Текст книги "Самые знаменитые изобретатели России"
Автор книги: Сергей Истомин
Жанр:
Публицистика
сообщить о нарушении
Текущая страница: 9 (всего у книги 37 страниц)
Как известно, К. Штейнгейлю удалось создать пишущий мультипликаторный телеграф и ввести его в эксплуатацию в 1838 г. Таким образом, работы Павла Шиллинга положили начало обоим направлениям развития телеграфной техники: аппаратов с визуальным приёмом кодовых комбинаций и аппаратов с графическим приёмом кодовых комбинаций (пишущих аппаратов). В основе этих групп аппаратов лежал неравномерный код.
Якоби, не уставая защищать приоритет Шиллинга, писал, что «следит за прогрессом телеграфии для того только, чтобы предъявить права на первенство моего покойного друга», «...утрата нашего друга была бы совершенно невознаградимой, если бы, по счастью, его наследие не встретило бы поддержки в требованиях времени... Имя Шиллинга не может быть забыто в истории изобретений, да оно и не будет забыто, ибо распространение телеграфа послужит памятником его неутомимой деятельности».
Борис Семёнович ЯКОБИ (1801—1874)
Труды русского изобретателя, учёного, академика Бориса Семёновича Якоби легли в основу современной теории электрических машин. Якоби была открыта совершенно новая область техники – гальванотехника.
«Имя... Бориса Семеновича Якоби хорошо известно, как имя изобретателя гальванопластики, пионера в области электромагнитной телеграфии, конструктора первого электродвигателя, получившего применение при движении лодки и т. п. Меньше знают Якоби как одного из первых организаторов международной метрической службы и ещё меньше, как инициативного работника в области электротехнических измерений, способствовавшего своими работами улучшению методов электротехнических измерений и совершенствованию электрических измерительных приборов», – писал член-корреспондент АН СССР, электротехник М. А. Шателен.
Борис Семёнович (Мориц Герман) Якоби родился 9 сентября 1801 г. в Потсдаме. Отец Якоби был личным банкиром короля Фридриха Вильгельма. Младший брат Якоби – Карл Густав Якоб Якоби – в дальнейшем стал выдающимся немецким математиком. (Он один из создателей теории эллиптических функций, ему принадлежат открытия в области теории чисел, линейной алгебры и многих других разделах математики.)
Образование Борис Якоби получил в Гёттингенском университете, согласно желанию родителей – по специальности архитектора. В 1835 г. Якоби стал профессором гражданской архитектуры в Дерптском университете.
Но у Бориса Якоби, кроме архитектуры, была ещё одна страсть – проводить опыты с электричеством. В мае 1834 г. Якоби построил свою первую действующую модель электродвигателя, «магнитного аппарата», как называл он свой двигатель. В ноябре 1934 г. он отправил в Парижскую академию наук рукопись с описанием изобретённого им электродвигателя. 1 декабря о его достижении было доложено на заседании Академии, и уже 3 декабря его записка была опубликована.
Но более известно имя Якоби в связи с практическими применениями электролиза, законы которого были установлены великим английским учёным Фарадеем, с которым Якоби состоял в дружеской переписке.
При прохождении электрического тока через растворы кислот или солей составные части этих химически сложных тел выделяются на электродах-проводниках, подводящих электрический ток к данному раствору. Здесь эти части либо реагируют с растворителем (водой) или с веществом электрода, либо оседают на электроде в виде сплошного слоя. Последнее имеет место при выделении большинства металлов на катоде – электроде, соединённом с отрицательным полюсом источника электрического тока.
Для приведения в движение электромагнитных машин Якоби нуждался в источниках электрического тока и подверг тщательному изучению ряд гальванических элементов. Работая с элементом, в котором на электроде оседала медь, он обратил внимание на то, что это оседание происходило ровным слоем, который затем можно было целиком оторвать от электрода. Форма поверхности полученного таким способом медного листочка полностью и в точности воспроизводила все неровности и особенности поверхности электрода.
