Текст книги "Десять великих идей науки. Как устроен наш мир."
Автор книги: Питер Эткинз (Эткинс)
сообщить о нарушении
Текущая страница: 27 (всего у книги 31 страниц)
Некоторые иррациональные числа, включая π, но не √2, являются трансцендентными, в том смысле, что они «трансцендируют», переступают обычные алгебраические уравнения. Это просто означает, что они не являются решениями простых алгебраических уравнений, подобных 3x 2− 5x + 7 = 0. Так, x= √2 есть решение уравнения х 2− 2 = 0, поэтому (как решение такого уравнения), это число алгебраическое, а не трансцендентное. Однако не существует уравнения такого вида, решением которого было бы x= πили x = e, поэтому πи eне только иррациональные, но и трансцендентные числа. В 1934 г. русский математик Александр Гельфонд (1906-68) доказал, что a bявляется трансцендентным, если aалгебраическое (отличное от 0 и 1) число, a b– алгебраическое и иррациональное (как √2); так, 2 √2, например, трансцендентно, поскольку 2 – алгебраическое, а иррациональное число √2 – тоже алгебраическое. Поэтому мы сразу знаем, что не существует алгебраического уравнения, решением которого было бы 2 √2. Между прочим, название «алгебра», которое только что появилось, произошло от Al-jabr w'al muqâbala(Восстановление и упрощение), названия книги Мухаммеда ибн Муса аль-Хорезми, написанной в 830 г. Al-jabr, «возвращение», здесь относится к решению уравнений, но очаровательно, что этот термин означает также и «костоправ». Аль-Хорезми отличился дважды: его имя тоже является источником термина «алгоритм», обозначающего серию процедур для решения уравнений.
Мы видели, что решения различных уравнений порождают классы чисел, известные под общим названием «алгебраические числа». Решения уравнений, подобных 2x = 1, дают нам рациональные числа (в данном случае x= 1/2), в то время как уравнения, подобные x 2= 2, дают нам иррациональные числа (в данном случае x= √2); числа, не являющиеся решениями уравнений, подобных этим, являются трансцендентными числами (как x= 2 √2). Натуральные числа можно представить как решения уравнений, подобных x − 2 = 1(с решением x= 3), а отрицательные числа как решения уравнений, подобных x + 2 = 1(с решением x= −1). Но существует простое уравнение, выпадающее из этого списка: каково решение уравнения x 2+ 1 = 0? Ни одно из чисел введенных ранее не является его решением, поскольку квадрат любого из них положителен и, будучи прибавлен к 1, не может дать нуля. В значительной мере потому, что математики не хотели признавать, что некоторые уравнения не имеют решения, они ввели понятие мнимого числа i, которое является решением уравнения x 2+ 1 = 0; другими словами, x= √( −1). Поскольку они – на самом деле, Декарт – считали, что чисел, подобных iи i, умноженному на любое число, в действительности не существует, они и назвали их «мнимыми».
Вскоре стало ясно, что некоторые уравнения, такие как x 2− x + 1 = 0, имеют решения, представляющие собой комбинации действительных и мнимых чисел, в данном случае x= ½ + (½√3) iи x= ½ −(½√3) i. Эти комбинации названы комплексными числами; первый член ½ в этом примере является обычным «действительным» числом, а второй член ±(½√3) iявляется мнимым. Были созданы специальные правила для проведения вычислений с этими двухкомпонентными действительными числами, но они явились естественным расширением правил, которые мы используем для действительных чисел, и не вызывают особых трудностей.
Действительные числа могут быть, как мы видели, упорядочены в прямую линию. Комплексные числа становятся немного менее таинственными, как только мы понимаем, что каждое из них можно изобразить точкой на плоскости, на которой действительная компонента числа равна расстоянию от начала координат по горизонтальной оси, а мнимая компонента равна расстоянию от начала координат по вертикальной оси (рис. 10.5). Другими словами, комплексные числа на самом деле являются парами чисел: комплексное число 1 + 2 i, например, является просто двухкомпонентным числом (1, 2), которое мы можем представить точкой с координатами 1 см по горизонтальной оси и 2 см по вертикальной оси. Введем другой способ, посредством которого мы можем представить себе комплексное число в виде костяшки домино, с действительной частью числа на левой половине ее прямоугольника и с мнимой частью на правой половине. В будущем, если вы вынете костяшку домино 4 + 3, представляйте себе ее в виде комплексного числа 4 + 3 i. Если вы чувствуете себя дискомфортно среди образов такого рода, не беспокойтесь: комплексные числа, если не считать мимолетных упоминаний, больше не появятся в этой главе.

