355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Шон Кэрролл » Вечность. В поисках окончательной теории времени » Текст книги (страница 14)
Вечность. В поисках окончательной теории времени
  • Текст добавлен: 20 февраля 2018, 08:30

Текст книги "Вечность. В поисках окончательной теории времени"


Автор книги: Шон Кэрролл


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 14 (всего у книги 43 страниц) [доступный отрывок для чтения: 16 страниц]

Шахматный мир

Давайте сыграем в игру. Она называется «шахматный мир», и правила очень просты. Вам показывают массив квадратиков – шахматную доску, на которой часть квадратиков белые, а часть – серые. Если говорить на компьютерном языке, то каждый квадратик – это «бит», и мы можем пометить белые квадратики нулем, а серые единицей. Шахматная доска бескрайняя и простирается во все стороны до бесконечности, но в каждый момент времени мы можем видеть лишь ее часть.

Смысл игры в том, чтобы разгадать шаблон. Видя перед собой некий массив квадратиков, вы должны выделить закономерности и описать шаблон, или правила расстановки белых и серых квадратиков. После этого для проверки вам покажут другие части доски, и вы сможете сравнить свои предположения с фактическим расположением клеток. Последний шаг на языке игры называется «проверкой гипотезы».

Рис. 7.2. Пример мира «шахматной доски» с простым шаблоном заливки вертикальных столбцов.

Разумеется, у этой игры есть и другое название: «наука». Мы всего лишь описали, что делают настоящие ученые для понимания природы, – только в сильно идеализированном контексте. В случае физики хорошая теория включает три ингредиента: характеристики объектов, из которых сделана Вселенная, место действия, по которому распределены эти объекты, и правила, которым подчиняется поведение объектов. К примеру, в качестве объектов могут выступать элементарные частицы или поля, местом действия можно считать четырехмерное пространство—время, а правилами – законы физики. Мир шахматной доски именно такой: в качестве объектов выступают биты (нули и единицы, белые и серые квадратики), местом действия является сама шахматная доска, а правила – законы природы в этом игрушечном мире – это шаблоны, которые мы распознаем исходя из поведения квадратиков. Играя в эту игру, мы ставим себя на место воображаемых физиков, живущих в одном из подобных шахматных миров. Они проводят время, пытаясь разгадать закономерности в композициях квадратиков и сформулировать глобальные законы природы.[111]111
  Согласен, мы никогда не встретили бы настоящих физиков на подобной шахматной доске – их появление там невозможно по вполне понятной антропологической причине: условия в постановке задачи слишком просты для зарождения и развития сложных структур, которые мы могли бы назвать разумными наблюдателями. Эта удушающая простота выражается в том числе в отсутствии интересных «взаимодействий» между разными элементами. В тех шахматных мирах, которые мы будем рассматривать, основную роль будут играть простые предметы одного вида (например, вертикальные или диагональные линии), которые не меняются на своем протяжении. Интересный мир – это такой, в котором предметы могут существовать в течение более или менее длительного периода, постепенно меняясь под воздействием других предметов из этого же мира или вследствие взаимодействия с ними.


[Закрыть]

На рис. 7.2 изображен простейший пример игры, который мы будем называть «шахматная доска A». Очевидно, что какой-то шаблон здесь присутствует: квадратики раскрашены по определенной схеме. Можно сказать, что «если взять любой произвольный столбец, то все квадратики в нем будут находиться в одном и том же состоянии». Однако мы должны быть осторожны и убедиться в том, что здесь случайно не затесались никакие другие шаблоны, ведь если кто-то найдет больше шаблонов, чем мы, то мы проиграем, а нашим соперникам достанется Нобелевская премия шахматного мира. Создается впечатление, что на шахматной доске A нет никаких других очевидных шаблонов; мы пробежались глазами вдоль всей строки, но никаких идей, позволяющих дополнительно упростить описание этого шахматного мира, не возникло. Значит, мы закончили.

Рис. 7.3. Физические законы можно представлять себе как машину, которая исходя из текущего состоянии мира дает предсказание, каким мир станет мгновением позже.