Летом 1936 г. ему довелось наблюдать эту удивительную способность частичек меди осаждаться на поверхности отрицательного электрода. Якоби применил в качестве электрода медную дощечку, на которой было выгравировано его имя, и увидел, что отодранный от электрода листочек представляет собой негативный отпечаток дощечки с надписью. Он тотчас же оценил техническое значение этого факта и уже сознательно очень удачно снял копию с медного пятака. Якоби назвал этот приём «гальванопластикой» и стал всячески пропагандировать его распространение и применение на практике.
Его труды в области «чистой и прикладной электрологии» заинтересовали Академию наук в Петербурге, и в 1837 г. Якоби был командирован туда на «неопределённое время». В 1839 г. он получил в Академии место адъюнкта, в 1842 г. – место экстраординарного и, наконец, в 1847 г. – ординарного члена Академии наук.
В 1838 г. он представил в Академию наук докладную записку об открытии им гальванопластики, а в 1840 г. вышло написанное им руководство по гальванопластике: «Гальванопластика или способ по данным образцам производить медные изделия из медных растворов помощью гальванизма».
Якоби первый установил техническую возможность и практическую значимость электролитического осаждения металлов. Таким образом, Якоби является изобретателем гальванотехники в целом и родоначальником современной электрохимии.
Благодаря энергии Якоби гальванопластика быстро нашла в России практическое применение – в изготовлении точных и во всем сходных между собой клише для печатания государственных бумаг, в том числе денежных знаков, чего нельзя было достигнуть простой гравировкой клише.
Всю свою долгую жизнь и все свои силы Якоби посвятил служению России и её промышленному развитию. Он отлично понимал значение открытия гальванопластики и до конца жизни, несмотря на все затруднения, боролся за внедрение гальванопластики в русскую промышленность. Якоби соблазняли тем, что в другой стране он мог бы гораздо лучше воспользоваться правами изобретателя. Но он считал, что гальванопластика принадлежит исключительно России: «Сие изобретение принадлежит исключительно России и не может быть оспорено никаким другим изобретением вне оной...» Здесь «она открыта и здесь развивалась!»
Отличительной чертой Якоби была его скромность. Он никогда не подчёркивал и не афишировал своих многолетних трудов, имеющих огромное научное и практическое значение. Хотя Якоби занимал видное служебное положение и получил за изобретение гальванопластики в 1840 г. Демидовскую премию в 25 000 рублей, а в 1867 г. на Парижской выставке – большую золотую медаль и премию, он не заработал больших денег. Умирая, этот крупнейший изобретатель был вынужден обратиться к правительству с просьбой не оставить в нужде его семью.
И всё же Б. С. Якоби, по сравнению с другими русскими изобретателями-электротехниками XIX в. – А. Н. Лодыгиным, П. Н. Яблочковым, исключительно повезло. Работой его интересовались люди, власть имущие, вплоть до императора Николая I. Ему были предоставлены все условия и средства для работы. Практическим проведением в жизнь его изобретения занимались, с одной стороны, «Экспедиция заготовления государственных бумаг», с другой – особая гальванопластическая мастерская, где при участии Якоби было изготовлено много замечательных произведений искусства.
Так, для статуй и барельефов Исаакиевского собора, Эрмитажа, Большого театра в Москве, Зимнего дворца, Петропавловского собора и на некоторые другие изделия мастерская осадила гальваническим путём 6749 пудов меди! Для позолоты куполов Храма Христа Спасителя в Москве, Исаакиевского собора, Петропавловского собора и нескольких других небольших куполов и позолоты разных изделий мастерская эта израсходовала 45 пудов 32 фунта золота.
Исходя из законов и представлений Ампера и Фарадея, дополненных собственными исследованиями, проведёнными им в конце 1830-х гг. совместно с академиком Э. X. Ленцем, Якоби в 1839 г. построил первый магнитоэлектрический двигатель, приводящий в движение на реке Неве против её течения лодку с четырнадцатью человеками, и тем доказал возможность практического использования электродвигателей с непрерывным вращательным движением.
На основе этих опытов, а также своих более ранних изысканий в области «приложения электромагнетизма к движению машин» Якоби создал теорию электромагнитных машин.
