355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Пол Хэлперн » Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания » Текст книги (страница 24)
Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания
  • Текст добавлен: 20 апреля 2017, 06:30

Текст книги "Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания"


Автор книги: Пол Хэлперн



сообщить о нарушении

Текущая страница: 24 (всего у книги 26 страниц)

ЗАКЛЮЧЕНИЕ.
После Эйнштейна и Шрёдингера: поиски единства в наше время

У фотографии есть по крайней мере одно хорошее свойство – вы просто сфотографировали, и всё. Дело сделано. А вот с теорией… она никогда не может быть закончена.

Альберт Эйнштейн, интервью газете Christian Science Monitor от 14 декабря 1940 года 

Кто станет следующим Эйнштейном? Сможет ли кто-то превзойти его гениальные открытия? Есть ли кто-то настолько талантливый, что сможет воплотить его мечту о единой физической теории в жизнь? Мы видели, что даже Шрёдингер – признанный ученый, нобелевский лауреат и человек эпохи Возрождения – не добился такой же известности на международной арене, какая была у Эйнштейна (не считая Ирландии 1940-х годов). Если уж на то пошло, вся слава досталась его коту – по крайней мере, его мему. Впрочем, он не был единственным, кто пытался занять место Эйнштейна.

С 1919 года, когда общественность впервые узнала о теории относительности, подтвержденной измерениями во время солнечного затмения, у нее не на шутку разыгрался аппетит на любые новости об Эйнштейне и его возможных преемниках. Пока он был жив, как мы видели, пресса трубила о каждом предложенном им варианте единой теории поля, как будто состоялся серьезный теоретический прорыв. И после смерти Эйнштейна продолжают появляться статьи про гениальных ученых, подобравшихся достаточно близко к завершению его миссии. В конце концов, Эйнштейн оставил свое дело незаконченным, и вопрос о том, кто его продолжит, остается нерешенным уже почти сто лет.

Ученые знают, что прогресс в любой области обычно идет постепенно, в течение лет или даже десятилетий. Революционных открытий очень мало, и они чрезвычайно редки. Обычно ученый должен быть достаточно удачлив, чтобы оказаться в нужном месте в нужное время и сделать что-то стоящее. Большинство научных исследований сегодня выполняется большими командами, а не отдельными учеными.

Кроме того, в культуре все еще популярен миф об одиноком гении, изменяющем все вокруг нас. Введите фразу «новый Эйнштейн» в любом интернет-поисковике, и он вывалит вам кучу результатов: от рецептов, как добиться успеха в учебе, до требований к резюме и личных объявлений. Вот несколько примеров недавних публикаций СМИ: «Станетли серфер[17]17
  Речь идет о Гаррете Лиси, американском физике-теоретике, официально не работающем ни в одном институте и большую часть своего времени занимающемся серфингом. 6 ноября 2007 года он опубликовал «Исключительно простую теорию всего», которая, однако, оказалась неполна и не была принята физическим сообществом. – Примеч. пер.


[Закрыть]
следующим Эйнштейном?»{220}, «Это будет вундеркинд с необычайно высоким IQ?»{221}, «А что, если следующий Эйнштейн – это компьютер?»{222} «Может ли его идентифицировать приложение для смартфона?{223} Или, может, старомодный DVD, предназначенный для самых маленьких, сможет добиться цели?». Так, в 2009 году шутливый заголовок газеты New York Times гласил: «В вашей детской кроватке оказался не Эйнштейн? Требуйте возврата денег!»{224}

Формула, создавшая Эйнштейна, была идеальным сочетанием актуальной научной проблемы, которая требовала радикальных решений, исключительных озарений, часто опровергавших общепринятые убеждения, ироничной фотогеничной внешности (кто же знал, что мятый свитер, усы в виде мочалки и копна непослушных седых волос могут быть настолько неотразимыми?) и вездесущих фотокорреспондентов. Его путь к славе более или менее совпал по времени с «золотым веком» Голливуда, когда в кинохронике демонстрировались последние крики моды, достижения и фиаско знаменитостей. Как и Дуглас Фэрбенкс, Мэри Пикфорд, Чарли Чаплин, семья Бэрримор и бесчисленное множество других звезд кино 20-х, 30-х и 40-х годов, Эйнштейн появлялся на экранах тысяч кинотеатров по всему миру. Публика видела, как он останавливается во время своих прогулок, чтобы помахать поклонникам, комментирует важные политические или социальные события или участвует в различных благотворительных акциях, а иногда – как он рассказывает о прогрессе в своих исследованиях. Торопясь выполнить план по сданным статьям, интересным для широкой аудитории, репортеры лакомились новостями о немецком ученом-еврее, как голодные кошки разлитым молоком.