Каким бы простым этот пример ни казался, у шахматной доски A много общего с реальным миром. Например, обратите внимание на то, что в найденном нами шаблоне различаются «время» (направление вверх по столбцам) и «пространство» (горизонтальное направление вдоль строк). Различие между ними состоит в том, что в строке может произойти все что угодно; насколько мы можем судить, наличие информации о состоянии одного конкретного квадратика не позволяет сделать никаких выводов о состоянии соседних. Аналогичным образом, в реальном мире мы также можем стартовать с любой произвольной конфигурации вещества в пространстве и предсказать, что с этой конфигурацией будет происходить с течением времени, руководствуясь «законами физики». Если у нас на коленях сидит кошка, то мы можем быть уверены, что и мгновение спустя она будет где-то неподалеку. Тем не менее наличие информации о присутствии рядом кошки не позволяет получить никакого представления о том, что еще есть в той комнате, где мы находимся. Предположим, мы решили с нуля построить новую Вселенную. Кто сказал, что в нашем творении между временем и пространством обязательно должно существовать различие такого рода? Вполне возможно вообразить такой мир, в котором вещи от момента к моменту будут меняться настолько же резко и непредсказуемо, как от места к месту. Однако в той Вселенной, где живем мы с вами, данное различие действительно существует. Понятие времени, с ходом которого вещи во Вселенной эволюционируют, не является логически неотъемлемой частью мира; это всего лишь идея, которая внезапно оказывается весьма удобной для размышлений о реальности, в которой мы живем.

Мы описали правило, действующее на шахматной доске A, так: «если взять любой произвольный столбец, то все квадратики в нем будут находиться в одном и том же состоянии». Это глобальное описание, распространяющееся сразу же на весь столбец. Мы могли бы перефразировать его, сделав более локальным, чтобы можно было взять любую строку («момент во времени») и с помощью правила восстановить все остальные строки сверху или снизу. Например, таким способом: «если мы знаем состояние любого конкретного квадратика, то мы также знаем, что квадратик прямо над ним находится точно в таком же состоянии». Другими словами, мы описали шаблон в терминах развития с течением времени и теперь можем, начиная с какого-то конкретного состояния в какой-то конкретный момент времени, продвигаться вперед (или назад), восстанавливая состояние одной строки за раз. Это традиционный способ применения законов физики к реальному миру, как показано на рис. 7.3. Расскажите о состоянии всего мира (скажем, о положении и скорости каждой частицы во Вселенной) в определенный момент времени, и законы физики услужливо сообщат, каким мир станет мгновение спустя.[112]112
  Сценарий, в котором мы продвигаемся «по одному моменту времени за раз», далек от идеала. Реальный мир (насколько нам известно) не делится на дискретные моменты времени. Время непрерывно, оно плавно течет из одного момента в другой, проходя через все моменты, заключенные между ними. Однако это нам не мешает; у нас есть подходящие математические инструменты, позволяющие продвигаться вперед во времени «шаг за шагом», несмотря на то что само время не дискретно.


[Закрыть]
Повторяя процесс, можно построить полную картину будущего. А как насчет прошлого?

Ставя время с ног на голову

Для мира, существующего только в нашем воображении, шахматная доска уж слишком однообразна и ограниченна. Невозможно представить, чтобы эти маленькие квадратики могли закатить вечеринку или написать эпическую поэму. Тем не менее если бы на шахматных досках жили физики, то они нашли бы, что обсудить после формулировки законов временной эволюции.

Физика шахматной доски A обладает определенной степенью симметрии, например инвариантностью относительно сдвига по времени. Это означает, что законы физики не меняются во времени от момента к моменту. Мы можем сместить точку наблюдения вперед или назад во времени (вверх или вниз по столбцам), но правило «квадратик прямо над текущим находится точно в таком же состоянии» продолжит выполняться.[113]113
  Обратите внимание на то, что перенос в пространстве и пространственная инверсия (зеркальное отражение) также являются идеальными симметриями. При взгляде на картинку это кажется неочевидным, но лишь потому, что сами состояния (шаблоны из нулей и единицы) не инвариантны относительно смещений и отражений в пространстве. Чтобы вы не думали, что эти симметрии взяты с потолка, замечу, что некоторые виды симметрии, которые вроде бы и могли существовать в рассматриваемом мире, в действительности отсутствуют. Невозможно, например, поменять ролями время и пространство. В целом чем больше симметрий существует в системе, тем она проще.


[Закрыть]
Симметрии так и работают: вы что-то делаете, но это ничего не меняет – правила продолжают действовать, как и раньше. Мы уже говорили о том, что реальный мир также инвариантен относительно сдвига по времени: с течением времени законы физики не меняются.