Рис. 10.5.Комплексное число является двухкомпонентным числом и как таковое может быть представлено точкой на плоскости. Например, комплексное число 2 −1 iобозначается точкой с координатами 2 единицы по горизонтальной оси и 1 единица вниз по вертикальной оси. Операции с комплексными числами есть просто операции с двухкомпонентными объектами.
В этом разделе я обращусь к двум явно наивным вопросам: сколько существует чисел, и что они такое, в конце концов. Можно подозревать, что ответы будут сложнее вопросов, что в итоге, вероятно, и составляет смысл хорошо поставленного вопроса.
На первый взгляд существует бесконечное число натуральных чисел, ибо в принципе мы можем продолжать счет вечно: одна овца, две овцы, …. Мы говорим, что «мощность» натуральных чисел бесконечна. Изобретательный способ демонстрации мощности приписывается немецкому математику Давиду Гильберту, который появится позже в более серьезном контексте, и называется отель Гильберта. «Отель Гильберта» состоит из бесконечного числа комнат, и однажды ночью все комнаты оказываются занятыми. Прибывает путешественник, не заказавший комнату предварительно. «Нет проблем!» – кричит Гильберт (администратор): он уговаривает всех постояльцев переехать в соседнюю комнату, освобождая таким образом первую комнату и получая возможность устроить в ней вновь прибывшего. На следующую ночь подъезжает бесконечное число путешественников, не заказавших комнату предварительно. «Нет проблем!» – снова кричит обладающий неограниченными ресурсами Гильберт. Он уговаривает всехпостояльцев упаковаться и переехать в комнату с номером вдвое большим, чем номер занимаемой ими комнаты, освобождая комнаты с нечетными номерами и получая возможность устроить всех вновь прибывших.
Пока, возможно, все хорошо. Но как насчет рациональных чисел, чисел, получаемых делением одного натурального числа на другое: сколько их существует? «Очевидным» ответом является то, что рациональных чисел больше, чем натуральных, потому что их ужасно много между 0 и 1 (например, 1/4, 1/2, 53/57 и многие другие), столь же много между 1 и 2 (например, 3/2, 5/3, 79/47 и многие другие) и так далее. Забавно, что правильным ответом, однако, будет такой: количество рациональных чисел таково же, как и количество натуральных чисел. Их число бесконечно, столь же бесконечно, как и число натуральных чисел.
Чтобы убедиться в том, что это так, взгляните на рис. 10.6, где я нарисовал таблицу всех рациональных чисел (но показал только малую часть из них). Поверху вправо идут натуральные числа, указывающие числитель дроби, которую мы намереваемся построить, а слева вниз идут натуральные числа, указывающие ее знаменатель. Внутренняя часть таблицы содержит все возможные дроби, получаемые делением одного натурального числа на другое. Здесь будет много повторений, таких как 3/6 и 4/8 оба равны 1/2, но это не имеет значения. Теперь мы можем провести линию, которая пробегает от первой цифры таблицы через все остальные, как показано на рис. 10.6. Затем, продвигаясь вдоль этой линии, будем вести счет 1, 2, … каждой встречающейся дроби. Таким способом все дроби – все рациональные числа – оказываются поставленными во взаимно однозначное соответствие с натуральными числами. Мы никогда не выйдем за пределы натуральных чисел, поэтому количество рациональных чисел таково же, как и количество натуральных чисел, несмотря на то, что они расположены плотнее, чем натуральные числа. Существует бесконечное число рациональных чисел между 0 и 1 и между 1 и 2, но их бесконечное число между 1 и 2 такое же! Короче говоря, мы всегда можем пересчитать рациональные числа – мы говорим, что они счетны– и получить ответ «бесконечность» безотносительно к интервалу чисел, на котором производится счет. Возможно, вы начинаете понимать, что бесконечность является расплывающимся и ускользающим понятием.