Законы электромагнитных двигателей изложены им в статьях, опубликованных в 1840 и 1850 гг. Якоби разбил при этом распространённые в то время иллюзии о возможности весьма значительного увеличения полезной работы за счёт электрического тока данной мощности путём дальнейшего усовершенствования и перестройки электромагнитных машин. Он доказал, что если такая перестройка приведёт к выигрышу в скорости двигателя, то этот выигрыш неминуемо будет сопровождаться потерей в силе, и наоборот – выигрыш в силе приведёт к уменьшению скорости. Это положение до Якоби было признано лишь в области чистой механики.
Научно-техническое творчество Якоби было очень многообразным. Он создал ряд приборов для измерения электрического сопротивления, назвав их «вольтаметрами». Стремясь ввести единство в измерения электрического тока, Якоби приготовил свой собственный условный эталон сопротивления (из медной проволоки) и разослал его экземпляры ряду физиков.
В 1852 г. Вебер определил величину сопротивления эталонов Якоби в абсолютных единицах. Таким образом, произведённые при помощи этих эталонов измерения можно было перевести в общепринятые единицы. Одним из способов измерения силы электрического тока является определение количества вещества, отлагаемого на электродах током при электролизе в течение одной секунды в приборе, называемом «вольтаметром». Якоби сперва усовершенствовал вольтаметр, перейдя от электролиза воды к осаждению меди, затем выяснил недостаток и этого способа и предложил принятый теперь в науке метод осаждения в вольтаметре серебра из раствора азотнокислого серебра.
Якоби соединил телеграфом (с подземной прокладкой проводов) Зимний и Царскосельский дворцы, изобрёл и построил для этой линии, а также для телеграфной связи между Зимним дворцом и Главным штабом несколько новых своеобразных телеграфных аппаратов, провёл исследование сопротивления жидких проводников и их поляризации, изобрёл так называемую контрабатарею, делающую возможным телеграфирование по плохо изолированным проводам; построил гальванометры новых типов; изобрёл аппарат для отделения и измерения плотности жидкости различного удельного веса (аппарат этот нашёл применение в качестве проверочного прибора на винокуренных заводах).
Якоби разработал и усовершенствовал способ зажигания мин на расстоянии электрическим током и руководил применением этого метода в Кронштадтской крепости во время Крымской войны. На склоне лет Якоби заведовал Физическим кабинетом Петербургской академии наук. Он создал команды военных гальванёров, на основе которых выросла высшая электротехническая школа России.
В 1872 г. по возвращении из Парижа, где он активно участвовал в качестве русского делегата в работе Международной комиссии по установлению однообразной международной системы мер и весов, у Якоби начались сердечные приступы (припадки), первые симптомы которых были ещё в 1870 г. Он слёг. Сердечные припадки стали повторяться, и в ночь с 10 на 11 марта 1874 г. Борис Сёменович Якоби скончался.
Незадолго до смерти Якоби писал:
«Культурно-историческое значение и развитие наций оцениваются по достоинству того вклада, который каждая из них вносит в общую сокровищницу человеческой мысли и деятельности. Поэтому нижеподписавшийся обращается с чувством удовлетворённого сознания к своей тридцатисемилетней уч ёной деятельности, посвящённой всецело стране, которую привык считать вторым отечеством, будучи связан с нею не только долгом подданства и тесными узами семьи, но и личными чувствами гражданина.
Нижеподписавшийся гордится этой деятельностью потому, что она, оказавшись плодотворной в общем интересе всего человечества, вместе с тем принесла непосредственную и существенную пользу России...»
Во время установления мемориальных досок на доме, где жили выдающиеся русские академики, в 1949 г. во вступительном слове президент АН СССР, академик С. И. Вавилов сказал: «Имя Якоби навеки останется в истории в связи с изобретённой им гальванопластикой, получившей широчайшее применение в технике...»
Павел Николаевич ЯБЛОЧКОВ (1847—1894)
Павел Николаевич Яблочков – замечательный изобретатель, конструктор и учёный – оказал громадное влияние на развитие мировой электротехники.