Кроме того, на шахматной доске A можно заметить еще один вид симметрии – инвариантность относительно обращения времени. Смысл такого вида симметрии очевиден: мы заставляем время идти в обратную сторону и наблюдаем за происходящим. Если результат «выглядит точно так же» – то есть создается впечатление, что «перевернутая» система подчиняется тем же законам физики, что и первоначальная расстановка, – то мы говорим, что действующие в системе правила инвариантны относительно обращения времени. Для того чтобы проверить это на шахматной доске, нужно зеркально отразить ее, выбрав осью симметрии какую-нибудь строку. При условии, что действующие на шахматной доске правила также инвариантны относительно сдвига по времени, совершенно неважно, какую строку мы выберем, так как они все равны. Если правила, с помощью которых мы описывали исходную расстановку, так же действуют в новом шаблоне, то можно утверждать, что шахматная доска инвариантна относительно обращения времени. Очевидно, что образец A, в котором каждый столбец содержит квадратики только одного цвета, обладает данным типом инвариантности: отраженный шаблон не только подчиняется тем же правилам, он еще и стопроцентно совпадает с исходным.

Для того чтобы лучше прочувствовать идею, давайте рассмотрим более интересный пример. На рис. 7.4 показан еще один мир шахматной доски, обозначенный B. Теперь мы видим два разных шаблона размещения серых квадратиков: диагональные линии, идущие в обоих направлениях (получившийся рисунок немного напоминает световые конусы, не правда ли?). И снова мы можем описать получившуюся схему размещения серых и белых квадратиков в терминах развития от одного момента времени к следующему. Нужно только не забывать о том, что в каждой конкретной строке нам недостаточно отслеживать цвет одного-единственного квадратика. Мы обязаны следить за тем, какие типы диагональных линий из серых квадратиков проходят через эту точку (и проходят ли вообще). Каждую клетку можно пометить одним из четырех состояний: «белая», «диагональная линия серых квадратиков проходит вверх и вправо», «диагональная линия серых квадратиков проходит вверх и влево», «диагональная линия серых квадратиков проходит в обе стороны». Если мы опишем любую произвольную строку всего лишь как последовательность нулей и единиц, этого будет недостаточно, чтобы понять, как будет выглядеть следующая строка.[114]114
  Глобальная идея, одной из частных реализаций которой являются миры шахматной доски, носит название клеточных автоматов. Клеточный автомат – это дискретная решетка, на которой состояние следующей строки можно определить в соответствии с определенными правилами исходя из состояния предыдущей строки. Клеточные автоматы начал изучать еще в 1940-х годах Джон фон Нейман, математик, одним из достижений которого стала догадка о том, как энтропия должна вести себя в квантовой механике. Множество причин делает клеточные автоматы захватывающей темой для исследований, и большая их часть никак не связана со стрелой времени. Клеточные автоматы – чрезвычайно сложные системы, способные функционировать как универсальные компьютеры. См.: Poundstone, W. The Recursive Universe: Cosmic Complexity and the Limits of Scientific Knowledge. New York: W. W. Norton, 1984; Shalizi, C. R. Notebooks, 2009. http://www.cscs.umich.edu/~crshalizi/notebooks/ .
  Мы не только проявляем крайнее неуважение к клеточным автоматам, всего лишь используя их для иллюстрации парочки несложных свойств течения времени и сохранения информации, но также отказываемся говорить на традиционном языке знатоков клеточной автоматизации. Как минимум, в этой области направлением течения времени принято считать направление сверху вниз. Но ведь это безумие! Каждый знает, что на диаграммах время увеличивается снизу вверх. Более того, хотя мы и утверждаем, что каждый квадратик может находиться лишь в одном состоянии – «белый» или «серый», мы только что сами признали, что для надежного прогнозирования будущего в примере B необходимо хранить намного больше информации. Однако это не проблема; это означает лишь то, что мы имеем дело с автоматом, где «клетки» могут находиться более чем в двух состояниях. Можно было бы даже выйти за пределы набора из двух цветов и допустить существование клеток четырех разных цветов. Но для наших текущих целей это слишком высокий уровень сложности, и мы не будем его явно вводить.


[Закрыть]
Все выглядит так, будто мы обнаружили в рассматриваемой Вселенной два типа «частиц»: одни движутся всегда только налево, а другие – только направо, причем частицы разных типов никак не взаимодействуют между собой и не влияют друг на друга.