Рис. 10.6.Рациональные числа можно поставить в соответствие с натуральными числами, поэтому они являются счетными. В верхнем ряду находятся натуральные числа, указывающие числитель дроби p/q,а слева вниз идут натуральные числа, указывающие ее знаменатель. Продвигаясь по извилистой диагональной линии, мы можем пересчитать рациональные числа (включая их многочисленные повторения).
Алгебраические числа – числа, являющиеся решениями алгебраических уравнений – тоже являются счетными. Вы можете ухватить идею доказательства этого утверждения, заметив, что каждое алгебраическое уравнение состоит из степеней x(выражений, подобных x 3), умноженных на целое число (как в 4x 3+ 2x − 1 = 0). Поэтому существует взаимно однозначное соответствие между решениями уравнений – алгебраическими числами – и целыми числами, определяющими уравнения. Мы можем заключить, что алгебраические числа являются счетными и, хотя их число бесконечно, мощность их такая же, как у натуральных чисел.
А сколько же иррациональных чисел, чисел, которые не могут быть выражены как отношения натуральных чисел? Возможно, вы думаете, что их тоже бесконечное число. Вы, вероятно, правы. Но то, чего вы, вероятно, не знаете (если вы, конечно, не знали ответ заранее), это то, что иррациональные числа более бесконечны, чем натуральные. То есть иррациональные числа имеют большую мощность, чем натуральные числа: их количество более бесконечно. Красивую аргументацию, впервые выявившую эту странную черту, предложил космополит от рождения Георг Фердинанд Людвиг Филлип Кантор (1845-1918), рожденный от датчанина и русской в Санкт-Петербурге, но проживший большую часть жизни в Германии. Его жизнь была полна разочарований, главным образом потому, что он работал на переднем крае современной ему математики и внес в поле рассмотрения бесконечность. Отчасти в результате стресса, создаваемого неприятием его работы со стороны консервативной части математического истеблишмента, в частности, влиятельного Леопольда Кронекера (1823-91), который был предубежден против всех разновидностей чисел, кроме рациональных, Кантор начал страдать серьезным умственным расстройством, все более обращаясь к религии, ибо он считал, что бесконечные множества объектов, которые он рассматривает, существуют как реализованные сущности разума Бога, и что он, Кантор, есть сосуд, избранный для того, чтобы явить их, некто вроде математического Иоанна Крестителя. Между приступами своей навязчивой идеи о том, что автором Шекспира был Бэкон, Кантор проводил все более длительные периоды в психиатрических клиниках, исследуя пограничные области религии, такие как масонство, теософия и учение розенкрейцеров, в точности так же, как он исследовал пограничные области математики, но с меньшим результатом. Определенно рискуют стать безумными те, кто всматривается в бездну бесконечности, что, возможно, начнете понимать и вы по мере развертывания этой главы.
В 1874 г. Кантор обнаружил простой аргумент, показывающий, что иррациональные числа более многочисленны, чем рациональные. Мы будем использовать этот аргумент и его видоизменения в других контекстах, поэтому стоит на нем задержаться. Начнем выписывать список случайно выбранных чисел, лежащих между 0 и 1, и последовательно их пронумеровывать (в левой колонке):
| 1 | 0, 198 402 957 820… |
| 2 | 0,4 38 291 057 381… |
| 3 | 0,68 4930 175 839… |
| 4 | 0,782 948 261 859… |
| 5 | 0,500 0 00 000 000… |
| 6 | 0,483 91 3562 785… |
| … |
Теперь покажем, что каким бы длинным ни был список, включая бесконечную длину, существуют числа, которых в нем нет. Чтобы проделать это, построим новое число, выбирая первую цифру после десятичной точки в первом числе списка, вторую во втором числе и так далее и записывая в новом числе на соответствующем месте другуюцифру, замена жирных цифр, например, даст нам новое число 0,134 903…. Этого числа определенно нет в списке, поскольку оно отличается от первого числа, оно отличается от второго числа и так далее. Отсюда следует, что количество действительных чисел (рациональные вместе с иррациональными) больше, чем количество натуральных чисел, потому что, как бы ни был длинен список, мы всегда можем построить число, которого в нем нет. Мы говорим, что действительные числа несчетны.
Давайте посмотрим на это заключение немного более пристально. Мы только что видели, что действительныечисла (натуральные числа плюс рациональные числа и иррациональные числа) являются несчетными. Однако мы видели, что натуральные числа, рациональные числа и алгебраические числа все счетны. Мы можем сделать вывод, что числа, которые делают действительные числа несчетными, все являются трансцендентными(такими, как πи e).
