355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Шон Кэрролл » Вечность. В поисках окончательной теории времени » Текст книги (страница 12)
Вечность. В поисках окончательной теории времени
  • Текст добавлен: 20 февраля 2018, 08:30

Текст книги "Вечность. В поисках окончательной теории времени"


Автор книги: Шон Кэрролл


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 12 (всего у книги 43 страниц) [доступный отрывок для чтения: 16 страниц]

Одно простое правило

Существует простое правило, разрешающее все возможные парадоксы путешествий во времени.[86]86
  Это правило иногда повышают до статуса принципа; см. обсуждение в книгах: Новиков И. Д. Эволюция вселенной. – М.: Наука, 1983. или Horwich, P. Asymmetries in Time: Problems in the Philosophy of Science. Cambridge, MA: MIT Press, 1987. Такие философы, как Ганс Рейхенбах («Философия пространства и времени». Либроком, 2009) и Хилари Патнэм (Putnam, H. It Ain’t Necessarily So // Journal of Philosophy 59, no. 22 (1962): 658–71), также подчеркивали, что замкнутые времениподобные кривые не обязательно провоцируют возникновение парадоксов, – при условии, что события в пространстве—времени согласованы между собой. Действительно, это всего лишь здравый смысл. Совершенно очевидно, что в реальном мире парадоксов не бывает; вопрос лишь в том, как Природе удается их избегать.


[Закрыть]
Оно гласит: парадоксов не бывает.

Вот так. Проще простого.

Пока что ученые не обладают достаточными знаниями для того, чтобы говорить, допускают ли физические законы существование макроскопических замкнутых времениподобных кривых. Если нет, то и необходимости беспокоиться о парадоксах тоже нет. Но гораздо интереснее такой вопрос: всегда ли замкнутые времениподобные кривые приводят к возникновению парадоксов? Если это так, то их существование невозможно и вопрос закрыт.

Однако вполне возможно, что парадоксы не являются непременными спутниками замкнутых времениподобных кривых. Мы все согласны, что события, противоречащие логике, происходить не могут. В частности, в классической физике, с которой мы работаем в данный момент (в противоположность квантовой механике[87]87
  В главе 11, когда мы будем обсуждать квантовую механику, мы немного отойдем от этого утверждения. Квантовая механика предполагает, что в реальном мире может быть несколько классических историй, а не одна-единственная. Дэвид Дойч («Структура реальности» / Пер. с англ. М.; Ижевск, 2001) предложил использовать существование множества историй в своих интересах, выбрав одну, в которой мы прошли через Ледниковый период, и другую, в которой мы в него не попадали (а также бесконечное число иных).


[Закрыть]
), существует один-единственный верный ответ на вопрос «Что произошло в окрестности данного события в пространстве—времени?». В каждой области пространства—времени что-то происходит: вы проходите сквозь ворота, вы находитесь в одиночестве, вы встречаете кого-то еще, вы почему-то не приходите на встречу, – что угодно. И это что-то является именно тем, чем является, и было именно тем, чем было, и будет именно тем, чем будет, сейчас и всегда. Если в каком-то событии пространства—времени ваш дедушка заигрывал с вашей бабушкой, то именно это и происходило в том событии. Вы никак не сможете это изменить, потому что это уже случилось. Одинаково невозможно повлиять на события в прошлом как пространства– времени, содержащего замкнутые времениподобные кривые, так и пространства—времени, где таких кривых нет.[88]88
  «Назад в будущее» – вероятно, один из наименее правдоподобных фильмов о путешествии во времени среди всех, когда-либо снятых. Марти Макфлай переносится из 1980-х годов обратно в 1950-е и начинает менять прошлое направо и налево. Хуже того, каждый раз, когда он вмешивается в события, которые, предположительно, уже произошли, последствия этих изменений «моментально» распространяются в будущее, отражаясь даже на семейной фотографии, которую Марти носит с собой. Трудно представить, каким разумным способом можно было бы объяснить принцип «моментальности». Не то чтобы это было невозможно, но пришлось бы положить в основу объяснения существование дополнительного измерения, обладающего многими свойствами обычного времени. Сквозь это измерение индивидуальное сознание Марти будет проходить вследствие совершения им разнообразных действий. Наверняка кто-то должен был написать докторскую диссертацию на тему «К согласованной онтологии времени и памяти в трилогии “Назад в будущее” и далее». Непонятно только, на каком факультете ее можно было бы защитить.


[Закрыть]

Очевидно, что непротиворечивые истории возможны, причем даже в пространствах—временах с замкнутыми времениподобными кривыми. На рис. 6.4 изображена мировая линия одного бесстрашного путешественника, который дважды перепрыгивает назад во времени, а затем ему становится скучно, и он делает один прыжок в будущее, прежде чем уйти от волшебных ворот. Его перемещения не таят никаких парадоксов. Точно так же мы могли бы взять сценарий из предыдущего раздела и немного переделать его, чтобы исключить парадоксы. Вы подходите к воротам, видите свою копию, которая старше вас на один день; вы обмениваетесь любезностями, а затем проходите через ворота спереди и оказываетесь во вчерашнем дне. Однако вместо того чтобы демонстрировать упрямство и уходить прочь, вы выжидаете один день и встречаетесь со своей более молодой копией, с которой обмениваетесь любезностями, прежде чем пойти по своим делам. Какой бы участник событий ни описал происходящее, его версия будет превосходно согласована.