Рис. 7.4. Шахматная доска B (слева) характеризуется чуть более сложной динамикой, чем шахматная доска A: в этом примере диагональные линии, состоящие из серых квадратиков, следуют в обоих направлениях. Шахматная доска B' (справа) иллюстрирует результат обращения времени на доске B относительно центральной строки.

Что произойдет с шахматной доской B, если мы поменяем направление времени на обратное? Суть этого шахматного мира останется прежней, однако фактическое расположение белых и серых квадратиков, разумеется, изменится (в отличие от шахматной доски A, где вне зависимости от направления времени мы получали один и тот же набор белых и серых клеток). На второй панели рис. 7.4, обозначенной B', показан результат зеркального отражения относительно одной из строк шахматной доски B. В частности, диагональные линии, проходившие из левого нижнего угла в правый верхний, теперь протянулись из левого верхнего в правый нижний, и наоборот.

Инвариантен ли мир шахматной доски из примера B относительно обращения времени? Определенно, это так. Пусть изменение направления времени относительно произвольно выбранной строки и меняет индивидуальное распределение белых и серых клеток – это не важно. Важно то, что неизменными остаются «законы физики», то есть правила, которым подчиняются схемы закрашивания квадратиков. В исходном примере B, до изменения направления времени, правила гласили, что существуют два типа диагональных линий, содержащих серые клетки. То же самое верно и для B'. И пусть два типа линий обмениваются личинами; это не отменяет того факта, что как в состоянии «до», так и в состоянии «после» мы наблюдаем одни и те же два типа линий. Таким образом, воображаемые физики из мира шахматной доски B объявили бы, что законы природы инвариантны относительно изменения направления времени.

В Зазеркалье

Ну что, рассмотрим еще один мир шахматной доски? Теперь это будет шахматная доска C, показанная на рис. 7.5. И снова действующие в этом мире правила кажутся довольно простыми: мы видим только диагональные линии, протянувшиеся из левого нижнего угла в правый верхний. Попробуем сформулировать правило «предсказания будущего» в терминах пошагового развития: «если мы знаем состояние любого конкретного квадратика, то мы также знаем, что квадратик на один шаг выше и правее него находится в том же самом состоянии». Определенно, данное правило инвариантно относительно переноса во времени, так как результат его применения абсолютно не зависит от того, с какой строки мы начнем.

Рис. 7.5. В шахматном мире C присутствуют только диагональные линии серых квадратиков, идущие из левого нижнего угла в правый верхний. Если изменить направление времени на противоположное, то мы получим картинку C', на которой нет ничего, кроме диагональных линий из правого нижнего угла в левый верхний. Строго говоря, шахматная доска C не инвариантна относительно изменения направления времени – она инвариантна относительно одновременного отражения в пространстве и во времени.

Если изменить направление времени на шахматной доске C на противоположное, то мы получим конфигурацию, показанную на рис. 7.5 на доске C'. Очевидно, что эта ситуация отличается от ситуации с B и B'. Правила, которым подчиняются клетки на доске C', отличаются от правил на доске C: вместо диагональных линий, идущих из левого нижнего угла в правый верхний, мы теперь видим линии, идущие в другую сторону. Физики, живущие в мирах C и C', сказали бы, что наблюдаемые ими законы природы не обладают симметрией относительно обращения времени. Мы безошибочно различаем направления «вперед во времени» и «назад во времени»: «вперед» – это то направление, в котором диагональные линии движутся вправо. Какое направление назначить «будущим» – решать нам, но как только выбор сделан, «прошлое» и «будущее» идентифицируются однозначно.

Однако это еще не конец истории. Хотя шахматная доска C, строго говоря, не инвариантна относительно изменения направления времени (в том смысле, как мы его определили), что-то «обратимое» в этом мире все же должно быть. Давайте попробуем понять – что.

Помимо обращения времени, мы также могли бы рассмотреть вариант «обращения» пространства. Для этого нам нужно отразить шахматную доску по горизонтали относительно какого-то столбца. В реальном мире мы получаем аналогичный результат, когда смотримся в зеркало, так что обращением пространства в данном случае можно считать обычное зеркальное отражение. В физике это обычно называют преобразованием четности, которое получается при одновременном обращении всех трех пространственных осей, а не одной (как на шахматной доске). Давайте тоже будем использовать этот термин, чтобы у нас была возможность при необходимости сойти за настоящих физиков.