Сделаем паузу, чтобы осознать значение этого необычного вывода. Он означает, что огромное большинство чисел – на самом деле, бесконечно преобладающее большинство – являются трансцендентными. Это весьма удивительно, особенно потому, что трансцендентные числа гораздо менее нам знакомы, чем «обычные» числа, и вы даже могли никогда о них раньше не слышать. Тот факт, что трансцендентные числа в преобладающей степени более многочисленны, чем другие виды чисел, явился основанием для моего замечания в начале главы, что удивительным является то, что мы вообще можем считать: натуральные числа крайне редко распределены среди действительных чисел, и каждое из них окружено бесконечностью трансцендентных чисел. Эдвард Темпл Белл выразил это графически, когда написал
Алгебраические числа [включающие натуральные числа] разбросаны по плоскости как звезды по черному небу; плотная чернота является небом трансцендентности.
Кантор обозначил мощность – полное количество – натуральных чисел буквой древнееврейского алфавита N 0(алеф-ноль), первым из ряда трансфинитных чисел N 0, N 1, N 2, … расположенных в порядке возрастания. Мы можем представлять себе N 0как наименьшую версию бесконечности, N 1как следующую, большую версию, и так далее. Вопрос, с которым столкнулся Кантор, заключается в том, является ли мощность действительных чисел, которая, как мы видели, больше, чем мощность натуральных чисел, равной N 1, или она равна более высокому трансфинитному числу. Знаменитая континуум-гипотезасостоит в том, что мощность действительных чисел – число точек на прямой – равна N 1первому после N 0количественному числу, а не N 5, например, или какому-нибудь другому трансфинитному числу. Как рассказывают, Кантор почти сошел с ума от своих непрерывных, но разочаровывающих попыток доказать континуум-гипотезу. Доживи он до 1963 г., он понял бы причину своего разочарования или, по крайней мере, ему бы ее продемонстрировали, так как в этом году американский логик Пауль Коэн (р. 1934) показал, что эта задача неразрешима: невозможно доказать истинность или ложность континуум-гипотезы, и мощность действительных чисел может быть любой из величин N 1, N 2, …, а возможно, и всеми ими.
Мы споткнулись об еще одну подозрительную и нервирующую черту математики: из нее выходит пар, когда она имеет дело с бесконечностью, так же как, возможно, в ее котлах нет пара при столкновении с предположением Гольдбаха (о возможности выразить любое четное число суммой двух простых чисел). И у нас в голове начинает свербить вопрос: а не трещит ли математика по швам от всего этого, не теряет ли она всю мощь своего авторитета, если на нее посильнее нажать? Существуют ли еще и другие вопросы, подобные континуум-гипотезе, в ответ на которые она лишь оглушенно молчит? И так же, как, по утверждению ультрафинитистов, натуральные числа выдыхаются по пути в бесконечность, не выдыхается ли и сама математика в некоторых областях своих доводов, и не имеет ли она слепых пятен в других областях?
Прежде чем перейти к суждению о том, не являются ли белые одежды математики на самом деле поношенными и расползающимися, стоит сделать еще несколько замечаний об умозаключениях Кантора, пусть даже они могут подтолкнуть нас совсем близко к краю безумия. Во-первых, следствием несчетности действительных чисел является то, что количество точек на отрезке линии любой длины невозможно сосчитать. Однако мы можем быть уверены, что, какова бы ни была длина отрезка линии, она состоит из одного и того же числа точек, каково бы ни было это число. Таким образом, число точек на отрезке линии длиной в миллиметр таково же, как и число точек на отрезке линии, простирающемся отсюда до следующей галактики. А как насчет числа точек на плоскости? С помощью изящных аргументов Кантор смог показать, что каждая точка плоской области может быть поставлена во взаимно однозначное соответствие с каждой точкой отрезка линии, безотносительно к площади области и длины отрезка. Поэтому число точек в плоской области любой площади – на почтовой марке или в Австралии – такое же, как и число точек на отрезке линии любой длины – в нанометр или километр, – и оба числа равны числу действительных чисел. То же самое верно для объема любой размерности: в кубе столько же точек, сколько в десятимерном гиперкубе любого размера и в отрезке линии любой длины. Поэтому, как ни удивительно, на сфере размером с Землю столь же много точек, сколь на отрезке линии длиной в 1 см. Возможно, вы начинаете понимать, почему Кронекера так выводили из равновесия перспективы математики, вступающей в ту область, которую Гильберт назвал «раем Кантора» и теперь, если только мы не примем специальных мер, бесконечность становится предательской трясиной, засасывающей разум.