Мы могли бы придумать массу куда более драматичных историй, которые тем не менее будут безупречно согласованы. Вообразите, что нас назначили Стражами Врат, и наша работа – неусыпно наблюдать за проходящими сквозь ворота. Однажды, стоя по сторонам от ворот, мы замечаем незнакомца, вышедшего из ворот с тыльной стороны. Ничего странного; это всего лишь означает, что незнакомец завтра войдет (или уже вошел? – в нашем языке нет подходящих конструкций для описания путешествий во времени) в ворота спереди. Продолжая бдительно охранять ворота, мы видим, что этот незнакомец бродит по округе в течение дня, а затем, спустя ровно двадцать четыре часа, спокойно проходит через ворота спереди. Никто больше ниоткуда не появлялся, а незнакомцы, один из которых вошел в ворота, а другой вышел из них, формируют замкнутый цикл – эти двадцать четыре часа и есть полное время жизни незнакомца. История может показаться жутковатой и невероятной, однако в ней отсутствуют парадоксы и нет никаких логических противоречий.[89]89
  Более или менее окончательное слово о самосогласованных историях в присутствии замкнутых времениподобных кривых было сказано Робертом Хайнлайном в книге «Все вы зомби...» (1959). Путем нескольких прыжков во времени и одной операции по смене пола главный герой умудряется стать собственным отцом, матерью и вербовщиком временных войск. Обратите внимание, однако, на то, что история жизни героя не замкнута в цикл: по ходу изложения он стареет.


[Закрыть]

Вопрос же, который интересует нас больше всего, – что произойдет, если мы попытаемся мутить воду? Если решим, что не хотим следовать предписанному плану? В истории, где вы встречаетесь со своей копией старше вас на один день, а затем пересекаете порог врат и оказываетесь в прошлом, есть потенциальная развилка. Кажется, что после того, как вы прошли сквозь врата, у вас есть выбор: вы можете послушно выполнить свое предназначение или же взбунтоваться и уйти прочь. Итак, если вы все же решите пойти наперекор, что вас остановит? Вот здесь вся эта история с парадоксами и становится по-настоящему серьезной.

Мы знаем ответ: парадоксы невозможны. Если вы встретились со своей старшей копией, то мы можем утверждать с абсолютной метафизической уверенностью, что как только вы достигнете этого возраста, вы обязаны будете встретиться со своим более молодым дублем. Представьте себе, что мы убрали из условий задачи непослушные человеческие создания и рассматриваем простые неодушевленные объекты, например последовательность биллиардных шаров, прокатывающихся сквозь ворота. Существует масса наборов согласованных явлений, которые могли бы происходить в различных событиях пространства—времени, но только один из наборов произойдет в действительности.[90]90
  Обсуждение этого утверждения вы найдете в работе Friedman, J. et al. Cauchy Problem in Space-times with Closed Timelike Curves // Physical Review, 1990, D 42, p. 1915–1930.


[Закрыть]
Согласованные истории случаются, несогласованные – нет.

Энтропия и машины времени

Если заглянуть в самую суть вещей, то станет очевидно, что в действительности нас волнуют вовсе не законы физики: главная проблема – свобода воли. Мы живем с уверенностью, что над нами не может довлеть никакое предопределение, согласно которому мы так или иначе сделаем то, чего делать не хотим. Трудно сохранять такое ощущение, увидев, что мы уже делаем это.

Иногда наша свободная воля порабощается законами физики. Если выбросить человека из окна на верхнем этаже небоскреба, то он со свистом пронесется вниз и ударится о землю, как бы сильно ему ни хотелось улететь и безопасно приземлиться где-нибудь подальше. С таким вариантом предопределения мы смириться в состоянии. Однако принять намного более детализированное предопределение, навязываемое замкнутыми времениподобными кривыми, куда труднее. Создается впечатление, что существование непротиворечивой истории в пространстве—времени исключает возможности проявления свободной воли, которые были бы доступны в противном случае. Конечно, если бы мы были убежденными детерминистами, то верили бы, что атомы наших тел вступают в сговор с внешним миром и, подчиняясь непреложным законам ньютоновской механики, заставляют нас действовать во избежание парадоксов в точности по предписанному сценарию. Однако это все же не согласуется с тем, как мы привыкли мыслить о себе и своем месте в этом мире.[91]91
  На самом деле, мы и есть убежденные детерминисты. Человеческие существа состоят из частиц и полей, беспрекословно подчиняющихся законам физики, и в теории (но точно не на практике) мы могли бы забыть о своих человеческих качествах и рассматривать себя как сложные наборы элементарных частиц. Однако это не означает, что нам остается лишь сложить оружие перед лицом причудливой проблемы свободной воли в присутствии замкнутых времениподобных кривых.