В очень насыщенной изобретениями и открытиями жизни Яблочкова был сравнительно короткий период блестящих успехов, которые сменились затем крупными неудачами. Кратковременные радости уступили место глубоким огорчениям, которые преследовали его в течение последних 15 лет жизни. А ведь прожил Яблочков всего 47 лет...
Павел Николаевич Яблочков родился 14 сентября 1847 г. в родовом имении своего отца на хуторе Байки около села Петропавловского Сердобского уезда Саратовской губернии. Отец его слыл человеком очень требовательным и строгим. Небольшое поместье было в хорошем состоянии, и семья Яблочковых, не будучи богатой, жила в достатке; для хорошего воспитания и образования детей были все возможности. Сохранилось очень мало сведений о детских и отроческих годах Яблочкова. Известно лишь, что мальчик с детства отличался пытливым умом, хорошими способностями и любил строить и конструировать. В 12-летнем возрасте он придумал, например, особый угломерный инструмент, оказавшийся очень простым и удобным для землемерных работ (окрестные крестьяне охотно им пользовались при земельных переделах), а также устройство для отсчёта пути, пройденного телегой или другим колёсным экипажем.
Домашнее обучение сменилось скоро гимназическими занятиями в Саратове. В 1859 г. родители определяют его во 2-й класс Саратовской гимназии, но в конце 1862 г. он уходит из пятого класса гимназии, чтобы готовиться к поступлению в Инженерное училище в Петербурге, в подготовительном пансионе, руководимом известным впоследствии военным инженером и композитором Цезарем Антоновичем Кюи. Несомненно, что в этом решении Павла Яблочкова значительную роль сыграла его склонность к технике.
В 1863—1866 гг. он обучался в Военно-инженерном училище. Но военная школа с её усиленными строевыми занятиями, с общим уклоном в сторону обучения фортификации и строительству разных военно-инженерных сооружений не была в состоянии удовлетворить разнообразные технические интересы пытливого юноши. Лишь наличие в числе преподавателей таких выдающихся русских учёных, как Остроградский, Паукер, Вышнеградский и другие, сглаживало многие недостатки обучения.
В 1866 г. Павел Яблочков окончил училище и в чине подпоручика был зачислен в 5-й саперный батальон. Свою офицерскую службу он начал в Киевском крепостном гарнизоне.
Полученное образование значительно расширило его технический кругозор и повысило интерес к изобретательству, особенно в области электротехники. В это время появлялись первые генераторы с самовозбуждением – весьма совершенные источники тока, способные обеспечить практическое использование электричества. Однако Яблочков, офицер Киевской крепости, был лишён условий и возможности работать в этой интересовавшей его области.
Прослужив 15 месяцев на действительной службе, Яблочков по болезни вышел в отставку, надеясь заняться различными электротехническими опытами. Однако осуществить это намерение было не так-то легко; теоретическая подготовка Яблочкова в области электричества оказалась недостаточной, а практический опыт ограниченным.
В России и других странах к этому времени в области электротехники было сделано много открытий и изобретений – электромагнитный телеграф П. Л. Шиллинга; успешные опыты петербургского профессора и академика Б. С. Якоби по применению электродвигателя для движения судна и гальванопластики; Уитстон и Сименс открыли принцип самоиндукции и положили начало созданию динамо-машины.
Единственной школой в России, где можно было изучать электротехнику, были в то время Офицерские гальванические классы. И в 1868 г. можно было вновь увидеть Павла Яблочкова в офицерской форме в качестве слушателя этой школы, которая в годичный срок обучала военно-минному делу, подрывной технике, устройству и применению гальванических элементов и военной телеграфии.
В начале 1869 г. Павел Яблочков, по окончании гальванических классов, был вновь зачислен в свой батальон, где стал во главе гальванической команды, исполняя одновременно обязанности батальонного адъютанта.
Обучаясь в гальванических классах, Яблочков понял, какие громадные перспективы имеет электричество в военном деле и в обыденной жизни. Но атмосфера консерватизма, ограниченности и застоя на действительной военной службе вновь дала себя чувствовать. Поэтому Яблочков решил уйти с военной службы по истечении обязательного годичного срока. В 1870 г. он вышел в отставку.