Мы знаем теперь, что их существует много, мы узнаем их, когда встречаем, но что они такое? Что есть числа? У греков был ограниченный взгляд на числа, поэтому, возможно, геометрия давалась им лучше, чем арифметика. Их символические обозначения не работали: у них были прекрасные символические обозначения для элементарной геометрии – прямая линия и круг, нарисованные на плоскости, – но их понятия о цифрах были неуклюжими. Конечно, они не считали 0 и 1 числами, так как содержанием понятия «число» у них была скорее «многочисленность»: чем многочисленнее, тем и число больше. Как отсутствие вещи, так и одна вещь, не обладают многочисленностью, поэтому они не есть числа.
Современное понятие числа появилось, когда в конце девятнадцатого века первоначально Кантор, а затем, во всей полноте строгости, Фреге и Пеано создали теорию множеств. Итальянец Джузеппе Пеано (1858-1932) был доктором Касабоном математики, так как, подобно доктору Касабону, предпринявшему попытку написать историю всех религий мира, Пеано потратил свои зрелые годы, с 1892 по 1908 гг., на составление своего Formulario mathematico, собрания всех известных теорем из всех областей математики. Очаровательно непрактичный Пеано полагал, что Formularioстанет неоценимым благодеянием для лекторов, которым достаточно будет просто провозгласить на лекции номер теоремы, вместо того чтобы обременять себя ее утомительным изложением. Чтобы поощрить международное использование своего труда, Пеано опубликовал его на «Latino sine flexione», изобретенном им якобы интернациональном языке, основанном на латыни и освобожденном от скучной грамматики, но со словарем, в который входили слова из латыни, немецкого, английского и французского языков. Пеано, имевший, по всей видимости, недостаточную способность суждения о принятых в повседневной жизни хороших манерах, хотя в остальном человек мягкий и обходительный, обладал искусством терять друзей с помощью настойчивых упражнений в одном из наиболее впечатляющих своих талантов, способности быть неумолимо логичным. Он использовал свой талант, чтобы подсекать потенциальных друзей, если их аргументы не были вполне строгими; но он воспользовался им и для доброго дела, сформулировав основания математической логики. Даже молодой Бертран Рассел был впечатлен точностью Пеано и мощью сопровождавшей ее аргументации, когда они встретились в 1900 г., и, когда Рассел приступил к своему собственному формулированию оснований математики, он воспользовался видоизмененными обозначениями Пеано.
Пеано, по некоторым непостижимым, но, возможно, обаятельно романтическим причинам, опубликовал свои аксиомы на латыни. Он определил арифметику следующими постулатами:
1. 0 есть число.
2. Элемент, непосредственно следующий за числом, есть также число.
3. 0 не является элементом, непосредственно следующим за каким-либо числом.
4.Никакие два числа не имеют одного и того же следующего за ними элемента.
5.Любое свойство, которым обладают 0 и каждый элемент, непосредственно следующий за числом, есть также свойство, которым обладают все числа.
Последняя аксиома есть принцип математической индукции. Если мы обозначим операцию «непосредственно следующий за» символом s, то получаем возможность определить 1 как s0(элемент, непосредственно следующий за 0), 2 как ss0(элемент, непосредственно следующий за элементом, непосредственно следующим за 0), 3 как sss0и так далее. У этого подхода, однако, существует та проблема, что Пеано оставил без определения некоторых из своих терминов, такие, как «непосредственно следующий за» и, конечно, «число», так что мы все еще не знаем, чем являютсячисла.
