355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Питер Эткинз (Эткинс) » Десять великих идей науки. Как устроен наш мир. » Текст книги (страница 3)
Десять великих идей науки. Как устроен наш мир.
  • Текст добавлен: 20 сентября 2016, 14:47

Текст книги "Десять великих идей науки. Как устроен наш мир."


Автор книги: Питер Эткинз (Эткинс)


Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 3 (всего у книги 31 страниц)

Рис. 1.6.Другим примером досадного отсутствия предвидения является слепая эволюция дыхательной и пищеварительной систем у млекопитающих. Диаграмма слева показывает их схему для типичной рыбы. Ноздри (формально: носовые ходы)ведут в закрытую полость и служат главным образом для обоняния. Кислород извлекается из воды во время ее прохождения через рот и выталкивается через жабры. Воздушный пузырь используется для контроля над глубиной, подобно резервуарам для балласта в подводных лодках. Средняя диаграмма показывает это устройство у рогозуба, предка современных млекопитающих. Из ноздрей открыт проход в полость рта, но они пока используются только для обоняния. Воздух заглатывается ртом и входит в воздушный пузырь. Остается лишь краткий эволюционный шаг к подобному, показанному справа, устройству у млекопитающих, в котором ноздри уже используются для поступления воздуха. К несчастью, воздух и пища попадают в одну и ту же камеру, прежде чем первый проследует далее к легким через трахею, а вторая к желудку через пищевод. Топорно сработанное, скудное и скупое, но эволюционно понятное приспособление чревато опасностью заклинивания.

Естественный отбор по существу непредсказуем, так как он является результатом подчас конкурирующих тенденций, и способы адаптации, на первый взгляд предпочтительные, оказываются недостижимыми. Самым малым примером является аппендикс человека. Для нас аппендикс представляет опасность, поскольку он может воспалиться и привести к смерти. Аппендицит возникает, когда инфекция вызывает опухание, которое сдавливает артерию, снабжающую аппендикс кровью. Стабильный поток крови через аппендикс защищает его от роста числа бактерий, так что любое уменьшение потока помогает инфекции, что приводит к еще большему сдавливанию. Если поток прекращается совсем, бактерии благоденствуют, а аппендикс лопается. Маленький аппендикс чаще подвержен этой цепочке событий, чем большой аппендикс, поэтому аппендиксы подвергаются селективному давлению, которое становится на сторону большого аппендикса в том смысле, что опаснее начать уменьшать его, чем оставаться с тем, что у нас есть. Следовательно, несмотря на опасность, эволюции крайне трудно удалить аппендикс.

Естественный отбор является гонкой вооружений. Гипотеза Красной Королевы– это идея о том, что хищники и жертвы вовлечены в постоянное сражение, в котором хищники вырабатывают все более совершенные стратегии и техники преследования, а жертвы поступают подобным же образом. (Красная Королева давала Алисе инструкцию продолжать бежать еще быстрее, чтобы оставаться на месте.)

Более острые зубы повсюду приводят к появлению более толстых шкур или быстрых ног, что в свою очередь поощряет появление еще более острых зубов.

Естественный отбор является также и зеркалом окружающей среды. Выразительный пример воздействия физического окружения на направление естественного отбора дает независимое возникновение сходным образом адаптированных организмов в удаленных друг от друга частях мира. Ничто не делает этот процесс конвергентной эволюцииболее впечатляющим, чем возникновение сумчатых версий плацентарных млекопитающих; в древние времена эмбрион развивался в основном во внешней полости, а в более поздние он развивается главным образом в сумке (in utero). Сумчатые версии появились, когда Австралия откололась от Антарктики в цейнозойскую эру, около 65 миллионов лет назад, и поплыла на Север, как Ноев ковчег, со своей изолированной экосистемой. Североамериканский волк ( Canis lupus), плацентарное млекопитающее, подобен по внешнему виду сумчатому тасманийскому волку (Thylanicus cynocephalus). Естественный отбор, осваивая подходящие ниши, привел ко многим аналогичным решениям (рис. 1.8): млекопитающий оцелот (Felispartialis)напоминает сумчатого тигрового кота (Dasyurus maculatus), белка летяга (Glaucomus volans)передразнивает сумчатую летягу (Petaurus breviseps), североамериканский лесной сурок (Marmota monax)является тенью вомбата (Vombatus ursinus platurrhinus),а обычный крот (Scalopus aquaticus)выглядит как сумчатый крот (Notoryctes tryphlops). Даже у домашней мыши (Mus musculus)есть свой сумчатый призрак-двойник в лице желтоногой мыши (Antechinus flavipes).