Очевидно, что наша исходная шахматная доска A инвариантна относительно преобразования четности: те правила поведения, которые мы на ней обнаружили, выполняются даже после горизонтального зеркального отражения. В то же время на шахматной доске C мы сталкиваемся с ситуацией, аналогичной той, которую мы получали, когда меняли направление времени на противоположное: четность – это не симметрия. Меняя «лево» на «право», мы превращаем мир с диагоналями «только вверх и вправо» в мир с диагоналями «только вверх и влево».

Тем не менее почему бы нам не взять шахматную доску C и не обратить сразу и время и пространство? В получившемся мире будут действовать те же правила, с которых все началось. При обращении времени первый тип диагоналей превращается во второй, а отражение в пространстве восстанавливает исходную картинку. Все встает на свои места, а этот эксперимент иллюстрирует одну важную особенность изменения направления времени в фундаментальной физике: очень часто бывает так, что определенная физическая теория не инвариантна относительно «наивного инвертирования времени», при котором меняется лишь направление времени и больше ничего. Однако та же самая теория может быть инвариантной относительно некоторого правильно обобщенного преобразования симметрии, которое не ограничивается лишь обращением времени, а включает какие-то дополнительные преобразования. В реальном мире это происходит по весьма изощренному сценарию, который в изложении некоторых авторов учебников по физике становится еще сложнее и запутаннее. Итак, давайте оставим наш дискретный мир шахматных досок и бросим взгляд на настоящую Вселенную.

Адрес состояния системы

В теориях, которые используются физиками для описания реального мира, присутствует общее базовое понятие состояния, которое «развивается с течением времени». Это касается как классической механики, сформулированной Ньютоном, так и общей теории относительности и квантовой механики, и даже квантовой теории поля и стандартной модели в физике элементарных частиц. На любой из наших шахматных досок состоянием является горизонтальная строка квадратиков, каждый из которых окрашен в белый или серый цвет (и, возможно, несет какую-то дополнительную информацию). В зависимости от подхода к физике реального мира определение состояния может меняться. Однако каким бы оно ни было, мы можем задавать одни и те же вопросы об изменении направления времени и других возможных симметриях нашего мира.

«Состояние» физической системы – это «полный набор информации о системе в определенный момент времени, которая достаточна для описания ее дальнейшего развития[115]115
  В случае недетерминистических физических законов – законов, включающих какой-то случайный элемент, – мы называем «предсказанием» будущего развития не набор неизбежных событий, а набор вероятностей. Суть в том, что состояние включает всю информацию, необходимую для того, чтобы описать эволюцию максимально точно, – с учетом действующих законов физики.


[Закрыть]
с учетом законов физики». Если точнее, то данное определение распространяется только на изолированные системы, то есть системы, не подверженные влиянию непредсказуемых внешних сил (в ситуации с предсказуемыми внешними силами мы можем просто-напросто объявить их частью «законов физики», действующих на данную систему). Таким образом, мы можем рассуждать как обо всей Вселенной, которая предполагается изолированной, так и о каком-то космическом корабле, находящемся на достаточном удалении от любых планет или звезд.

Рассмотрим для начала классическую механику – мир сэра Исаака Ньютона.[116]116
  Некоторые люди выделяют модели теории относительности в отдельный класс, разделяя «классическую механику» и «релятивистскую механику», но так бывает редко. Для многих задач удобно говорить, что теория относительности – это новый вид классической механики, не новый тип мышления. В релятивистской механике мы описываем состояние системы практически так же, как в ньютоновской. В то же время квантовая механика действительно ни на что не похожа. Таким образом, употребляя прилагательное «классическая», мы противопоставляем некоторое понятие чему-то квантовому (если неуказано иное).


[Закрыть]
Что нам нужно знать, чтобы предсказать будущее системы в ньютоновской механике? Выше я уже упоминал об этом: нам потребуются положения и скорости всех элементов системы. Однако не будем торопиться, а попробуем прийти к этому ответу постепенно, шаг за шагом.

Когда кто-то упоминает ньютоновскую механику, можно не сомневаться – дело закончится игрой в бильярд.[117]117
  Неизвестно – по крайней мере я не в курсе, – играл ли в бильярд Ньютон, хотя сама игра, определенно, в то время уже была распространена в Англии. А вот Иммануилу Канту в студенческие годы бильярд (а также карты) даже служил источником карманных денег.