Неизвестно, будет ли эта формула успеха когда-либо еще раз воспроизведена. С одной стороны, сейчас наблюдается взрыв публикаций. Множество теорий борются за доминирование – гораздо активнее, чем во времена Эйнштейна и Шрёдингера. Кроме того, энергии, необходимые для проверки этих теорий, требуют все более дорогих и трудоемких проектов, таких как Большой адронный коллайдер под Женевой в Швейцарии. Сегодня экспериментальная наука не может ограничиваться измерениями во время солнечных затмений, она работает намного медленнее и осторожнее, она требует анализа гораздо большего количества данных. В физике высоких энергий исследовательские команды обычно насчитывают сотни ученых, а не единицы пионеров-исследователей, как это было раньше. В то же время СМИ разделились и следят за достижениями различных известных физиков.

Питер Хиггс, один из лауреатов Нобелевской премии по физике 2013 года, – редкий пример современного блестящего теоретика, приобретшего широкую известность. Тем не менее вряд ли он может сравниться по популярности с Эйнштейном. Частица, названная в его честь бозоном Хиггса, стала известна как «частица Бога». Когда бозон Хиггса был обнаружен в 2012 году, большая часть сообщений в прессе наделяла его божественной сущностью.

К глубокому сожалению Индии, ее достойный сын Шатьендранат Бозе упомянут не был.


Триумф Стандартной модели

Открытие бозона Хиггса стало последним недостающим кусочком головоломки Стандартной модели физики элементарных частиц – модели, наиболее близкой к единой теории поля из всех, что мы имеем сегодня. Стандартная модель включает в универсальное объяснение электромагнитного и слабого взаимодействий, известных как электрослабое взаимодействие. Она также содержит описание сильного взаимодействия – силы, которая связывает протоны и нейтроны в атомных ядрах. Последняя оставшаяся сила – гравитация – не является частью Стандартной модели.

Разработка теории электрослабого взаимодействия началась в 1961 году, в год смерти Шрёдингера. Тогда физик Шелдон Ли Глэшоу предположил, что электромагнитное и слабое взаимодействия могут быть объединены в рамках одной теории, в которой взаимодействие между частицами осуществляется посредством обмена четырьмя типами бозонов (переносчиков взаимодействия): фотоном, двумя заряженными бозонами, называемыми W+ и W-, отвечающими за радиоактивный бета-распад, и четвертым бозоном, названным позднее Z0, отвечающим за слабые нейтральные токи. На тот момент еще не был открыт четвертый тип взаимодействия между двумя частицами, имеющими одинаковый заряд. Лагранжиан (функция, описывающая состояние динамической системы), который использовал Глэшоу, был не совсем корректен, но идея о существовании четырех обменных частиц оказалась точна, «как в аптеке».

Однако при объединении электромагнитного и слабого взаимодействий возникает серьезная проблема. Дело в том, что две эти силы имеют совершенно разные радиусы действия и константы связи. Электромагнетизм действует на огромных расстояниях. Доказательством тому служит наблюдаемый с Земли свет от далеких звезд, находящихся за триллионы километров от нас. Слабое взаимодействие, в отличие от электромагнитного, действует только на атомном масштабе. Кроме того, на субатомном уровне электромагнитное взаимодействие примерно в десять миллионов раз сильнее, чем слабое. Если на ранних этапах существования Вселенной эти силы были одним целым, то почему они кажутся настолько различными сегодня?

Как оказалось, свойства бозонов, которыми обмениваются частицы материи, постоянно испуская и поглощая их, определяют радиус и силу взаимодействия. Безмассовые бозоны, например фотоны, обеспечивают заметное взаимодействие на больших расстояниях. Тяжелые бозоны, такие как частицы-переносчики W-и Z-бозоны, создают относительно слабое короткодействующее взаимодействие. Следовательно, объяснение сегодняшнего несоответствия между электромагнитным и слабым взаимодействиями сводится к пониманию того, как W– и Z-бозоны приобретают массу.