Основополагающий вклад в решение этой проблемы внес Фридрих Людвиг Готтлоб Фреге (1848-1925). Этот вклад казался отправным пунктом для того, чтобы математика могла занять подобающее ей высшее место в иерархии человеческой мысли, а на деле оказался причиной ее падения. Фреге считают основателем математической логики, так как ему удалось создать превосходную логическую схему, которая должна была утвердить математику в качестве краткого конспекта сушеной человеческой мысли. Для достижения этого ему было необходимо понятие числа, и, чтобы создать его, он построил в своем труде Grundlagen der Arithmetik(Основания арифметики, 1884) концепцию множества. Множество – это просто собрание различных объектов, например, {Том, Дик, Гарри}. Множества были введены в математику Кантором, а в течение последующих десятилетий теорию множеств усовершенствовали Эрнст Цермело (1871-1953) и Адольф Френкель (1891-1965), которые сформулировали точные утверждения о свойствах множеств, о том, как их строить (то, чего Кантору объяснить не удалось) и как с ними обращаться. Поэтому современная общепринятая теория множеств известна как теория Цермело-Френкеля.
Фреге предложил считать числа названиями множеств определенного вида. Чтобы сделать свое определение точным, он ввел понятие расширениясвойства, как множества, состоящего из всех объектов, этим свойством обладающих. О названии «расширение» лучше всего думать как о слове, произошедшем от словосочетания «расширенный набор». Так, расширением свойства «иметь такой же размер, как множество {Том, Дик, Гарри}» является множество, состоящее из всехмножеств, которые имеют тот же размер. Понятие «иметь такой же размер» в теории множеств вполне определенно: оно означает, что элементы множеств одного размера могут быть поставлены во взаимно однозначное соответствие. Например, множество {Том, Дик, Гарри} имеет такой же размер как {камень, ножницы, бумага}, поскольку Тома можно привести в соответствие с камнем, Дика с ножницами, а Гарри с бумагой (рис. 10.7). Может показаться, что теория множеств чересчур уж тщательно заботится об определениях: но эта забота совершенно необходима, когда речь идет об основаниях математики. Расширением свойства «иметь такой же размер, как множество {Том, Дик, Гарри}» будет, таким образом, множество, состоящее из множеств {Том, Дик, Гарри}, {камень, ножницы, бумага} и так далее. А теперь мы с грохотом плюхаемся на землю: мы называем это расширение, это множество, числом 3.

Рис. 10.7.Множество объектов имеет тот же самый размер, что и другое множество, если элементы этих множеств могут быть поставлены во взаимно однозначное соответствие. Эти два множества имеют один и тот же размер: если убрать самолетик, они будут иметь разные размеры.
Продолжая, Фреге определил натуральные числа как следующие расширения:
0 есть название расширения свойства «иметь такой же размер, как множество, состоящее из элементов, которые не тождественны самим себе»
(конечно, того, что не тождественно самому себе, не существует).
1 есть название расширения свойства «иметь такой же размер, как множество 0».
2 есть название расширения свойства «иметь такой же размер, как множество, состоящее из множеств 0 и 1»,
и так далее. Решающим моментом этого определения чисел как названий множеств, последовательно определяемых в терминах меньших множеств, является то, что в нем используются термины, взятые из математической логики, а именно «свойство», «равенство» и «отрицание». Это привело Фреге к точке зрения, что математика есть не более чем логика.
Логикой это могло быть, но удовлетворительным не могло. В 1902 г. незадолго до того, как Фреге был готов отправить издателю второй том своего огромного труда Grundgesetze der Arithmetik(Фундаментальные законы арифметики), в котором он возводил все здание математики, опираясь на это определение числа, он получил от Бертрана Рассела знаменитое письмо, указывающее на существование одного несоответствия. Собственные слова Фреге живо передают охвативший его ужас, когда он распечатал письмо Рассела:
Вряд ли ученый [51]51
Заметим, что логичный Фреге считал таковым и себя.
[Закрыть]может столкнуться с чем-нибудь более нежелательным, чем необходимость сдаться как раз тогда, когда работа закончена. Именно в такое состояние повергло меня письмо мистера Бертрана Рассела, когда работа вот-вот должна была отправиться в печать.