[Закрыть]

Суть проблемы заключается в том, что при условии наличия замкнутых времениподобных кривых существование согласованной и непротиворечивой стрелы времени становится невозможным. Общая теория относительности меняет формулировку утверждения: «Мы помним прошлое, но не будущее»; теперь оно звучит так: «Мы помним события из светового конуса прошлого, но не из светового конуса будущего». Однако на замкнутой времениподобной кривой есть события, принадлежащие как световому конусу прошлого, так и световому конусу будущего – ведь эти два конуса перекрываются. Так что же, должны мы помнить такие события или нет? Мы могли бы согласовать события на замкнутой времениподобной кривой с законами физики на микроскопическом уровне, однако они не могут быть совместны с непрерывным увеличением энтропии вдоль кривой.

Для того чтобы в полной мере осознать значимость этого утверждения, подумайте о гипотетическом незнакомце, который выходит из ворот, а затем, сутки спустя, снова в них входит, но уже с другой стороны. Таким образом, история всей его жизни – это однодневный цикл, повторяющийся снова и снова, до бесконечности. Задумайтесь, какой непревзойденный уровень точности необходим, чтобы воспроизводить этот цикл день за днем (если считать, что цикл начинается в некоторой «стартовой» точке). Каждый день в одно и то же время незнакомец должен убеждаться, что каждый атом его тела занял именно то положение, в котором будет возможно его плавное слияние с самим собой из прошлого. Он должен проверять, например, что на его одежде не осело ни единой новой пылинки, которой не было сутки назад, что содержимое его пищеварительной системы в точности такое же, как день назад, и что его волосы и ногти абсолютно такой же длины. Мягко говоря, это несовместимо с нашим представлением о том, как происходит увеличение энтропии, даже это не есть прямое нарушение второго начала термодинамики (так как незнакомец не является закрытой системой). Если бы он просто пожал руку своей копии из прошлого, вместо того чтобы становиться ею, это бы не потребовало такого невообразимого уровня точности; однако в любом случае необходимость находиться в правильном месте в правильное время накладывает чрезвычайно строгие ограничения на возможные действия в будущем.

Наша концепция свободной воли тесно связана с идеей о том, что прошлое увековечено на скрижалях истории, тогда как будущее мы творим сами по своему разумению. Даже если верить, что законы физики точно фиксируют изменение какого-то конкретного состояния Вселенной, мы все равно не знаем, что это за состояние, так что в реальном мире увеличение энтропии приводит к бесконечному числу вариантов будущего. Тот тип предопределения, к которому приводит непротиворечивая эволюция в присутствии замкнутых времениподобных кривых, абсолютно аналогичен предопределению во Вселенной, где задано граничное условие в будущем, приводящее там к низкой энтропии – только в локальном масштабе.

Другими словами, если бы замкнутые времениподобные кривые существовали, то непротиворечивая эволюция в их присутствии казалась бы нам такой же странной и неестественной, как кино, прокручиваемое в обратном направлении, или любой другой пример развития событий по сценарию уменьшения энтропии. Это не невозможно – просто крайне маловероятно. Таким образом, либо замкнутые времениподобные кривые не существуют, либо большие макроскопические объекты не могут перемещаться сквозь пространство—время по действительно замкнутым путям – ну, или все, что, как нам кажется, мы знаем о термодинамике, неверно.

Предсказания и причуды

Жизнь на замкнутой времениподобной кривой кажется ужасающе предопределенной: если система движется по замкнутому контуру вдоль этой кривой, то она обязана каждый раз возвращаться точно в то состояние, с которого движение началось. При этом с точки зрения внешнего наблюдателя замкнутые времениподобные кривые также поднимают проблему, казалось бы, совершенно противоположной природы: исходное состояние Вселенной не позволяет однозначно предсказать, что будет происходить на этих кривых. Получается, что у нас есть очень строгое ограничение, в соответствии с которым движение вдоль замкнутых времениподобных кривых должно происходить самосогласованно, но в то же время число таких самосогласованных и непротиворечивых движений чрезвычайно велико, и никакие законы физики не в состоянии дать точный ответ, какое из них выберет система.[92]92
  Это несколько более самоуверенное заявление, чем то, что физики способны доказать в действительности. В некоторых сильно упрощенных ситуациях можно продемонстрировать, что будущее полностью определяется предшествующими событиями,– даже в присутствии замкнутых времениподобных кривых (см. Friedman, J., Higuchi, A. Topological Censorship and Chronology Protection // Annalen der Physik, 2006, 15, p. 109–128). Кажется (по крайней мере, мне) весьма вероятным, что в более реалистичных и сложных моделях такого счастья нам не будет; но все же окончательного ответа у нас пока нет.