Для этого был придуман механизм Хиггса – гениальный способ, объясняющий, как по мере остывания Вселенной с момента Большого взрыва большинство типов частиц приобретали массу, а фотон остался безмассовым. Механизм, предложенный в 1964 году несколькими группами исследователей независимо друг от друга (одну группу составляли Питер Хиггс, Франсуа Энглер (нобелевский лауреат совместно с Хиггсом) и Роберт Браут, а другую – Джералд Гуралиик, Карл Ричард Хаген и Томас Киббл) предполагает, что вся ранняя Вселенная была заполнена полем с определенным типом калибровочной симметрии. Спонтанное нарушение этой симметрии, которое сопровождалось снижением температуры, наделило большинство частиц массой, оставив фотоны безмассовыми.

Калибровочную симметрию можно проиллюстрировать следующим образом: представьте себе множество вращающихся вентиляторов, находящихся в каждой точке пространства и выдувающих воздух во всех возможных направлениях. По мере остывания Вселенной условия стали такими, что первоначальная симметрия поля Хиггса оказалась спонтанно нарушена. Каждый вентилятор как бы застыл на месте, а все они оказались направлены в одном том же направлении. До того как они застыли, воздействия вентиляторов уравновешивали друг друга, позволяя частицам свободно двигаться так, как им заблагорассудится. Однако после того как вентиляторы застыли на месте и начали дуть в одну сторону, они стали препятствовать движению большинства частиц, уменьшая радиус и силу их взаимодействия. Иными словами, частицы приобрели массу. Только фотоны, на которые не действует ветер от вентиляторов, остаются безмассовыми, а электромагнетизм – дальнодействующим взаимодействием.

В конце 1960-х годов американский физик Стивен Вайнберг и пакистанский физик Абдус Салам независимо друг от друга предложили лагранжианы (по аналогии с калибровочной теорией Янга – Миллса, упоминавшейся ранее), которые включали компоненты хиггсовского поля вместе с бозонными полями (частицами – переносчиками взаимодействий) и фермионными полями (частицами материи). Их лагранжианы были составлены таким образом, чтобы спонтанное нарушение симметрии происходило ниже определенной температуры, при которой три бозона, W+, W- и Z0, приобретали массу посредством хиггсовского механизма, оставляя при этом фотоны безмассовыми. Так же приобретали свои массы и фермионы. Квант исходного поля Хиггса может наблюдаться как массивная частица, которая называется бозоном Хиггса.

К тому времени было открыто так много новых элементарных частиц, что оказалось критически важно понять, какие из известных фермионов являются действительно элементарными. Большинство физиков уже подозревали, что протоны и нейтроны не являются элементарными, а состоят из более мелких частей. Эти части поначалу называли по-разному, но в конце концов физическое сообщество остановилось на термине кварк, который предложил Мюррей Гелл-Манн. Он заимствовал это слово из романа Джеймса Джойса «Поминки по Финнегану», где в одном из эпизодов звучит фраза: «Три кварка для мистера Марка!» Поскольку и протоны, и нейтроны состоят ровно из трех кварков (так же, как и все частицы в данной категории, называемые барионами), такое название показалось вполне подходящим.

После того как кварки были математически описаны, оказалось, что они группируются по нескольким различным семействам, называемым поколениями. Первое поколение состоит из верхнего и нижнего кварков, из которых построены протоны и нейтроны. Второе поколение включает странный и очарованный кварки, образующие более массивные экзотические частицы. Наконец, третье, еще более тяжелое поколение состоит из прелестного и истинного кварков, которые не были обнаружены вплоть до 1980-х (прелестный) и 1990-х (истинный) годов. Каждое поколение кварков также содержит античастицы той же массы, но противоположного заряда, называемые антикварками. Конкретные сорта кварков, такие как очарование или странность, называются ароматами[18]18
  Помимо приведенных названий различных ароматов кварков, часто используют и другие обозначения: u-кварк (от англ. up), d-кварк (от англ. down), s-кварк (от англ. strange), с-кварк (от англ. charm), b-кварк (от англ. beauty либо, bottom), t-кварк (от англ. truth либо top). – Примеч. пер.