[Закрыть]
Но давайте представим себе новый вариант игры – не тот традиционный бильярд с восемью шарами, а нечто уникальное. Свое гипотетическое развлечение с бильярдными шарами мы назовем бильярдом физиков. В попытке избавиться от излишних усложнений и добраться до сути вещей физики выдумывают игры, в которых нет ни шума, ни трения: идеально круглые сферы катаются по столу и отталкиваются друг от друга, не теряя ни капли энергии. Настоящие бильярдные шары ведут себя совершенно по-другому – каждому столкновению сопутствуют звук удара и рассеяние определенного количества энергии. Это наглядное проявление работы стрелы времени: шум и трение создают энтропию. Мы же на мгновение отбросим подобные сложности.

Для начала вообразим один-единственный бильярдный шар, катающийся по столу (распространить правила игры сразу на несколько шаров будет совсем нетрудно). Мы считаем, что он никогда не теряет энергию и, наталкиваясь на бортик, просто отскакивает. В целях нашей задачи «идеальный отскок» будет частью «физических законов» данной замкнутой системы – бильярдного шара. Так что же можно считать состоянием этого единственного шара?

На первый взгляд кажется, что логично считать состоянием шара в любой момент времени его положение на столе. В конце концов, если сделать фотографию стола, то что мы увидим? Место, где в тот момент находился шар. Однако выше мы определили состояние как полную информацию, требуемую для предсказания движения системы; очевидно, что одного лишь положения нам недостаточно. Если я скажу, что шар находится точно в центре стола (и больше ничего), и попрошу вас предсказать, где он окажется секундой позже, то вы не сможете дать мне точный ответ, ведь вам неизвестно, в какую сторону шар катился.

Разумеется, для предсказания движения шара на основании информации, имеющейся в наличии в конкретный момент времени, нам нужно знать как положение, так и скорость объекта. Говоря «состояние шара», мы имеем в виду его положение и скорость и – обратите внимание! – ничего более. Нам неважно, например, с каким ускорением шар катится, какое сейчас время суток, чем шар позавтракал в этот день и что еще происходит в его внутреннем мире.

Для описания движения частиц в классической механике вместо скорости часто используют такое понятие, как импульс. История данного понятия восходит к тысячному году и связана с величайшим персидским философом Ибн Синой (в латинизированном написании Авиценна). Он предложил теорию движения, в которой «влечение» – произведение массы и скорости – остается в отсутствие внешних воздействий постоянным. Импульс сообщает нам, какой энергией обладает объект и в каком направлении он движется.[118]118
  Таким образом, импульс – это не просто число. Это вектор, изображаемый чаще всего в виде небольшой стрелки. Вектор может определяться величиной (длиной стрелочки) и направлением, а может задаваться в виде суммы подвекторов (компонентов вектора), указывающих в разных направлениях. Например, можно говорить об «импульсе вдоль оси x».


[Закрыть]
В ньютоновской механике импульс равен произведению массы на скорость, а в теории относительности формула слегка модифицируется с учетом того, что с приближением скорости объекта к скорости света его импульс возрастает до бесконечности. Если вам известен импульс объекта с фиксированной массой, то вы знаете его скорость, и наоборот. Следовательно, определить состояние любой частицы можно, указав ее положение и импульс.

Рис. 7.6. Одинокий бильярдный шар, катающийся по столу без трения. Показаны состояния в три разных момента времени. Стрелочки обозначают импульс шара; он остается постоянным до тех пор, пока шар не отскочит от бортика.

Зная положение и импульс бильярдного шара, вы можете полностью предсказать всю траекторию, по которой он будет следовать, катаясь по столу. Пока шар свободно катится, не касаясь стенок, импульс остается постоянным; меняется лишь положение шара вдоль прямой линии, и происходит это с постоянной скоростью. Когда шар врезается в бортик, импульс мгновенно отражается относительно линии бортика, после чего шар продолжает движение с постоянной скоростью, то есть он отскакивает. Я описываю простые вещи сложными словами, но это необходимо.