[Закрыть]

Мы обсуждали различия между взглядом на Вселенную презентистов, которые считают реальным лишь текущий момент, и этерналистов – приверженцев концепции блочной Вселенной, в соответствии с которой все события на протяжении всей истории Вселенной одинаково реальны. Это интересный философский спор – какой взгляд представляет более плодотворную версию реальности; для физика они, однако, практически идентичны. Принято считать, что законы физики работают как компьютер: вы даете им на вход текущее состояние, а они сообщают, каким это состояние станет мгновение спустя (или было мгновением раньше, если интересно). Повторяя этот процесс много-много раз, мы можем получить предсказание для всей истории Вселенной от начала и до конца. В этом смысле всестороннее знание текущего состояния подразумевает полное знание всей истории Вселенной.

Замкнутые времениподобные кривые делают подобные «программы» невозможными; чтобы убедиться в этом, достаточно простого мысленного эксперимента. Еще раз обратим наше внимание на незнакомца, вышедшего из врат во вчера, который сутки спустя снова вошел в них с другой стороны, сформировав замкнутый цикл. Нет никакого способа предсказать существование такого незнакомца, отталкиваясь от какого-то более раннего состояния Вселенной. Предположим, что мы начинаем свой эксперимент во Вселенной, в которой в этот конкретный момент не существует замкнутых времениподобных кривых. Предполагается, что законы физики позволяют предсказать, что произойдет в будущем этого момента. Однако если кто-то создаст замкнутую времениподобную кривую, мы лишимся такой возможности. Как только во Вселенной появляется возможность существования замкнутых времениподобных кривых, загадочные незнакомцы и прочие случайные объекты начинают появляться тут и там и перемещаться вдоль этих кривых… или нет. Невозможно предсказать, что произойдет дальше, исходя лишь из полного знания состояния Вселенной в один из предыдущих моментов времени.

Другими словами, мы сколько угодно можем говорить о том, что происходящее в присутствии замкнутых времениподобных кривых непротиворечиво, а парадоксы отсутствуют. Однако это не делает происходящее также и предсказуемым, то есть не дает нам возможности предсказать будущее с помощью законов физики, начиная с состояния Вселенной в какой-то конкретный момент времени. Более того, замкнутые времениподобные кривые делают несостоятельным само определение «Вселенной в какой-то конкретный момент времени». В предыдущем нашем обсуждении пространства—времени критически важным моментом была возможность «нарезки» четырехмерной Вселенной на трехмерные «моменты времени», которые мы помечали соответствующими значениями временной координаты. Однако в присутствии замкнутых времениподобных кривых мы, по сути, не в состоянии этого сделать.[93]93
  Иногда можно нарезать пространство—время на моменты постоянного времени даже в присутствии замкнутых времениподобных кривых: например, это возможно в простой Вселенной с циклическим временем. Однако это совершенно уникальный случай, а в произвольном пространстве—времени с замкнутыми времениподобными кривыми было бы невозможно найти такой вариант «нарезки», который бы обеспечил последовательное деление всей Вселенной.


[Закрыть]
Локально – в ближайшей окрестности любого интересующего нас события – деление пространства—времени на «прошлое» и «будущее» с помощью световых конусов абсолютно такое же. Глобально мы не сможем последовательно разделить Вселенную на моменты времени.

Следовательно, в присутствии замкнутых времениподобных кривых нам придется позабыть о понятии «детерминизма» – идее о том, что состояние Вселенной в любой конкретный момент времени определяет ее состояния во все остальные моменты. Так ли высоко мы ценим детерминизм, чтобы эта проблема заставила нас полностью отвергнуть возможность существования замкнутых времениподобных кривых? Совсем не обязательно. Можно просто по-другому представлять себе работу законов физики – не как компьютера, вычисляющего состояние в следующий момент на основании текущего состояния. Например, мы можем считать физические законы неким набором условий, которые наложены на историю Вселенной в целом. Пока что неясно, что это могут быть за условия, но нельзя отбрасывать эту идею исключительно на основании умозрительных заключений.

Все эти метания из стороны в сторону могут казаться неуместными, однако они иллюстрируют важный урок. Частично наше понимание времени базируется на логике и известных законах физики, однако отчасти мы также руководствуемся бытовым удобством и кажущимися правдоподобными предположениями. Мы думаем, что возможность единственным образом предсказывать будущее на основании знаний о текущем состоянии важна, но у реального мира могут быть совсем иные мысли на этот счет. Если бы замкнутые времениподобные кривые могли существовать, то вечному спору между этерналистами и презентистами пришел бы конец: победа была бы обеспечена блочной Вселенной этерналистов. Очевидно, что возникающие то тут, то там замкнутые времениподобные кривые не позволили бы поделить Вселенную на последовательность «состояний настоящего».

Окончательный ответ на загадку замкнутых времениподобных кривых заключается в том, что они, вероятно, попросту не существуют (и не могут существовать). И если это действительно так, то причина в том, что законы физики не позволяют пространству—времени искривляться в достаточной мере, для того чтобы формировать подобные кривые, а не в том, что подобные кривые открыли бы путь к убийству наших предков. Так что менять нужно физические законы.