[Закрыть]
.

Лептоны (частицы, которые не участвуют в сильном взаимодействии) точно так же делятся на три поколения. Первое состоит из электронов и нейтрино – очень легких и быстро движущихся частиц. Второе включает мюоны и мюонные нейтрино. Массивные таоны и may-нейтрино составляют третье поколение.

В отличие от попыток объединения известных взаимодействий, которые предпринимали Эйнштейн и Шрёдингер, теория электрослабого объединения предлагает большое количество конкретных и проверяемых предсказаний. Среди них: существование слабого нейтрального тока (обмена виртуальными Z-бозонами наподобие передачи заряда), существование W+, W- и Z0-бозонов определенной массы, а также бозона Хиггса. В 1970-е и 1980-е годы эксперименты на ускорителе частиц в ЦЕРНе (Европейской организации по ядерным исследованиям) близ Женевы в Швейцарии подтвердили каждое из этих предсказаний, за исключением последнего. И наконец, существование бозона Хиггса было доказано благодаря изучению данных о столкновениях частиц, полученных на Большом адронном коллайдере в ЦЕРНе.

Наряду с электрослабым взаимодействием Стандартная модель также включает теоретическое описание сильного взаимодействия, которое предполагает обмен частицами, называемыми глюонами. Они создают «клей», который как бы «склеивает» кварки вместе и удерживает их в группах по три (или в кварк-антикварковых парах в случае мезонов). По аналогии с положительными и отрицательными электрическими зарядами каждый кварк имеет цветовой заряд. «Цвет» в данном случае не имеет ничего общего с внешним видом, это просто условное обозначение для определенной сохраняющейся величины. Сильное взаимодействие возникает естественным образом за счет обмена глюонами между кварками разных цветов. Квантовая теория поля, описывающая этот процесс, называется квантовой хромодинамикой (КХД) по аналогии с квантовой электродинамикой.

Сегодня, когда мы знаем, как формировалась Стандартная модель, газетная шумиха вокруг каждой версии единой теории поля Эйнштейна и Шрёдингера, претендовавшей на то, чтобы стать окончательным описанием Вселенной, кажется смешной. Понимание природы, устоявшееся в последние десятилетия, кардинально отличается от того, которое было во времена Второй мировой войны. Очевидно, что у Вселенной еще много сюрпризов в рукаве. Может ли так получиться, что новые открытия когда-нибудь сделают устаревшей и Стандартную модель?


Открытые вопросы

На протяжении многих лет предсказания Стандартной модели проверялись с невероятно высокой точностью снова и снова. По этому критерию она является чрезвычайно успешной теорией, объясняющей все: от магнитов на холодильник до солнечного излучения. Она предлагает беспрецедентное объединение трех фундаментальных сил природы из четырех. Только гравитацию не удалось включить в эту теорию.

Такой же степенью достоверности обладает и общая теория относительности. Многочисленные высокоточные эксперименты подтвердили многие предсказания виртуозной теории гравитации, предложенной Эйнштейном. Возьмем, например, недавние спутниковые измерения явления, называемого увлечением инерциальных систем отсчета и предложенного старым другом Шрёдингера Хансом Тиррингом и австрийским физиком Йозефом Лензе еще в 1918 году. Эффект Лензе – Тирринга предсказывает искривление пространства-времени вблизи Земли из-за ее вращения. Единственное крупное предсказание общей теории относительности, которое еще прямо не подтверждено, – это существование гравитационных волн, описанных Эйнштейном также в 1918 году[19]19
  Уже когда книга находилась в верстке, все мировые новостные агентства облетело сообщение, что гравитационные волны, наконец-то, зарегистрированы. Таким образом, на сегодняшний день все предсказания общей теории относительности получили экспериментальное подтверждение. – Примеч. ред.


[Закрыть]
.