Вся суть ньютоновской механики в этом и заключается. Если по одному и тому же столу катается много шаров, то полное состояние системы представляет собой всего лишь набор положений и импульсов каждого из них. Скажем, состояние Солнечной системы – это положения и импульсы всех планет, а также Солнца. Или же, если вам хочется большей детальности и реалистичности, – то это положения и импульсы всех частиц, из которых состоят эти объекты. А состояние вашего парня или девушки включает описание положения и импульса каждого атома его или ее тела. Правила классической механики позволяют однозначно предсказать, по какому пути пойдет развитие системы, опираясь лишь на информацию о ее текущем состоянии. После того как вы составили нужный список, дело берет в свои руки демон Лапласа, и исход предопределен. Однако вы не столь умны, как демон Лапласа, и у вас нет доступа к такому объему информации, поэтому парни и девушки навсегда останутся загадками. Кроме того, они представляют собой открытые системы, так что в любом случае вам потребовалась бы также информация и обо всем остальном мире.

Во многих ситуациях удобно рассуждать обо «всех потенциально возможных состояниях системы», называемых пространством состояний системы. Обратите внимание на то, что слово «пространство» употребляется в двух, казалось бы, совершенно разных смыслах. У нас есть пространство – физическая арена, на которой происходит движение реальных объектов во Вселенной, а также абстрактное понятие пространства как математического набора объектов (это почти то же самое, что и «множество», но с возможностью существования некой дополнительной структуры). Пространство состояний – это пространство, способное принимать разные формы в зависимости от рассматриваемых физических законов.

В ньютоновской механике пространство состояний называется фазовым пространством, хотя причины такого именования не до конца ясны. Это всего лишь набор всех возможных положений и импульсов всех присутствующих в системе объектов. В мире шахматных досок пространство состояний состоит из всевозможных последовательностей белых и серых квадратиков в одной строке, а также может включать некоторую дополнительную информацию в точках, где пересекаются диагональные линии. Когда мы окунемся в квантовую механику, то столкнемся с пространством состояний, состоящим из всех возможных волновых функций, описывающих квантовую систему; на техническом языке это называется гильбертовым пространством. В любой уважающей себя физической теории присутствует пространство состояний и правила, описывающие эволюцию конкретных состояний с течением времени.

У пространства состояний может быть громадное количество измерений, даже если обычное пространство всего лишь трехмерное. В этом контексте под измерением понимается «число, необходимое для фиксации точки в пространстве». В пространстве состояний есть по одному измерению для каждой компоненты положения и по одному измерению для каждой компоненты импульса для каждой частицы в системе. Если мы говорим о бильярдном шаре, катающемся по плоскому двумерному столу, то нам требуется два числа для описания его положения (так как сам стол двумерный) и два числа для описания его импульса (величины и направления). Таким образом, пространство состояний одного бильярдного шара, привязанного к двумерному столу, четырехмерное: два числа для положения, два для импульса.

Рис. 7.7. Два шара на бильярдном столе и соответствующее пространство состояний. Для обозначения положения каждого шара на столе требуется два числа, и еще два числа описывают его импульс. Полное состояние двух частиц представляет собой точку в восьмимерном пространстве (справа). Мы не можем нарисовать восемь измерений, так что постарайтесь вообразить, что они там действительно присутствуют. Каждый дополнительный шар добавляет к пространству состояний четыре измерения.

Если бы на столе было девять шаров, то нам потребовалось бы по два числа на положение каждого шара и по два на их импульсы – итого тридцать шесть измерений фазового пространства. Число измерений, требующихся для описания импульса и положения, всегда совпадает, так как в реальном пространстве вдоль каждой из осей пространства направлено по одной компоненте импульса. Если рассмотреть случай бейсбольного мяча, летящего в воздухе, что эквивалентно задаче об одной частице, свободно движущейся в трехмерном пространстве, то пространство состояний для него будет шестимерным. Для 1000 частиц оно будет 6000-мерным.

В реалистичных задачах пространство состояний чрезвычайно велико. Настоящий бильярдный шар состоит примерно из 1025 атомов, а пространство состояний представляет собой список положений и импульсов каждого из них. Вместо того чтобы рассматривать эволюцию всех этих атомов, движущихся сквозь трехмерное пространство со своими импульсами, мы можем с равным успехом говорить о движении всей системы целиком как об одной точке (состоянии), движущейся сквозь пространство состояний с громадным количеством измерений. Это кардинальный способ перепаковки огромного объема информации в другую форму; нисколько не упрощая описание (мы всего лишь подменили огромное количество частиц огромным количеством измерений), он позволяет взглянуть на вещи с новой точки зрения.