Бертран Рассел (1872-1970) указал Фреге на проблему расширения свойства «не принадлежать самому себе». Предположим, мы рассматриваем множество, состоящее из множеств, которые не являются элементами самих себя. Например, множество, состоящее из «абстрактных идей», является элементом самого себя, поскольку такое множество само является абстрактной идеей, в то время как множество, состоящее из «фруктов», не является элементом самого себя, поскольку само это множество не есть фрукт. Рассел спросил, принадлежит ли самому себе множество всех множеств, не принадлежащих самим себе? Если оно принадлежит самому себе, то оно относится к множествам, не принадлежащим самим себе. Если оно не принадлежит самому себе, то оно относится к множествам, принадлежащим самим себе. Короче говоря, если оно да, то оно нет, а если оно нет, то оно да. Антиномию(противоречие, парадокс) Расселамногократно выражали в более повседневных разговорных терминах, таких как «брадобрей в этом городке бреет всех мужчин, которые не бреются сами: бреет ли брадобрей себя?».
Антиномия Рассела подорвала программу Фреге, а вместе с ней и основания математики. Причина коррозионного действия противоречия состоит в том, что в логике справедлива теорема: если система аксиом теории приводит к противоречию, то любые предложения, которые можно сформулировать в теории, являются ее доказуемыми теоремами. Поэтому, если определения Фреге приводят к противоречию, то из них можно вывести какую угодно теорему, включая «1 = 2» и «√2 есть рациональное число». Следовательно, в качестве оснований арифметики его аксиомы хуже, чем ничего.
Рассел так же глубоко, как и Фреге, был озабочен основаниями математики и в равной мере проявлял интерес к попыткам продемонстрировать, что математика является не более чем ветвью логики. Такова точка зрения логицистической школыфилософии математики. В 1903 г. Рассел публикует свои The principles of mathematics, а его бывший экзаменатор, а теперь коллега по Кембриджу, Альфред Норт Уайтхед (1861-1947), готовит второе издание A treatise on universal algebra. Оба они пришли к соглашению о сотрудничестве в более амбициозном проекте, заключающемся в доказательстве того, что математика в целом есть подмножество логики. Работа, на подготовку которой они потратили десятилетие, в конце концов появилась в виде трех томов Principia mathematicaв 1910, 1912 и 1913 гг. Запланированный четвертый том о геометрии так никогда и не появился. В Principiaиспользовалась тщательно разработанная система обозначений, дающая больше возможностей, чем системы Пеано и Фреге; некоторое представление о ее изощренности можно получить из рис. 10.8, представляющего собой проделанное Расселом и Уайтхедом доказательство того, что 1 + 1 = 2.

и много позже

Рис. 10.8.Факсимиле доказательства того, что 1 + 1 = 2, из Principia mathematica.
Расселу и Уайтхеду было необходимо обойти трясину противоречий, которая засосала Фреге. Чтобы достичь этого, Рассел ввел свою теорию типов, в которой элементам множеств присваивается «тип», и каждое множество может содержать элементы только низшего типа. Так, единичные объекты имеют тип 0, утверждения о множествах этих единичных объектов имеют тип 1, и так далее. Поскольку множество может содержать лишь множества низшего типа, оно никогда не может стать элементом самого себя, так что антиномии Рассела удастся избежать. Однако теория типов все еще недостаточно сильна для того, чтобы устранить некоторые парадоксы, такие как «парадокс Берри», предложение из десяти слов: «наименьшее из целых чисел, определяемых не менее чем одиннадцатью словами». Целое число, удовлетворяющее этому требованию, на самом деле определено предложением из десяти слов, поэтому данное предложение противоречиво. Чтобы избежать опасностей также и этого болота, Рассел был вынужден проложить гать из нового варианта теории типов, который он назвал разветвленной теорией типов. В разветвленной теории обозначения присваивались не только типам рассматриваемых объектов, но также и способам их определения. Principia mathematicaоснованы на разветвленной теории типов.
Возможно, создается впечатление, что разветвленная теория типов является лоскутным одеялом, сшитым из отдельных уверток. На самом деле, все обстоит гораздо хуже, поскольку в ней оказалось невозможным доказать, что каждое натуральное число имеет следующее за ним или что количество натуральных чисел бесконечно. Чтобы преодолеть эти недостатки, к лоскутному одеялу пришлось пришить аксиому бесконечности, которая просто декларировала существование бесконечности. Но худшее (в смысле увеличения числа лоскутков) было впереди: для корректного определения числа пришлось добавить лоскут аксиомы редуцируемости, связанной с поведением предложений различного порядка. Так или иначе, но логицистическая повестка дня раскручивалась, и, казалось, становилось ясно, что математика не является просто ответвлением логики.