Единственная область, в которой электричество имело уже прочное применение в эти годы, был телеграф, и Павел Яблочков сейчас же по выходе в отставку поступает на должность начальника телеграфной службы Московско-Курской железной дороги.
В Москве в это время уже многие интересовались электротехникой. В Обществе любителей естествознания широко дебатировались важнейшие вопросы, связанные с применением электричества. Незадолго до этого созданный Политехнический музей был местом, где собирались московские новаторы электротехники. Здесь же для Яблочкова открылась возможность заняться опытами.
В конце 1873 г. ему удалось познакомиться с выдающимся электротехником В. Н. Чиколевым. От него Павел Николаевич узнал об удачных работах А. Н. Лодыгина по конструированию и применению ламп накаливания.
Яблочкова интересовала проблема применения электрического тока для целей освещения, и к концу 1874 г. он настолько погрузился в свои эксперименты, что служба в качестве начальника телефафа Московско-Курской железной дороги, с её мелочными ежедневными заботами, стала для него мало интересной и обременительной. Яблочков оставляет её и полностью отдаётся своим научным занятиям и опытам.
Вместе с другим изобретателем, Н. Г. Глуховым, он организовал в Москве мастерскую физических приборов, где оба они могли заняться осуществлением своих замыслов. Здесь Яблочкову удалось построить электромагнит оригинальной конструкции – его первое изобретение, здесь же он начал и другие свои работы. Однако дела мастерской и магазина при ней шли плохо и не могли обеспечить нужными средствами ни самого Яблочкова, ни его работы. Наоборот, мастерская поглотила значительные личные средства Павла Николаевича, и он был вынужден прервать на некоторое время свои опыты и зарабатывать на жизнь выполнением некоторых заказов, как, например, устройством электрического освещения железнодорожного полотна с паровоза для обеспечения безопасного следования царской семьи в Крым. Это был первый в мировой практике случай электрического освещения на железных дорогах.
Создав эту установку, Яблочков убедился в несовершенстве существовавших в то время дуговых электрических ламп с регуляторами и поставил себе задачу усовершенствования этого источника света.
В своей мастерской Павел Николаевич проделал много опытов, регулируя расстояние между углями, что имело решающее значение для электрического освещения.
О работах П. Н. Яблочкова и Н. Г. Глухова в организованной ими мастерской физических приборов К. А. Чернышев писал:
«Это был центр смелых и остроумных электротехнических мероприятий, блестевших новизной и опередивших на 20 лет течение времени. Здесь, одновременно с Граммом, разрабатывались детали динамо-машины... совершенствовались аккумуляторы Планте, изобретались остроумные системы регуляторов электрического света, делались опыты с грандиозными прожекторами... Здесь работы направлялись широкими взглядами, далёкими перспективами, благом человечества... Здесь перебывал весь цвет основателей электротехники. Здесь было всё, кроме практичности...»
Яблочков проводил опыты для получения необходимых для отбелки ткани хлористых веществ путём электролиза поваренной соли. Во время этих опытов произошло, как пишет К. А. Чернышев, следующее: «При электролизе соли пары углей в последовательных приборах для разложения устанавливались параллельно, и притом так, чтобы их можно было приближать, сохраняя параллельность, один к другому внутри жидкости для отыскания наивыгоднейшего расстояния между ними. Случилось, что при излишнем сближении они коснулись нижними концами; так как ток был высокого напряжения, то между ними образовалась вольтова дуга...»
Дуга не прерывалась, пока оба электрода не выгорели. Так осенью 1875 г. в Москве Яблочковым был найден принцип построения дуговой лампы без регулятора, позднее названной «электрической свечой».
К осени 1875 г. финансовые дела мастерской оказались совершенно расстроенными, а принятые мастерской заказы просроченными. Все свои средства изобретатель израсходовал на опыты, а надежд на применение в России достигнутых результатов у него не было, так как страна лишь недавно вышла на путь промышленного развития и экономика была очень отсталой.
Все эти обстоятельства привели к тому, что Яблочков в октябре 1875 г. уехал в Париж. Здесь он встретился с известным французским специалистом по телеграфии академиком Л. Ф. К. Бреге, надеясь при его посредстве ближе познакомиться с состоянием электротехники за рубежом.