Ньютоновская механика инвариантна относительно выбора направления времени. Если вы снимете фильм о том, как наш одинокий бильярдный шар катается по зеленому фетру и отскакивает от бортиков стола, то ни один зритель не сможет сказать, смотрит он эту пленку в прямом или в обратном воспроизведении. В обоих случаях на экране происходит одно и то же: шар катится по прямой линии с постоянной скоростью до тех пор, пока не врежется в бортик и не отскочит от него.

Однако это далеко не конец истории. В нашем шахматном мире мы определили инвариантность относительно обращения времени как идею о том, что последовательность состояний системы можно отразить во времени, и результат все так же будет подчиняться сформулированным для этого мира законам физики. На шахматной доске состоянием является строка белых и серых квадратиков; для бильярдного шара это точка в пространстве состояний, задающая положение и импульс шара.

Взгляните на первую часть траектории шара на рис. 7.6. Шар равномерно и прямолинейно катится вверх и вправо, величина его импульса остается постоянной, и направлен импульс также вверх и вправо. Если зеркально отразить происходящее во времени, то мы получим последовательность положений шара, движущегося из верхней правой области стола в нижнюю левую, а также набор одинаковых импульсов, указывающих вверх и вправо. Но это какое-то безумие. Если шар катится вдоль траектории с обратным направлением времени – сверху и справа вниз и влево, то и направление его импульса должно совпадать с направлением скорости. Очевидно, что самый простой рецепт – взять исходный набор состояний, упорядоченный во времени, и воспроизвести его в неизменном виде в обратную сторону – не работает. Получившаяся траектория не отвечает законам физики. (Совершенно очевидно, что импульс никак не может быть направлен в сторону, противоположную направлению скорости, ведь он равен произведению скорости и массы![119]119
  Это хороший вопрос, над которым я размышлял в течение многих лет. Когда мы изучали классическую механику, периодически возникали ситуации, когда преподаватели начинали беззаботно описывать импульсы, совершенно несовместимые с фактической траекторией системы. В чем же дело? Проблема в том, что когда нас впервые знакомят с понятием «импульс», звучит определение: импульс – это результат умножения массы на скорость. Но время идет, и вот мы уже проникаем в эзотерические сферы классической механики, а то, что раньше было определением, становится следствием, которое несложно вывести из основополагающей теории. Другими словами, мы начинаем воспринимать суть понятия «импульс» как «некоторый вектор (с величиной и направлением), определенный в каждой точке траектории частицы», а затем выводить уравнения движения, из которых следует, что импульс должен быть равен массе, умноженной на скорость (это называется гамильтоновым подходом к динамике). Именно в таком стиле мы рассуждаем сейчас, говоря об изменении направления времени. Импульс – это независимая величина, часть состояния системы; он равен произведению массы на скорость только в том случае, если физические законы соблюдаются.


[Закрыть]
)

Эта дилемма хоть и кажется неразрешимой, в действительности довольно проста. В классической механике мы можем определить операцию обращения времени не просто как воспроизведение исходного набора состояний в обратную сторону, но как составную операцию, включающую изменение направления импульсов на противоположное. И тогда действительно классическая механика окажется идеально инвариантной относительно обращения времени. Если вы предоставите мне описание эволюции системы с течением времени, включающее положения и импульсы каждой ее части в каждый момент времени, то я смогу развернуть эти импульсы в обратную сторону, воспроизвести последовательность в обратном порядке и получить новую траекторию, которая также будет представлять собой правильное решение ньютоновских уравнений движения.

Это более или менее отвечает здравому смыслу. Возьмем планету, вращающуюся вокруг Солнца. Предположим, что вам стало интересно, как этот процесс будет выглядеть в «обратной перемотке», – вы мысленно меняете направление течения времени, и теперь планета движется по той же орбите, но в обратную сторону. Наблюдая эту картину в течение какого-то времени, вы приходите к выводу, что все выглядит вполне достоверно. Это происходит потому, что ваш мозг автоматически меняет направление импульса на противоположное, – вам даже не приходится задумываться об этом, в вашем воображении планета совершенно естественным образом движется в обратную сторону. Мы не придаем этому большого значения, потому что не можем увидеть импульс так же, как видим положение. Тем не менее это такая же важная часть состояния любой системы, как и положение входящих в нее частиц.


    Ваша оценка произведения:

Популярные книги за неделю