Рис. 1.8.Хотя Австралия и Южная Америка были изолированы, эволюции пришлось столкнуться там со сходными проблемами и прийти к сходным решениям. Здесь приведены два примера млекопитающих и их сумчатые эквиваленты.

Единственным моментом, позволяющим осмыслить все эти взаимосвязи, является появление примерно 3,5 миллиона лет назад вулканического Панамского перешейка между материками Северной и Южной Америк, которые раньше были отдельными фрагментами соответственно Лавразии и Гондваны. Это событие привело не только к межвидовым битвам, когда популяции млекопитающих Севера хлынули на юг и сражались за выживание с преобладающими популяциями сумчатых Юга, но перешеек нарушил также циркуляцию океанов и положил начало Ледниковому периоду, изменившему флору и фауну всей планеты. Однако эволюционная война это лишь одна из компонент движущей силы изменений, так как изменения физической среды также играют центральную роль в управлении эволюцией. Эти изменения включают освобождение ниш при массовом вымирании, что позволяет развиваться новым пузырькам популяций. Катастрофизм, идея о том, что мир подвержен внезапным подвижкам, драматически представленная в мифе о Великом потопе, пришелся по вкусу, как причина изменений, высоко интеллектуальному французскому анатому и основателю палеонтологии позвоночных, барону Жоржу Леопольду Кретьену Фредерику Дагоберу Кювье (1769-1832), чьи имена многочисленны как геологические эры, но вышел из моды, когда геология закончила период становления. Начало рационализации геологии своими усилиями положил Джеймс Хаттон (1726-97) в труде Теория Земли(1795) и энергично продолжил сэр Чарлз Лайелл (1797-1875) в его трехтомных Принципах геологии(1830-33; Дарвин вез с собой на «Бигле» их экземпляр). Хаттон и Лайелл предпочитали униформитаризм, который, основываясь на большом числе свидетельств, полученных из анализа слоев, считал, что физическая природа Земли подвергалась медленной и постоянной трансформации. Однако теперь мы знаем, что катастрофы, конечно, были. Наиболее известной является столкновение с астероидом, которое почти полностью уничтожило жизнеспособных, но генетически недостаточногибких динозавров. Эти огромные твари были обречены, когда искусственная ночь, произведенная пылью, окутавшей планету, привела к недостатку растительной пищи, или, возможно, они были сожжены миром, в котором концентрация кислорода в атмосфере была значительно выше, чем сейчас. Их кончина освободила мир для волны млекопитающих.

Нам придется далее делать ссылки на некоторые геологические эры и периоды, на которые была разделена история нашей пластичной планеты (рис. 1.9). Имена, присвоенные им, довольно прихотливы, но Уэльс и запад Англии представлены в них очень неплохо: Кембрия (для Кембрийскогопериода) – древнее название Уэльса, Ордовики и Силуры (для Ордовикскогои Силурийского) – имена доримских племен Уэльса, и Девон (для Девонского). Названия эпох, на которые разделены некоторые геологические периоды, имеют несколько расхлябанный вид: они включают Палеоцен («старый современный»), Эоцен («рассвет современного») и Олигоцен («мало современный»). Добавлю в скобках, что этимология других имен, по мере их возникновения, окончательно уничтожила остатки ранних попыток придать названиям периодов систематичный характер, как, например, Триасовый, Третичный и Четвертичный периоды.

Рис. 1.9.Геологические возрасты Земли, с именами, данными эрам, периодам и эпохам, на которые разделен каждый из них. Некоторые из главных событий приведены в правой колонке. Числовые значения времен являются лишь ориентировочными и меняются от источника к источнику.