Объедините Стандартную модель с общей теорией относительности – и вы получите эффективный набор инструментов для изучения множества явлений природы. Но будет ли его достаточно? Нет. Имеется несколько важных феноменов, которые ни одна из этих теорий объяснить не может. Темная энергия – фактор, отвечающий за ускоренное расширение Вселенной, и темная материя – невидимая субстанция, которая удерживает галактики, чтобы они не разлетались, – вот тайны, аналогичные тем, которым бросили вызов пионеры квантовой физики. Я уже писал, что темная энергия как будто соответствует понятию космологической постоянной, предложенной (и позже отвергнутой) Эйнштейном, необходимость которой позже отстаивал Шрёдингер. Однако никто не понимает физическую природу темной энергии, которая действует как своего рода антигравитация.

Природа темной материи – еще одна загадка современности. Впервые обнаруженная еще в 1930-е годы швейцарским астрономом Фрицем Цвикки при изучении скопления галактик в созвездии Волосы Вероники, темная материя представляет собой невидимую массу, необходимую для гравитационной стабильности астрономических структур. Поскольку научное сообщество не придало особого значения наблюдениям Цвикки, потребовались еще полвека, прежде чем начались серьезные исследования природы темной материи. Импульсом к ним послужило открытие астрономами Верой Рубин и Кентом Фордом того факта, что в Туманности Андромеды и других галактиках не хватает видимого вещества для обеспечения высокой скорости движения периферийных звезд, которая выводилась из наблюдений за вращением галактик. Кажется, что галактики вращаются, как карусели, у которых быстрые, отдаленные от центра, лошадки разгоняются невидимыми механизмами. Начиная с 1980-хгодов физики и астрономы ведут поиски тусклых астрономических объектов и/или невидимых частиц, способных создать достаточно сильное гравитационное поле, чтобы их можно было причислить к темной материи. В последнее время ученые сосредоточили свое внимание на поиске холодных (медленно движущихся) частиц темной материи, которые участвуют в слабом и гравитационном взаимодействиях, но не участвуют в электромагнитном (отсюда их невидимость). Поиски таких частиц проводились в переоборудованных тоннелях шахт глубоко под землей, чтобы избежать «шума» от обычных частиц, а также экранироваться от космического излучения. На момент написания этой книги убедительные доказательства существования частиц темной материи так и не были получены.

Если бы темная энергия и темная материя были достаточно редкими явлениями, то, возможно, мы могли бы не торопиться с их объяснением и заняться другими нерешенными физическими проблемами. Но дело в том, что вместе они составляют 95% всей массы во Вселенной. Согласно последним астрономическим расчетам, 68% массы Вселенной – это темная энергия, 27% – это темная материя и лишь 5% – это то, что можно объяснить с помощью Стандартной модели и общей теории относительности. Некоторые ученые предлагают идти путем Эйнштейна и модифицировать общую теорию относительности. Однако большая часть физического сообщества признает потрясающую успешность и Стандартной модели, и общей теории относительности в описании того, что мы реально можем наблюдать. Желание не испортить достигнутый успех ставит перед физиками сложный вопрос: как продвинуться дальше и, возможно, даже объединить эти два шедевра XX века.

Вопросы о темных субстанциях Вселенной не единственные, на которые не дает ответа Стандартная модель. Почему одни частицы (кварки) участвуют в сильном взаимодействии, а другие частицы (лептоны) – нет? Можетли наука объяснить, почему в наблюдаемой части Вселенной существует гораздо больше материи, чем антиматерии? Почему существуют только три поколения элементарных частиц, и почему они имеют именно такие массы? Существует ли преобразование симметрии, которое обеспечивает связь между частицами материи (фермионами) и переносчиками взаимодействий (бозонами)? Это лишь некоторые из множества открытых на сегодняшний день проблем в физике элементарных частиц.


Мечты о геометрии, симметрии и единстве

В последние десятилетия наблюдается всплеск интереса к объединению всего во Вселенной при помощи чистой геометрии – тому, что было мечтой Эйнштейна, Шрёдингера, Эддингтона, Гильберта и других великих физиков. Кажется, что каждый раз, когда наука далеко уходит от идеалистичной мысли Пифагора о том, что «все есть число», находятся ученые-теоретики, которые стремятся вернуть ее обратно.

Сегодня большинство теоретиков представляют себе не волны материи (де Бройля/Шрёдингера), колеблющиеся на атомном масштабе, а струны (одномерные нити) и мембраны (многомерные поверхности), вибрирующие на гораздо более мелких масштабах. Эти струны и мембраны являются чисто геометрическими структурами, которые за счет своих вибраций и кручений порождают все известные свойства частиц. Теория струн – это довольно обширная тема. Давайте ее кратко рассмотрим.