Флатландия

Замкнутые времениподобные кривые предлагают нам интересную лабораторию для мысленных экспериментов по исследованию природы времени. Тем не менее для того, чтобы всерьез воспринимать их, нам необходимо понять, возможно ли существование этих кривых в реальном мире, по крайней мере согласно правилам общей теории относительности.

Ранее были перечислены несколько решений уравнения Эйнштейна, включающих замкнутые времениподобные кривые: Вселенная с циклическим временем, Вселенная Гёделя, внутренняя область рядом с сингулярностью вращающейся черной дыры и вращающийся бесконечный цилиндр. Однако ни одно из них не помогает найти способ «построить» настоящую машину времени – создать замкнутую времениподобную кривую там, где ее не было. Во Вселенной с циклическим временем, Вселенной Гёделя и Вселенной с вращающимся цилиндром подразумевается, что замкнутые времениподобные кривые существуют с самого начала.[94]94
  Исключение, очевидно, составляет вращающаяся черная дыра. Не составляет труда вообразить создание подобной дыры в результате коллапса вращающейся звезды, однако встает другая проблема: замкнутые времениподобные кривые скрыты за горизонтом событий. Получается, что невозможно попасть на такую кривую, не покинув раз и навсегда внешний мир. Далее мы обсудим, можно ли считать это вариантом эвакуации при чрезвычайных обстоятельствах. Пожалуй, еще важнее то, что найденное Керром решение, описывающее вращающуюся черную дыру, применимо только в идеализированной ситуации, когда пространство—время не содержит вообще никакого вещества. Черной дырой должно быть все пространство—время – это не одна из тех черных дыр, которые получаются в результате коллапса звезды. Большинство экспертов по общей теории относительности полагают, что в реальном мире ни одна схлопнувшаяся звезда не способна породить замкнутые времениподобные кривые, даже за горизонтом событий.


[Закрыть]
Настоящий вопрос звучит так: «Можем ли мы своими силами создавать замкнутые времениподобные кривые в локальной области пространства—времени?»

Обратившись вновь к рис. 6.2, легко понять, почему все эти решения включают вращение того или иного рода: недостаточно всего лишь наклонить световые конусы, нужно «положить их на бок», выстроив в замкнутую цепочку. Итак, если сесть и подумать, как же создать в пространстве—времени замкнутую времениподобную кривую, то первым делом на ум приходит какой-нибудь вращающийся объект – если не бесконечный цилиндр или черная дыра, то, возможно, достаточно длинный цилиндр или всего лишь массивная звезда. Результат может быть еще более впечатляющим, если взять два гигантских массивных тела и запустить их навстречу друг другу с громадной относительной скоростью. А затем, если повезет, гравитационное притяжение этих тел в достаточной степени повлияет на ориентацию окружающих их световых конусов, чтобы сформировать замкнутую времениподобную кривую.

Все это как-то слишком просто. Действительно, мы немедленно сталкиваемся с различными сложностями. Общая теория относительности – сложная штука, причем не только концептуально, но и технически; уравнения, описывающие искривление пространства—времени, невероятно сложны для решения в любой ситуации, возникающей в реальном мире. Все известные нам точные предсказания теории связаны с сильно идеализированными случаями, обладающими высокой симметрией, такими как статическая звезда или совершенно однородная Вселенная. Расчет кривизны пространства—времени, образовавшейся в результате пролета двух черных дыр мимо друг друга со скоростью, близкой к скорости света, лежит за пределами наших возможностей (хотя методы расчетов улучшаются с каждым днем).

С целью сильного упрощения мы можем задать вопрос, что произойдет, если два массивных объекта пройдут близко друг от друга на высокой относительной скорости, но во Вселенной с трехмерным пространствомвременем, где вместо трех измерений пространства и одного измерения времени, как в нашем реальном четырехмерном пространстве—времени, будут всего лишь два измерения пространства и одно измерение времени.

Отбрасывая для простоты одно измерение пространства, мы совершаем достойный признания шаг. Эдвин Э. Эббот в своем романе «Флатландия» описывал существ, живущих в двумерном пространстве. Он пытался показать, что и в нашем мире может быть более трех измерений, попутно высмеивая Викторианскую культуру.[95]95
  Abbot, E. A. Flatland: A Romance of Many Dimensions. Cambridge: Perseus, 1899; также см. Randall, L. Warped Passages: Unraveling the Mysteries of the Universe’s Hidden Dimensions. New York: HarperCollins, 2005.


[Закрыть]
Мы позаимствуем терминологию Эббота и будем называть Вселенную с двумя пространственными измерениями и одним временным Флатландией, даже если на самом деле она вовсе не такая плоская[96]96
  Название «Флатландия» образовано от английского flat – плоский. – Примеч. пер.


[Закрыть]
, так как нас интересуют случаи искривления пространства—времени, когда световые конусы могут наклоняться, а времениподобные кривые – замыкаться.

