Текст книги "Десять великих идей науки. Как устроен наш мир."
Автор книги: Питер Эткинз (Эткинс)
сообщить о нарушении
Текущая страница: 25 (всего у книги 31 страниц)
Опираясь на это совпадение, Эйнштейн обнаружил еще одно. Предположим, что вы и я едем на одном и том же лифте, но что-то идет не так. Сначала мы обнаруживаем, что застряли на сотом этаже здания. Чтобы скоротать время до нашего спасения, мы перекидываемся мячом. Будучи наблюдательными, мы замечаем, что путь мяча искривляется (рис. 9.11). Если бы кабина лифта находилась в глубоком космосе, вдалеке от гравитационного притяжения звезд и планет, путь мяча был бы прямой линией. Имея это в виду, мы приписываем кривизну траектории мяча гравитации. Будучи учеными и быстро проделав вычисления, мы узнаем также, что путь мяча представляет собой параболу, кривую, получаемую в сечении конуса плоскостью, параллельной одной из его сторон, то есть образующих его прямых линий.
Рис. 9.11.В неподвижном лифте (слева) путь мяча, спроектированный на вертикальную плоскость, является параболой, загнутой книзу по направлению к полу. В свободном пространстве, далеко от гравитационных масс, путь мяча является прямолинейным (посередине). Последовательность изображений справа показывает, что происходит. В белых ящиках показан в преувеличенной манере путь мяча в неподвижном лифте. Серые ящики показывают, как лифт с ускорением меняет свое вертикальное положение, и это изменение положения в точности компенсирует изменение положения падающего мяча относительно лифта.
Внезапно спокойствие нарушается. Наш некомпетентный спасатель по неосторожности перерезал кабель, держащий кабину лифта, и одновременно отключил все приспособления, страхующие ее от падения. Мы срываемся вниз в свободное падение. Будучи учеными, мы хладнокровно пользуемся уникальной возможностью, возникшей благодаря нашему попаданию в фатальный переплет, и продолжаем перекидывать мяч друг другу. К нашему великому изумлению, мы вдруг обнаруживаем, что мяч теперь летает между нами по прямой линии, как если бы мы находились в космосе, свободном от гравитации! Если бы наш лифт находился на поверхности Солнца, параболический путь мяча искривлялся бы более круто, но при вхождении нашего лифта в свободное падение он и ускорялся бы быстрее, и это движение все равно разгладило бы нашу параболу в прямую линию. Отсюда урок: где бы мы ни были, мы можем уничтожить влияние гравитации, вступив на платформу, находящуюся в свободном падении. Если бы каждый когда-либо живший ученый был всегда заперт в кабине свободно падающего лифта, концепция гравитации никогда не появилась бы на свет.
Эйнштейн открыл это шокирующее обстоятельство и воспользовался им. Сначала он по существу предположил, что все наблюдатели, населяющие свободно падающие кабины лифтов, написали бы одинаковые учебники физики. В этом суть содержания принципа эквивалентности. В частности, наблюдатели, падающие в кабинах, делающие измерения и обменивающиеся их результатами, испытывали бы те же сокращения пространства и времени, которые предсказываются частной теорией относительности. Мы можем выразить это утверждение в более геометрических терминах: геометрия пространства-времени является одинаковой (и является геометрией Минковского) во всех свободно падающих кабинах лифтов. Итак, все, что мы ранее обсуждали касательно частной теории относительности, приложимо к любой такой свободно падающей кабине.