Роковое вымирание динозавров в конце Мелового периода – только наиболее известное из по крайней мере пяти главных событий. Среди когда-либо произошедших катастрофических событий находится то, которое привело к концу Пермский период (Пермь, в восточной части европейской России), с исчезновением более 95 процентов видов морских животных. Ордовикский период был резко прерван 440 миллионов летназад, Девонский  – 350 миллионов лет назад, Пермский период  – 250 миллионов лет назад, Триас – 205 миллионов лет назад и Меловой  – 65 миллионов лет назад. Причины большинства этих вымираний все еще по большей части неизвестны, но недостатка в идеях нет, включая столкновения с астероидами и большие падения уровня моря, сопровождавшиеся глобальным похолоданием. Сопутствующие вымирания являются травматическими, но жизнь не унывает, и многообразие видов возвращается очень быстро: через 5-10 миллионов лет многообразие достигает уровня, имевшегося до вымирания, часто даже превосходя его. События вымирания сметают конкурентов, освобождают ниши, созревшие для колонизации, и поздравляют всех (кроме вымерших) с появлением благоприятных возможностей. Однако, хотя вымирания играют важную роль, не следует ее преувеличивать. Типичный для животных вид продолжает существовать около 2 миллионов лет, а вспышки вымирания случаются обычно каждые 20-30 миллионов лет, так что большая часть видов не подвергается вымиранию от катастроф.

Злосчастная судьба динозавров таилась в том, что они оказались слишком живучими: они жили достаточно долго и дождались.

В настоящее время мы, по-видимому, находимся в сердцевине массового вымирания нового типа, когда активность человека делает биосферу неблагоприятной для многих видов флоры и фауны, с которыми он делит ее, а возможно, и для него самого. Самоиндуцируемое вымирание этого типа может быть неотвратимым спутником «прогресса», так как с ультрапессимистической неомальтузианской точки зрения можно считать, что способность к самоуничтожению неизбежно обгоняет развитие интеллекта. Наиболее мрачный взгляд заключается в том, что общества еще могут выживать, если индивид способен убить одним ударом всего несколько тысяч человек (как это было до сих пор в человеческой истории), но ни одно общество выжить не может, когда технология развита до такой степени, что одна персона обладает мощью, достаточной для убийства десятков миллионов. Человеческое общество, возможно, как раз подошло к этой точке. Если это является общим правилом для населения всех планет, то у нас очень мало надежды, так художественно внушаемой оптимистичной научной фантастикой, надежды на исполнение космических чаяний человечества. Зато наше вымирание, по крайней мере, создаст благоприятные возможности для тараканов.

Остается несколько центральных вопросов, касающихся всей этой богатой взаимосвязи между географией и генами, этой танцплощадки естественного отбора. Один из них – о природе объекта, на который воздействует естественный отбор. Воздействует ли он на ген, на индивида или на вид?

Мы можем исключить вид как единицу отбора. Организмы ничего не делают ради своего вида. Так же как естественный отбор не видит будущего, он не видит и сообществ. Индивид конкурирует с другим индивидом и стремится к своему собственному успеху, не заботясь о пользе совокупности организмов, составляющей вид. Репродуктивная энергия индивида питает эгоистическое поведение и не имеет представления об альтруизме,бессознательном поведении, приводящем к самопожертвованию ради других. Нельзя отрицать, что многие виды поведения выглядят альтруистическими, и лишь когда мы более тщательно исследуем их, обнаруживается, что это волки в овечьих шкурах, и альтруизм на деле оборачивается красными каплями эгоизма на зубах и клыках. При взаимном альтруизме, представляющем собой управляющий идеальным человеческим обществом вариант социального контракта, организм получает прощение за свой эгоизм в обмен на сотрудничество с другими организмами в значительной мере для того, чтобы в тяжелые времена помогающий мог бы сам получить помощь.

На более глубоком уровне следует понимать, что представители вида имеют общие гены, и помогая очевидным конкурентам по размножению, организм скрыто помогает распространению своих собственных генов. Этот тип альтруизма назван родственным отбором. Таким способом биолог-теоретик Дж.Б.С. Холдейн (1892-1964) выразил точку зрения, согласно которой он был бы рад утонуть, если бы это спасло двух его родных или десять двоюродных братьев. Каждый из его родных братьев разделял бы с ним половину его генов; его двоюродные братья разделяли бы одну восьмую (для компенсации хватило бы спасения восьми двоюродных братьев, спасение десяти дает уже генное преимущество). Контроль наших генов над нашим поведением предполагает, что мы можем смотреть глубже, чем уровень вида, глубже чем уровень индивида, прямо в глубь генов.