Изучение машин времени во Флатландии (и в Кембридже)

Рассмотрим ситуацию, показанную на рис. 6.5: два массивных объекта с высокой скоростью проносятся мимо друг друга во Флатландии. В трехмерной Вселенной прекрасно то, что в ней уравнение Эйнштейна упрощается на несколько порядков, позволяя найти точное решение задачи, которая в реальной четырехмерной Вселенной была бы невообразимо сложной. В 1991 году астрофизик Ричард Готт закатал рукава и рассчитал искривление пространства—времени для этой ситуации. В частности, он обнаружил, что во Флатландии тяжелые объекты, проходя мимо друг друга, действительно создают замкнутые времениподобные кривые – при условии, что движутся они с достаточно высокой скоростью. Для каждого конкретного значения массы двух тел Готт рассчитал скорость, с которой те должны двигаться, чтобы в нужной степени наклонить окружающие световые конусы и предоставить возможность путешествия во времени.[97]97
  Первоначальное описание решения приведено в работе Gott, J. R. Closed Timelike Curves Produced by Pairs of Moving Cosmic Strings: Exact Solutions // Physical Review Letters, 1991, 66, p. 1126–1129. Также перу автора принадлежит научно-популярная книга на ту же тему: Gott, J. R. Time Travel in Einstein’s Universe: The Physical Possibilities of Travel Through Time. Boston: Houghton Mifflin, 2001. Почти во всех расчетах, с которыми вы познакомитесь в этих работах, говорится не о «массивных телах, перемещающихся во Флатландии», а об «идеально прямых параллельных космических струнах, движущихся в четырехмерном пространстве—времени». Однако суть в том, что эти ситуации абсолютно равнозначны. Космическая струна – это гипотетический реликтовый объект, зародившийся еще в ранней Вселенной, который может быть микроскопически тонким, но растянутым на космологические расстояния. Идеализированная струна может быть абсолютно прямой и бесконечной, однако в реальном мире космические струны должны извиваться и изгибаться разными сложными способами. Но если бы струна была идеально прямой, то в пространстве-времени существовало бы направление, совпадающее с направлением этой струны, вдоль которого вообще ничего бы не менялось. Говоря языком физиков, пространство—время было бы инвариантным относительно переноса и буста вдоль струны. По сути, это означает, что направление вдоль струны не играет абсолютно никакой роли, и мы можем с чистым сердцем его игнорировать. Если отбросить одно измерение, то бесконечно длинная струна в трехмерном пространстве превратится в двумерную точечную частицу. То же самое относится к набору из нескольких струн – при условии, что все они идеально прямые и на всем своем протяжении остаются параллельными друг другу. Разумеется, мысль поиграть с бесконечно длинными и идеально прямыми струнами почти так же экстравагантна, как предложение вообразить, что мы живем в трехмерном пространстве—времени. Но это нормально. Мы всего лишь делаем нереалистичные предположения, чтобы приблизить наши теории к краю постижимого и чтобы отделить то, что невозможно в принципе, от того, что пока что недостижимо вследствие технических сложностей.


[Закрыть]

Рис. 6.5. Машина времени Готта во Флатландии. Если два объекта пройдут мимо друг друга с достаточно высокой относительной скоростью, то возникнет замкнутая времениподобная кривая, обозначенная на рисунке пунктирной линией. Обратите внимание, что показанная здесь плоскость на самом деле двумерная – это не проекция трехмерного пространства.

Интересный результат, но это не считается за «построение» машины времени. В пространстве—времени Готта все предопределено: объекты в самом начале разнесены на большое расстояние, затем проходят в непосредственной близости друг от друга, а после этого снова разлетаются в стороны. В конечном счете замкнутые времениподобные кривые просто не могут не образоваться; во всей истории развития системы не найдется такой точки, где их появления можно было бы избежать. Итак, вопрос остается на повестке дня: можем ли мы своими руками построить машину времени Готта? Например, пусть во Флатландии есть два массивных объекта, находящихся друг относительно друга в покое. К каждому из этих объектов мы приделаем ракетные двигатели (не забывайте повторять про себя: «Это мысленный эксперимент»). Сможем ли мы придать объектам достаточно высокую скорость, чтобы это привело к образованию замкнутых времениподобных кривых? Это можно было бы заслуженно назвать построением машины времени, пусть даже в не очень реалистичных обстоятельствах.