Бреге не мог не заметить выдающихся конструкторских способностей Яблочкова и пригласил его на работу в свои мастерские, в которых в это время производились главным образом телеграфные аппараты и электрические машины.
В свободное время Яблочкову представлялась возможность изобретать. Вскоре он получил патент на электромагнит, построенный им по идее А. X. Репмана, а к началу 1876 г. ему удалось завершить разработку конструкции электрической дуговой лампы без регулятора, принцип которой был установлен им ещё в Москве.
23 марта 1876 г. – формальная дата рождения свечи Яблочкова: в этот день во Франции ему была выдана первая привилегия, за которой последовал ряд других привилегий во Франции и других странах на новый источник света и его усовершенствования.
Этот источник света сразу же нашёл применение и произвёл полный переворот в технике электрического освещения, а также сделал возможным практическое массовое применение электричества.
Электрическая свеча Яблочкова отличалась исключительной простотой и работала без регулятора. В окончательном виде свеча имела следующее устройство: два параллельно поставленных угольных стержня имели между собой по всей длине изоляционную прокладку из гипса или каолина. Каждый из углей зажимался своим нижним концом в отдельную клемму подсвечника. Эти клеммы соединялись с полюсами батареи или присоединялись к электрической сети. На оба верхних конца угольных стержней накладывалась угольная пластинка, «запал»; при пропускании тока через угольные стержни запал сгорал, и между их концами образовывалась электрическая дуга. Пламя дуги ярко светило, и, постепенно сжигая угли и испаряя изоляционный материал между угольными стержнями, оно снижалось до основания стержней.
Так как при постоянном токе угли сгорали с различной скоростью, приходилось брать стержни различной толщины.
В конце 1876 г. Яблочков решил применить свои изобретения на родине и поехал в Россию. Но его предложения были встречены совершенно равнодушно, и ему, по существу, ничего не удалось сделать. Он, правда, получил разрешение на устройство опытного электрического освещения железнодорожной станции Бирзула, где и произвёл удачные опыты освещения в декабре 1876 г. Но и эти опыты не привлекли внимания, и Яблочков вынужден был вновь уехать в Париж, тяжело потрясённый таким отношением к его изобретениям.
Однако его как подлинного патриота своей родины никогда не оставляла мысль видеть свои изобретения осуществлёнными в России.
Успех свечи Яблочкова за границей превзошёл самые смелые ожидания. В апреле 1876 г. на выставке физических приборов в Лондоне электрическая свеча была «гвоздём» выставки. Мировая пресса и технические журналы разных стран писали о новом источнике света: у всех появилась уверенность в том, что начинается новая эпоха в области техники освещения. Было совершенно ясно, что электрическая свеча Яблочкова – самый простой, пригодный для массового применения источник света. Но для широкого использования свечи нужно было решить ещё много довольно сложных технических задач.
Всё это было сделано Яблочковым, которого справедливость требует считать основоположником не только техники электрического освещения, но и основоположником практической электротехники, начавшей своё бурное развитие на основе его работ.
При питании любой дуговой лампы постоянным током происходило, как уже было сказано выше, неодинаковое сгорание угольных стержней (электродов): положительный уголь сгорал примерно вдвое быстрее отрицательного. Для того чтобы избежать разрыва электрической дуги и потухания электрической свечи при такой неравномерности сгорания, целесообразно было производить питание её переменным током.
Однако переменный ток тогда совершенно не применялся на практике: он не был пригоден ни для телефафии, ни для гальванопластики, ни для военной электротехники, то есть для существовавших тогда применений электричества.
Закономерности, которым подчиняются цепи и устройства переменного тока, были ещё очень мало изучены. Тем не менее Яблочков смело начал внедрять переменный ток для осветительных установок. Нужно было налаживать производство генераторов переменного тока.
Яблочков разработал рациональные конструкции таких генераторов, а электромашиностроительные заводы начали их строить. Неожиданно возникший спрос на эти машины был очень велик.
Внедрение переменного тока в практику – крупная заслуга Ябочкова. Оно стимулировало исследования в области теории переменного тока в разных странах.
