытое Больцманом уравнение, описывающее эволюцию распределения большого числа частиц в пространстве состояний.


[Закрыть]

Взятие логарифма избавляет нас от основной проблемы, а формула Больцмана приводит как раз к тем свойствам, которые разумно ожидать от такого явления, как энтропия. В частности, полная энтропия двух систем после объединения равна всего лишь сумме энтропий этих систем. Это обманчиво простое уравнение обеспечивает количественную связь между микроскопическим миром атомов и макроскопическим миром, который мы видим вокруг себя.[133]133
  Для того чтобы данное определение имело реальный смысл, должно выполняться важное требование: мы должны уметь подсчитывать микросостояния разного типа и определять, сколько из них соответствуют тому или иному макросостоянию. Когда микросостояния формируют дискретный набор (как распределения частиц между двумя половинами одного контейнера), это звучит достаточно просто; намного сложнее справляться с непрерывными пространствами состояний (такими, как состояния реальных молекул с их положениями и импульсами или практически любых других объектов из реального мира). К счастью, в контексте двух важнейших описаний динамики – классической механики и квантовой механики – существует превосходно определенная «мера» пространства состояний, что позволяет нам вычислить величину W, по крайней мере, в принципе. В некоторых конкретных примерах наше понимание пространства состояний может размываться, и тогда следует соблюдать особую осторожность.


[Закрыть]


    Ваша оценка произведения:

Популярные книги за неделю