Ответ на этот вопрос чрезвычайно интересен, и мне повезло оказаться в первых рядах зрителей, когда этот поразительный результат был достигнут.[98]98
  Вскоре после публикации статьи Готта известный физик Курт Катлер (Cutler, C. Global Structure of Gott’s Two-String Spacetime // Physical Review D 45 (1992): 487–94) доказал, что замкнутые времениподобные кривые должны простираться до бесконечности, – еще одно свидетельство того факта, что данное решение в действительности нельзя считать построением машины времени (поскольку «построение» для нас – это действие, совершаемое в некоей локальной области). Дезер, Джакив и ’т Хоофт (Deser, S., Jackiw, R.,and ’t Hooft, G. Physical Cosmic Strings Do Not Generate Closed Timelike Curves // Physical Review Letters 68 (1992): 267–69.) исследовали решение Готта и обнаружили, что соответствующий суммарный импульс должен быть равен импульсу тахиона. Мы вместе с Фари, Гутом и Олумом (Carroll, S. M., Farhi, E., and Guth, A. H. An Obstacle to Building a Time Machine // Physical Review Letters 68 (1992): 263–66; Erratum-Ibid., 68 (1992): 3368; Energy Momentum Restrictions on the Creation of Gott Time Machines // Physical Review D 50 (1994): 6190–6206) показали, что в открытой Вселенной Флатландии никогда бы не нашлось достаточно энергии, чтобы с нуля создать машину времени Готта. ’т Хоофт (’t Hooft, G. Causality in (2+1)-Dimensional Gravity // Classical and Quantum Gravity 9 (1992): 1335–48) доказал, что закрытая Вселенная Флатландии схлопнется в сингулярность еще до того, как у замкнутой времениподобной кривой появится шанс на зарождение.


[Закрыть]
В 1991 году, когда был опубликована статья Готта, я был аспирантом в Гарварде и работал в основном со своим научным руководителем Джорджем Филдом. Как и многие другие студенты Гарварда, я часто пользовался подземной линией Red Line, чтобы доехать до Массачусетского технологического института (MIT) и прослушать курсы, которых не было в моем университете (множество студентов MIT ездили в противоположную сторону по аналогичной причине). Среди интересовавших меня лекций были великолепный курс по теоретической физике элементарных частиц Эдварда (Эдди) Фари и курс по космологии ранней Вселенной Алана Гута. Эдди был молодым парнем с типичным акцентом жителей Бронкса и весьма серьезным отношением к физике (насколько это возможно для человека, работы которого носят названия вроде «Можно ли создать Вселенную в лаборатории путем квантово-механического туннелирования?»[99]99
  Farhi, E., Guth, A. H., Guven, J. Is It Possible to Create a Universe in the Laboratory by Quantum Tunneling? // Nuclear Physics, 1990, B 339, p. 417–490.


[Закрыть]
) Алан – исключительно здравомыслящий физик, заслуживший мировую известность как изобретатель инфляционного сценария развития Вселенной. Оба они были дружелюбными и увлеченными людьми, ребятами, с которыми было интересно проводить время, даже когда у нас не происходило увлекательных бесед о физике.

Итак, я был счастлив и горд тем, что эти двое пригласили меня поучаствовать в поиске ответа на вопрос, можно ли построить машину времени Готта. Над той же проблемой работала еще одна команда теоретиков в составе Стэнли Дезера, Романа Джакива и нобелевского лауреата Герарда ’т Хоофта. Они открыли интересное свойство двух движущихся тел во Вселенной Готта: несмотря на то что каждый объект в отдельности перемещается со скоростью, меньшей скорости света, совокупный импульс системы, включающей оба эти объекта, такой же, как у тахиона. Словно система двух совершенно обычных частиц является новой частицей, которая движется быстрее света. В специальной теории относительности, где сила притяжения не учитывается, а пространство—время совершенно плоское, это было бы невозможно: совокупный импульс любого числа частиц, скорость которых ниже скорости света, при любых условиях будет соответствовать движению медленнее скорости света. За такой интересный результат сложения скоростей двух объектов мы должны благодарить особые свойства искривленного пространства—времени. Однако для нас это открытие еще не поставило финальную точку в вопросе; кто сказал, что особенности искривленного пространства—времени не позволяют создавать тахионы?

Мы решили добавить к условиям задачи космический корабль, для того чтобы взять объекты, движущиеся с небольшой скоростью, и разогнать их так сильно, чтобы создать машину времени. Возможно ли это? В такой формулировке ответ кажется очевидным: легко! Главное, чтобы ракета была достаточно большая и мощная.

В действительности во Вселенной попросту не хватит для этого энергии. Для начала мы решили рассматривать «открытую Вселенную» – поверхность во Флатландии, по которой двигались наши частицы, простиралась до бесконечности. Однако одной из своеобразных особенностей силы притяжения во Флатландии является существование безусловного верхнего предела на полную энергию, которая способна поместиться в открытую Вселенную. Попробуйте добавить еще немного, и пространство—время искривится настолько, что Вселенная замкнется на саму себя.[100]100
  Представьте себе плоскость: при взгляде из любой конкретной точки она простирается вокруг на 360 градусов. Во Флатландии каждая дополнительная порция энергии уменьшает общий угол этой «развертки». Будем говорить, что любое материальное тело связано с «дефицитом угла»; наличие такого материального тела «вычитает» из развертки соответствующий угол. Чем больше тело, тем больший угол вычитается. Получившаяся геометрическая фигура на большом удалении выглядит как конус, а не как плоский лист бумаги. Однако больше 360 градусов мы вычесть не сможем, поэтому общая энергия, которая может существовать в открытой Вселенной, ограничена снизу.