Необходимо было технически решить вопрос о «разделении электрического тока», то есть указать способ включения произвольного числа электрических свечей в цепь, питаемую одним генератором. В то время применялось только последовательное включение дуговых источников света. Однако из-за особенностей работы регуляторов дуговых ламп того времени в одной цепи могла гореть только одна такая лампа.
Это положение изменилось с изобретением В. Н. Чиколевым дифференциального регулятора. Что касается электрических свечей, то их можно было включать по 2—3 штуки в одну цепь последовательно, но при потухании любой из них, вследствие разрыва электрической цепи, сразу потухали и все остальные.
П. Н. Яблочков решил проблему разделения электрического тока применительно к электрическим свечам. Он получил патенты на систему распределения тока (1876—1877 гг.) при помощи индукционных катушек (с последовательным включением двух или трёх электрических свечей во вторичные обмотки этих катушек) и при помощи конденсаторов (с параллельным включением электрических свечей в цепь).
Оба эти патента заключали в себе новые важные идеи: индукционные катушки Яблочкова представляли собою первый в мире трансформатор, применённый для эксплуатации в действующей установке переменного тока, а в системе разделения тока были впервые использованы конденсаторы.
В период 1876—1878 гг. П. Н. Яблочков внёс много усовершенствований в свою свечу. Эти работы привели его к созданию ещё одного нового источника света – каолиновой лампы накаливания, принцип которой был впоследствии полностью заимствован у П. Н. Яблочкова В. Нернстом в конструкции его лампы, появившейся в последние годы прошлого века.
В каолиновой лампе Яблочкова электрические искры от индукционной катушки разогревали каолин, делали его токопроводяшим и способным светиться при дальнейшем прохождении тока.
В этот период Яблочков построил ряд электрических машин, занимался устройством крупнейших для своего времени электрических осветительных установок. Ему удалось осветить электричеством большие магазины, театры, вокзалы, улицы.
С 1878 г. за границей началось широкое применение свечей Яблочкова. Был создан синдикат, который в январе 1878 г. превратился в общество по эксплуатации патентов Яблочкова. В течение 1,5—2 лет его изобретения обошли весь свет. После первых установок 1876 г. в Париже (универсальный магазин Лувр, театр Шатле, площадь Оперы и др.) устройства освещения свечами Яблочкова появились буквально во всех странах мира.
«Из Парижа электрическое освещение распространилось по всему миру, дойдя до дворца шаха персидского и короля Камбоджи», – писал Павел Николаевич. Однако сам он стоял в стороне от коммерческих дел этой компании и непрерывно трудился над дальнейшим усовершенствованием электрического освещения, возглавляя техническую часть этой компании.
Трудно передать тот восторг, с которым было встречено во всём мире освещение электрическими свечами. Павел Николаевич стал одним из самых популярных людей Франции и всего света. Новый способ освещения называли «русским светом», «северным светом». Общество по эксплуатации патентов Яблочкова получало колоссальные прибыли и не справлялось с нахлынувшей массой заказов.
Достигнув блестящих успехов за границей, Яблочков вновь возвратился к мысли стать полезным своей родине, но ему не удалось добиться, чтобы военное министерство Александра П приняло у него в эксплуатацию русскую привилегию, заявленную им в 1877 г. Он был вынужден продать её Французскому обществу.
В 1878 г. на Всемирной выставке в Париже широко демонстрировалось действие его электрических свечей. «Русский свет» привёл в восторг многочисленных посетителей выставки. В Петербурге на публичной лекции об электрическом освещении, прочитанной 16 апреля 1879 г. по поручению Русского технического общества, он первый высказал мысль о необходимости централизованного производства электроэнергии.
Вскоре после этого возникли первые электрические станции общественного пользования, что способствовало распространению электрического освещения и обеспечило решительную победу его над газовым.
Павлу Николаевичу Яблочкову удалось создать электротехнический отдел Русского технического общества. При его энергичном участии в 1880 г. в Петербурге была организована и с большим успехом проведена Всероссийская электротехническая выставка. Это была вообще первая в мире выставка, специально посвящённая электротехнике.