Первоначальным импульсом к возникновению теории струн послужила неудачная попытка японского физика Йоитиро Намбу и его коллег в конце 1960-х и начале 1970-хгодов (еще до того, как родилась идея глюонов) представить механизм сильного взаимодействия в виде модели, где частицы соединялись друг с другом посредством гибких энергетических нитей Эти бозонные струны, как они их называли, действовали наподобие собачьего поводка, удерживая частицу в крошечной области ядерного масштаба, но при этом не ограничивая свободу в пределах «поводка».

В 1971 году французский физик Пьер Рамон обнаружил способ описания фермионов – тоже в виде струн. Он разработал метод, получивший название суперсимметрия, в котором бозонные струны могли быть преобразованы в фермионные путем вращения в некотором абстрактном пространстве. Его открытие вдохновило теоретиков Джона Шварца и Андре Неве на разработку универсальной теории, описывающей строительные блоки материи (фермионы) и частицы-переносчики взаимодействий (бозоны) с помощью струн, колеблющихся всевозможными способами. Этим универсальным объектам был присвоен титул суперструн. Один специфический аспект теории суперструн заключается в том, что она математически полна (за исключением слагаемых, которые рассматриваются как нефизические) только в пространстве десяти или более измерений. Ранее в этом же году физик Клод Лавлейс показал, что бозонные струны требуют двадцати шести измерений, так что сокращение необходимых измерений до десяти было похоже на улучшение теории.

К середине 1970-х годов физики буквально вгрызались в статьи и книги, описывающие теорию Калуцы – Клейна в высших измерениях, в надежде понять, как с ней работать. Учебник по общей теории относительности с предисловием Эйнштейна, написанный Бергманном в 1940 году, помог теоретическому сообществу освежить в памяти методы работы с более чем четырьмя измерениями. Старая идея компактификации, предложенная Оскаром Клейном (о том, что дополнительные измерения настолько плотно свернуты, что их нельзя увидеть), переживала возрождение. Теоретики нашли способы свернуть шесть дополнительных измерений в крошечные, плотно упакованные, как клубки ниток, пространства. Математики Эудженио Калаби и Шинтан Яу разработали схему классификации таких скрученных пространств, называемых теперь многообразиями КалабиЯу.

Ажиотаж в физическом сообществе достиг накала в 1975 году, когда Джон Шварц и французский физик Жоэль Шерк предложили способ объяснения гравитации при помощи суперсимметрии. Они показали, как гравитоны – гипотетические бозоны – переносчики гравитационного взаимодействия – естественным образом возникают в их теории, если применить методы суперсимметрии к другим типам частиц. Гравитация, утверждали исследователи, оказывалась, таким образом, естественным следствием союза между бозонами и фермионами. Пожените эти два типа элементарных частиц, и от их брака родятся гравитоны.

Многие ученые, например французские теоретики Эжен Креммер, Бернар Джулиа и Жоэль Шерк из Высшей нормальной школы в Париже, голландский физик Бернар де Вит совместно с немецким физиком Херманном Николаи, научная группа голландского физика Питера ван Ньювенхейзена из Университета штата Нью-Йорк в Стоуни-Брук применили суперсимметрию к стандартной квантовой теории поля (не используя струны). Такой подход был назван супергравитацией. Креммер, Джулиа и Шерк показали, как такая теория может быть идеально размещена в одиннадцатимерном пространстве-времени[20]20
  В работе также было показано, что одиннадцать – это максимально возможное количество измерений. – Примеч. пер.


[Закрыть]
, где лишние семь измерений сворачивались. Несмотря на многообещающее начало, супергравитация столкнулась с проблемами при описании определенных аспектов мира частиц.

Объединившись с британским физиком Майклом Грином, Шварц продолжил исследования свойств суперструн. В 1984 году Грин и Шварц объявили, что им удалось создать десятимерную модель, которая свободна от аномалий (технических математических дефектов). Кроме того, в отличие от КЭД, электрослабой теории и других стандартных квантово-полевых теорий, суперструнные теории поля приводят к конечным значениям различных физических величин и поэтому не требуют сокращения бесконечных выражений путем перенормировки. Полученные ими результаты, которые сразу окрестили «суперструнной революцией», давали множество поводов для радости. Возможно, с помощью суперструн, думали многие физики, удастся закончить поиски единой теории поля, начатые Эйнштейном.