Проблема этого взгляда состоит в том, что он редко находится во взаимно однозначном соответствии с поведением. Существует не только заговор сложности биосферы, но также и воплощение генотипа(генетической конструкции организма) в фенотипе(физических характеристиках организма). Некоторые организмы отказывают себе в радостях воспроизводства, но все же делают свой вклад в будущее, помогая вместо себя размножаться своим близким родственникам. Гены их матки (например, пчелиной) так близки к их собственным, что, помогая ей размножаться вместо себя, они достигают распространения и своих генов: ведь она может рассеивать копии их генов, освобождая их от необходимости самим беспокоиться об этом.

Другой проблемой является отслеживание последствий конкуренции на одном уровне (например, индивидуальном) для другого уровня (видового). Может случиться, что выгода индивида вредоносна для группы. Поскольку индивид не обладает эволюционным предвидением, он может пренебрегать последствиями своего поведения для группы. Когда пищи недостаточно, некоторые индивиды продолжают размножаться и передают свои гены следующим поколениям; они не воздерживаются ради своего вида. В результате вид будет эволюционировать в направлении, задаваемом генным потоком эгоистичных копий. Современная эволюционная биология смотрит неодобрительно на групповой отбор, отбор на уровне вида или сравнимой группы индивидов: естественный отбор происходит на более низком уровне, и все эволюционные тенденции, которые, как кажется, указывают на межвидовый отбор, обычно могут быть прослежены до последствий отбора на нижнем уровне. Фактически, если исключить особый случай родственного отбора, нет никаких отчетливых примеров адаптации, которая недвусмысленно шла бы на благо группе: в лозунге «на благо вида» нет никакого содержания.

Проблема единицы отбора может быть выражена разными способами, так как отбор максимален на определенном уровне. На самом низком уровне бытия, на уровне атомов, не имеет значения, кто кого препарирует, ибо атомы переживают и убийцу, и нанесение увечий и резню. На много более высоком уровне, возьмем, к примеру, царство Животных, также не имеет значения, кто кого забивает, поскольку выживание царства не связано с его составом. Влияние на выживание становится гораздо более существенным, когда мы достигаем уровня индивидов и их генов, так как разница между убийцей и убитым теперь жизненно важна. Небольшой сдвиг к краю шкалы приводит нас к видам: смерть индивида определенно влияет на будущее вида, поскольку обычно лучше иметь столь много производителей, сколь это возможно, и ваше выживание является вкладом, при условии, что вы репродуктивно состоятельны. Класс млекопитающих также несколько более склонен к выживанию, когда обедающим является млекопитающее, а обедом – кто-то другой, но «собака съедает собаку» – и вообще, млекопитающее съедает млекопитающее факт, почти нейтральный. Сдвигаясь от индивидов к противоположному краю шкалы, мы сталкиваемся с их генами, которые одинаковы для индивида и для вида. Обладает ли обед чьими-то генами большей или меньшей важностью, чем обед просто кем-то?

Одним из подходов к выявлению единицы отбора является установление сущности, которая является потенциально бессмертной. Бессмертными являются атомы, но они представляют царство минералов, а не царство организмов. Компоненты, из которых формируется двойная спираль ДНК («нуклеотидные основания», которые мы обсуждаем в главе 2), не несут жизни внутри, так же как буквы алфавита не являются литературой. Даже если бы эти компоненты были бессмертны, считать их живыми не приходится. Геном человека, полный набор ДНК в каждой клетке, также не бессмертен, поскольку он постоянно меняется в процессе, называемом мейотической рекомбинацией, который сопровождает половое воспроизведение, когда одна цепочка – генов – заменяется другой (обсуждение этой проблемы также содержится в главе 2). Тут мы меняем уровень, переходя к генам, репродуктивно активным цепочкам ДНК. Ген потенциально бессмертен – пока не подвергнется мутации – так как он переносится от генома к геному, от мыши к мыши, оставаясь практически неповрежденным. [3]3
  Я говорю «практически неповрежденным», потому что даже если во время мейоза, происходящего в середине гена, возникнет случайная поломка ДНК, шаг рекомбинации восстановит этот ген в новом геноме.


[Закрыть]
Является ли тогда именно он единицей отбора? В своей книге Адаптация и естественный отбор(1966) Джордж Уильямс утверждал, что ген следует рассматривать как некоторую порцию хромосомного материала, потенциально сохраняющуюся в поколениях, число которых достаточно для того, чтобы считать ее единицей естественного отбора. Оксфордский зоолог Ричард Докинз (р. 1941) в своей заслуженно знаменитой книге Эгоистичный ген(1976) безжалостно развил эту идею и проследил, как посредством эгоистического действия ген разворачивается в биосистему и обеспечивает свое собственное выживание.