[Закрыть]
В четырехмерном пространстве—времени во Вселенной может находиться сколько угодно энергии; каждая порция энергии искривляет ближайшую окрестность пространства—времени, однако на большом удалении от источника эффект ослабевает. В противоположность этому в трехмерном пространстве—времени влияние силы притяжения не может ослабевать – оно лишь усиливается. Следовательно, в открытой трехмерной Вселенной существует максимальный возможный объем энергии – и его недостаточно для построения машины Готта с нуля.

Получается, Природа предусмотрела интересный способ, как избежать создания машины времени. Мы написали две статьи: в первой мы изложили разумное обоснование этого результата, ее авторами стали мы втроем. Вторая статья была написана в соавторстве с Кеном Олумом, там было представлено более общее доказательство. Однако во время поисков мы заметили кое-что очень интересное. Действительно, верхний предел энергии существует – но для открытой Вселенной Флатландии; а что насчет закрытой? Если попытаться запихнуть слишком много энергии в открытую Вселенную, то она замкнется на саму себя. Но попробуем превратить эту проблему в характерную особенность и рассмотрим закрытые Вселенные, где пространство выглядит скорее как сфера, а не как плоскость.[101]101
  Мы говорим «выглядит как», потому что речь идет о топологии пространства, а не его геометрии. Не следует понимать, что кривизна пространства—времени всегда соответствует идеальной сфере, – мы лишь утверждаем, что его можно плавно преобразовать в сферу. Сферическая топология подразумевает, что «дефицит угла» равен в точности 720 градусам – вдвое больше верхнего предела открытой Вселенной. Представьте себе куб (являющийся топологическим эквивалентом сферы). У него восемь вершин, каждой из которых соответствует дефицит угла 90 градусов, – итого 720.


[Закрыть]
В них существует одно-единственное допустимое значение полной энергии и никакого пространства для маневров. Суммарная кривизна пространства должна быть равной кривизне сферы, а это в два раза больше, чем может поместиться в открытую Вселенную.

Мы сравнили полную энергию закрытой Вселенной во Флатландии с энергией, необходимой для создания машины времени Готта, и обнаружили, что этого количества достаточно. Это произошло уже после того, как была подготовлена и принята к публикации в Physical Review Leters, ведущем журнале в этой области, наша первая статья. Однако журналы позволяют до публикации вставлять в статьи небольшие примечания: «добавлено при проверке», и мы воспользовались этой возможностью, указав, что, вероятно, машину времени можно было бы построить в закрытой Вселенной Флатландии, несмотря на то что в открытой Вселенной это совершенно точно невозможно.

Рис. 6.6. Движущиеся частицы в закрытой Вселенной Флатландии, обладающей топологией сферы. Представьте себе муравьев, ползающих по поверхности пляжного мяча.

Мы сглупили (в такой ситуации очень удобно быть молодым ученым, работающим в компании знаменитых старших коллег; ты всегда можешь оправдаться: «Если даже эти ребята пропустили такую ошибку, может быть, она и не настолько глупая»). Нам показалось забавным, что Природа так изобретательно предотвращает создание машин времени Готта в открытых Вселенных, но при этом в закрытых Вселенных, судя по всему, никаких проблем с машинами времени не существует. Определенно, в закрытой Вселенной хватит энергии, чтобы разогнать объекты до желаемых скоростей – что может пойти не так?

Очень скоро Герард ’т Хоофт выяснил, что закрытая Вселенная, в отличие от открытой, обладает конечным общим объемом (хотя, поскольку у нас только два пространственных измерения, то «конечной общей площадью», но смысл вы поняли). Он продемонстрировал, что если заставить частицы двигаться в закрытой Вселенной Флатландии таким образом, чтобы инициировать возникновение машины времени Готта, то объем Вселенной начнет очень быстро сокращаться. По сути, Вселенная стремительно помчится навстречу Большому сжатию. Как только вам на ум придет эта мысль, вы сразу же поймете, каким образом пространство—время избегает машин времени: оно схлопывается до нулевого объема еще до того, как появляются замкнутые времениподобные кривые. Уравнения не лгут; так что Эдди, Алан и я признали это и отправили в Physical Review Leters уведомление об ошибке. Научный прогресс продолжил движение вперед, пусть и получив по пути небольшое ранение.

С учетом нашего результата, описывающего открытые Вселенные, и догадки ’т Хоофта о закрытых Вселенных становится очевидно, что во Флатландии ни при каких условиях невозможно создать новую машину времени Готта, то есть машину, которой до нас там не существовало. Может показаться, что большая часть аргументов, посредством которых мы пришли к этому результату, применима только в нереалистичном случае трехмерного пространства– времени, – и это действительно так. Однако совершенно ясно, что общая теория относительности пытается донести до нас простую мысль: замкнутые времениподобные кривые ей не по нраву. Можете сколько угодно пытаться создавать их, но каждый раз что-нибудь да пойдет не так. Определенно, нам было очень интересно, насколько это заключение применимо к реальному миру с четырехмерным пространством—временем.


    Ваша оценка произведения:

Популярные книги за неделю