Подобно тому как Эйнштейн, Шрёдингер и прочие ученые показали, что существует множество способов расширить общую теорию относительности, Грин, Шварц и другие исследователи, такие как блестящий теоретик Эдвард Виттен из Института перспективных исследований в Принстоне, который доказал ключевые теоремы новой теории, разработали множество типов теории суперструн. На самом деле выбор был настолько большой, что просто глаза разбегались. Теория суперструн вскоре стала лабиринтом с бесчисленным множеством возможных маршрутов. Но какой из них будет той самой нитью Ариадны, которая приведет к единой всеобъемлющей теории природы?

На конференции в 1995 году в Калифорнии Виттен провозгласил начало Второй суперструнной революции. На этот раз теория, помимо струн, включала новые объекты различной размерности – мембраны[21]21
  Подобные объекты называются вранами. Этот термин был придуман, чтобы обобщить понятие двумерной мембраны на многомерные случаи. – Примеч. ред.


[Закрыть]
. Он назвал новый подход М-теорией, туманно выразившись в том смысле, что буква «М» может означать как «мембрану», так и «магию». М-теория объединила несколько разных типов теории струн, а также несколько теорий супергравитации в едином подходе. Одним из новшеств, наученных в конце 1990-х годов такими физиками, как Ним Аркани-Хамед, Савас Димопулос, Георгий Двали, Лиза Рэндалл, Раман Сундрум и другими, была идея о том, что одно из дополнительных измерений может быть «большим» (то есть немикроскопическим), но недоступным для всех типов полей, кроме гравитонов. Это объясняет, почему гравитация гораздо слабее, чем другие силы природы.

В отличие от Стандартной модели и общей теории относительности, суперсимметрия, теория суперструн, М-теория и существование дополнительных измерений до сих пор никак не подтверждены. Почему же тогда у них так много сторонников среди теоретиков? Такие факторы, как математическая красота, симметрия, полнота поразительно похожие на некоторые критерии Эйнштейна, – все они определяют этот выбор. Плюс ко всему на сегодняшний день не предложено других альтернативных теорий, заслуживающих доверия.

Петлевая квантовая гравитация, разработанная Абэйем Аштекаром, Карло Ровелли, Ли Смолиным и другими физиками, является, пожалуй, наиболее широко известным способом квантования гравитации, отличным от теории струн. Как и общая единая теория Шрёдингера, петлевая квантовая гравитация подчеркивает важнейшую роль аффинной связности, которая несколько модифицируется и используется в качестве квантовых переменных. Пространство-время заменяется своеобразной геометрической пеной. Струнные теоретики часто указывают на то, что петлевая квантовая гравитация не является теорией всего, а просто предлагает способ квантования гравитации. Сторонники петлевой квантовой гравитации, в свой черед, утверждают, что теория струн рассматривает гравитацию и как фон (метрику пространства-времени, на фоне которой двигаются частицы), и как поле (гравитоны), а не как единое целое. Их цель – сперва понять квантовую гравитацию, а потом пытаться объединить ее с другими взаимодействиями.

Чтобы понять важнейшее значение теории струн, М-теории и петлевой квантовой гравитации, нам потребуется совершить экскурсию на планковский масштаб, микроскопическую область пространства, в которой встречаются квантовая теория и гравитация. Однако достижение столь огромных энергий лежит далеко за пределами наших сегодняшних технических возможностей. К счастью, в физике высоких энергий часто имеются низкоэнергетические следствия. Большой адронный коллайдер вполне может обнаружить такие состояния частиц, которые позволят заглянуть за пределы физики Стандартной модели. Примером могут служить частицы-суперпартнеры: суперпартнерами фермионов должны быть бозоны, и наоборот. Открытие таких частиц стало бы убедительным доказательством существования суперсимметрии, а также возможных кандидатов на звание темной материи. И хотя ни одна такая частица до сих пор не обнаружена, многие физики сохраняют надежду, что суперпартнеры однажды будут найдены и подробно изучены.


    Ваша оценка произведения:

Популярные книги за неделю