Я упоминал в Прологе, что наука, как правило, углубляет свои прозрения и умножает свои успехи, переходя на более высокие уровни абстракции. Эта тенденция заметна и в биологии. Естественный отбор играет роль естественной кучи компоста для произрастания абстракций, а идентификация гена как единицы отбора явилась главным шагом в данном направлении. Докинз ищет поэтому естественный отбор, протекающий на самом низком уровне, в генах, и считает организм лишь временно используемым сосудом, который безжалостно эгоистичный (в техническом смысле, я подчеркиваю) ген арендует, чтобы обеспечить свое собственное распространение. Бессознательный ген формирует свой сосуд, его фенотип, так, чтобы наилучшим образом приспособить его к окружающей среде, ибо именно наиболее приспособленный сосуд будет гарантировать распространение гена.

Но существует более низкий уровень отбора, еще более абстрактный, чем ген, потенциально даже более бессмертный. Ген кодирует фенотипическую информацию, такую как информация о строении тела, его окраске или физиологических модификациях, необходимых для усиления громкости рыка. Ген представляет собой физическую целостность, которая вынуждена обновляться, когда метаболические процессы копируют нити ДНК и обеспечивают поступление копий в каждую клетку и к следующему поколению. Сам по себе, как физическая целостность, даже ген не бессмертен, ибо физический ген должен непрерывно перестраиваться. Тот факт, что в ДНК закодирована информация, только деталь, ведь функция не есть основание. Но когда мы рассматриваем ген как единицу отбора, мы в действительности фокусируемся на информации, которую он передает, и точно так же как тело организма пригодно для использования в качестве сосуда для генов, так и последовательность элементов ДНК есть подходящая физическая реализация для информации, содержащейся в гене. Подлинно бессмертной компонентой жизни является не физический ген, ею является абстрактная информация, которую он содержит. [4]4
  Не совсем так, энтропия в конце концов уничтожает и информацию. – Прим. пер.


[Закрыть]
Информация бессмертна, и информация безжалостно эгоистична. Генетическая информация, вероятно, является предельной единицей отбора, с ДНК в качестве своей реализации и с телом в качестве сбрасываемого служебного сосуда.

Живой мир возникает, когда неорганическое вещество спотыкается на пути, проходящем среди сложной, непредсказуемой информации, и обнаруживает, что может обеспечить бессмертие для этой информации, непрерывно воспроизводя ее. И здесь зарыта еще одна неистово бегущая Красная Королева, ибо постоянство достигается только вечным воспроизведением. Подобным же образом наш собственный номинально цивилизованный, культурный, разумный и рефлексирующий уровень жизни возник, когда организмы на пути, проходящем среди сложной, непредсказуемой информации, споткнулись о другие организмы, окружающие их и следующие за ними. Когда это случилось, был изобретен язык и все человеческие организмы, прошлые, настоящие и будущие, эффективно спаялись вместе в единый мегаорганизм с потенциально неограниченными возможностями.

После этой риторической, но прочувствованной пышности слога самое время спуститься к проблемам пола. Одним из наиболее загадочных проявлений естественного отбора является эволюция полового воспроизводства. На первый взгляд пол выглядит хорошей идеей, в том смысле, что он наделяет виды генетической гибкостью и быстрой реакцией на меняющиеся условия. Однако здесь имеются проблемы.

Во-первых, пол не является необходимым. Довольно многие виды превосходно обходятся без него. Партеногенез(непорочное зачатие) обычное дело у растений, где его более уместно называть партенокарпией. Мы уже упоминали партенокарпические одуванчики, но могли бы добавить и много других распространенных растений, таких как черная смородина (Rubus)и манжетка обыкновенная (Alchemilla). Неполовым путем размножаются и некоторые рептилии, наиболее заметны ящерицы Нового Света рода Cnemidophorus(семейство Teiidae), ящерицы Старого Света рода Lacerta(семейство Lacertidae) и слепозмейка ( Raphotyphlops braminus; семейство Typhlopidae). Никакие млекопитающие неполовым путем не размножаются, если не считать противоположных утверждений из Библии.

Во-вторых, пол неустойчив. Предположим, что некоторый вид размножается половым путем, и каждая пара производит многочисленное потомство, в котором половина мужских особей и половина женских. Чтобы численность популяции оставалась приблизительно постоянной, все потомство, за исключением примерно двух особей, должно погибнуть, чтобы остались в среднем одна мужская особь и одна женская. Предположим теперь, что с одной из женских особей случилась мутация, и она приобретает способность размножаться неполовым путем. Она снова произведет многочисленное потомство, из которого выживут примерно двое; однако они, являясь клонами матери, будут обе женского пола. Обе могут размножаться с помощью партеногенеза, производя еще больше самок. При условии, что одна асексуальная самка производит столько же потомков, сколько пара сексуальных партнеров (спорное предположение, разумеется, поскольку отцы часто выполняют определенные функции и после копуляции), через несколько поколений партеногенетическая женская популяция затопит исходную. Чтобы обеспечить устойчивость, у пола должно быть некое уравновешивающее преимущество.

В-третьих, пол в высшей степени сложен. Половое воспроизведение зависит от загадочного механизма мейоза, в котором, как мы увидим в главе 2, число хромосом в зародышевых клетках (гаметах, сперме и яйцеклетке) делится пополам, но восстанавливается снова в соматических (типичных для тела) клетках после оплодотворения. Насколько же невероятно мощным должно быть селективное давление, чтобы привести к развитию столь «умного» механизма? Нет ничего необычного в развитии сложных механизмов путем сталкивания вместе и видоизменения уже существующих анатомических и биохимических свойств – примером являются бесчисленные независимые случаи эволюции глаза – но, как и само обладание глазом, пол был подарком, захватывающим дух, предложением, от которого организм не мог отказаться.

Оксфордский биолог Уильям Гамильтон (1936-2000), которого Ричард Докинз считал кандидатом на титул самого выдающегося дарвиниста после Дарвина, полагал, что он идентифицировал этот подарок. Гамильтон глубоко интересовался паразитами, и незадолго до того, как он сам был иронически и трагически сражен одним из них, заболев малярией, предположил, что пол дает возможность организму оставаться на шаг впереди охотящихся на него паразитов. Совместная эволюция паразита и хозяина, в которой каждый из участников создает быстрое изменение среды для эволюции другого, нуждается в быстром и специфическом типе реакции, которую может обеспечить пол. Тщательный анализ динамики сосуществования, скорее похожего на маневрирование наций в период «холодной войны», показывает, что пол создает преимущество, обеспечивая механизм сохранения генетической информации, которая становится избыточной, но может быть востребована снова, когда генотип паразита возвращается к предшествующей инкарнации. Иными словами, пол создает хранилище для мечей в эпоху мушкетов, но мушкеты могут быть сняты с вооружения. Припрятанные мечи, однако, бесполезны, если мушкеты уступают место ядерному оружию; то есть пол бесполезен, если паразит скорее вырабатывает новую стратегию, чем возвращается к старой. Эта теория остается умозрительной, так как зависит от наличия специфической эволюционной связи между паразитом и хозяином, и ее трудно подтвердить экспериментально.

Легче идентифицировать механизмы, которые поддерживают пол, чем механизмы, давшие начало этому сложному устройству. Во-первых, популяции с половым размножением более гибко приспосабливаются к окружающей среде, чем партеногенетические популяции. Так, благоприятные мутации могут произойти в обоих родителях по отдельности и даровать преимущество их потомкам, в партеногенезе одна мутация следует за другой. То есть в половых популяциях мутации могут происходить параллельно, а в неполовых только последовательно. Во-вторых, в половой популяции менее вероятно распространение вредных мутаций, потому что дефектные родители еще могут произвести нормального ребенка (это становится очевидным с точки зрения менделевской наследственности, глава 2), в то время как организмы, размножающиеся неполовым путем, могут избежать скверной мутации, только если тот же самый ген мутирует обратно, что невероятно. Половой диморфизм(различия во внешности самцов и самок одного и того же вида), в частности, экстравагантную внешность, которой часто отмечены самцы, тоже относительно легко объяснить или, по крайней мере, состряпать ему правдоподобное объяснение. Например, в королларии к своей теории эволюции пола Гамильтон считает, что чрезмерно пышный внешний вид самца является знаком того, что он здоров и свободен от паразитов. Исследование самца, приводимое самкой – то, что мы, люди, можем назвать «влюбленностью», – становится тогда похожим на медицинскую проверку.

Пол, по-видимому, дарует преимущества на многих уровнях популяциям, индивидам и генам. Большая часть эволюционных сдвигов создает лишь малые преимущества: чтобы расплатиться за пол, преимущество должно быть огромным. И почему вообще должно возникнуть какое-то преимущество от смешивания генов кого-то вам незнакомого с вашими? Камнем преткновения здесь является то обстоятельство, что происхождение пола, например, продолжительность пути, который организмы должны пройти, чтобы до него добраться, остается тайной до сих пор.

Давайте перейдем от ощущения, что Земля движется, к реально движущейся Земле. Никогда тектонические процессы не оказывали большего воздействия на наше собственное существование, чем при едва различимых переменах, которые произошли, когда африканская кора покрылась рябью, реагируя на давления, действовавшие на нее во время путешествия по южному полушарию.

Около 20 миллионов лет назад поверхность Африки была по большей части плоской и покрытой на всем своем простирании тропическим лесом. Вы могли бы начать различать неоднородности лишь с момента 15 миллионов лет назад, когда локальное поднятие образовало плоскогорья из лавы, расположенные в областях, которые мы теперь называем Кенией и Эфиопией. Эти плоскогорья сформировались в чувствительной зоне, поскольку земля под ними начала разъезжаться. Когда щель между ними расширилась, плоскогорья обрушились, образовав глубокий и длинный разлом, Великую рифтовую долину, которая теперь простирается от современного Мозамбика через Эфиопию к Красному морю и далее, до самой Сирии. Вновь выросшие в результате этого возвышенности стали преградой для дождей в восточной части континента, и тропические леса постепенно выродились в открытую саванну. Теперь ландшафт создавал богатое разнообразие потенциальных сред обитания – несколько биомов —с влажными, жаркими, богатыми растительностью зонами в одних областях и сухими травянистыми пространствами в других. Для исследования оказались открытыми не только новые ниши, для исследования и освоения открылась и репродуктивная изоляция, ибо сообщества организмов были лишены возможности мигрировать через выросшие естественные барьеры. Организмы оказались в ловушке.

Организмы оказались в ловушке физического, но не эволюционного пространства. Одним из важнейших следствий естественного отбора является существование Homo sapiens, вида, который сам H. sapiensсчитает апофеозом эволюции. Дарвин весьма чувствительно относился к выводам из своей теории, согласно которым человек скорее был потомком обезьян, чем отдельным творением. В стане христиан также были обеспокоены мыслью, что появление человека без участия грехопадения подрывает основание христианской церкви, центральной догмой которого является идея искупления первородного греха. Как бы то ни было, существуют недвусмысленные свидетельства того, что вы и я произошли от обезьяноподобных предков. Это происхождение столь важно для того, чтобы начать понимать самих себя и свое место в биосфере, что кажется уместным потратить некоторое время на его рассмотрение.

В естественном отборе необходимо учитывать расселение (миграцию жизни на суше), двуногость (хождение вертикально на двух ногах, дающее рукам свободу манипуляций), энцефализацию (разрастание мозга относительно размеров тела) и возникновение культуры. И сегодня спорят, предшествовала ли двуногость расселению или следовала за ним. Одно из преимуществ двуногости в том, что она дает большую выносливость для преследования стад, и прямоходящее животное может дальше видеть через саванну и замечать хищников. Тем, кто думает, что принятие культуры – включая употребление орудий – послужило трамплином для нашего наступления, оппоненты доказывают, что первым шагом была энцефализация.

Приматы обычно обитают на деревьях в тропических и субтропических лесных экосистемах. Мы распознаем их, отмечая характерные черты анатомии их рук и ног, способы их передвижения, возможности зрения, архитектуру их зубов и их интеллект. Эта последняя черта является центральной, поскольку первичной характеристикой приматов является эволюция интеллекта как образ жизни. Характеристики зубов важны, поскольку они позволяют нам установить тип диеты и, в частности, жило ли животное на деревьях, питаясь мягкими фруктами, или на земле, поедая более твердые семена и зерна. Приматы разбиты на две основные группы – полуобезьяны и антропоиды. Полуобезьяны включают лори и буш-беби; антропоиды – мелких обезьян, крупных обезьян и людей.


    Ваша оценка произведения:

Популярные книги за неделю