Однако величайшим достижением Эйнштейна были его размышления о том, как геометрия в нашей падающей кабине связана с геометрией в другой кабине, которая может падать с другим ускорением. Например, ваш небоскреб может быть построен на астероиде, и вы падаете, ускоряясь очень, очень медленно. Моя кабина может быть расположена на Земле, и ее ускорение будет около 10 м/с 2(так что через 1 с она падает со скоростью 10 м/с, через 2 с падает со скоростью 20 м/с и так далее). Геометрия пространства-времени является плоской – геометрией Минковского – в каждой из наших кабин, но мой маленький кусочек плоской геометрии изгибается и скручивается относительно вашего. Вы можете представить себе попытку покрыть шар монетами (рис. 9.12): каждая малая область является плоской, но одна область лежит под углом к другой области. Вопрос, который поставил и спустя годы напряженной работы ума разрешил Эйнштейн, заключался в том, как связаны друг с другом области плоского пространства-времени в близком присутствии скопления массы, такого как звезда. Если я могу описать мое земное пространство-время с точки зрения вашего астероида, то я на самом деле описываю воздействие, которое ученые обычно называют гравитацией.
Рис. 9.12.Локальная геометрия в каждой точке пространства является евклидовой (представлена плоскими кружками, прикрепленными к разным точкам сферы). Однако около тяжелого тела, такого как звезда или планета, пространство искривляется, и локальные евклидовы области изгибаются и скручиваются относительно других локальных областей. Общая теория относительности Эйнштейна показывает, как связать различные локальные системы координат друг с другом.
Ранее в этой главе мы получили некоторое представление о пространстве-времени. Теперь мы должны перенести этот опыт развития гибкости ума на следующую стадию, на гибкость пространства-времени, и получить представление об искривленномпространстве-времени. Это не так ужасно, как, возможно, звучит, поскольку теперь мы можем отодвинуть геометрию Минковского на задворки сознания и попытаться забыть о ее сложности. На деле многие считают качественныеидеи общей теории относительности гораздо проще, чем идеи частной теории относительности, потому что здесь можно представлять себе искривленное пространство (что легко), а не искривленное пространство-время (что нелегко). Это заблуждение, поскольку общая теория относительности относится к искривленному пространству-времени, но это приемлемое заблуждение, поскольку оно делает всю концепцию доступной, поэтому мы будем продолжать изложение, пользуясь им.
Итак, сначала мы сосредоточим внимание на искривленном пространстве, потому что эта концепция довольно проста. Как и прежде, концептуально легче урезать число измерений, которые мы должны попытаться вообразить, а потом вновь достроить это число. Однако, чтобы вообразить даже двумерную искривленную поверхность, нам, очевидно, уже необходимы три измерения, чтобы представить себе, «в чем» эта поверхность искривлена. Поэтому, как нетрудно видеть, для того чтобы представить себе четырехмерное искривленное пространство-время, мы нуждаемся в пяти измерениях! Я не буду просить вас проделать это, поскольку не могу сам (и не знаю никого, кто мог бы), но если вы хотите все же визуализовать искривленное пространство-время в полной мере, вот что вам следует попытаться сделать. Техническим термином для представления искривленного пространства в размерности на единицу большей является «вложение» его в пространство на единицу большей размерности. Чтобы представить себе четырехмерное искривленное пространство-время, вам следовало бы вложить его в пространство пяти измерений.
Давайте на минуту остановимся на двумерном искривленном пространстве (а не на пространстве-времени). Чтобы представить себе его искривленным, вообразим 2-пространство, поверхность, вложенную в 3-пространство, объем. Представим себе 2-пространство как поверхность 3-сферы (обычной сферы, похожей на идеализированную Землю). Теперь представим себе сцену, в которой я стою на экваторе на нулевом меридиане (это помещает меня в неуютную влажность океана где-то к западу от побережья Африки), а вы стоите на экваторе на долготе 90° (это помещает вас на побережье Эквадора). Свисток, и мы оба начинаем двигаться к северу, проверяя на каждом шагу на протяжении всего пути, что мы не отклонились ни вправо, ни влево. Будучи физиками-теоретиками, мы не обращаем внимания на неудобства при пересечении пустынь, океанов и ледовых шапок. В конечном счете, когда мы достигаем Северного полюса, мы сталкиваемся носами (рис. 9.13). Нам приходится заключить, что параллельные с виду линии пересекаютсяв пространстве с этой геометрией. О пространстве, в котором все параллельные с виду линии встречаются, если их продолжить достаточно далеко, – или, что эквивалентно, о пространстве, в котором нет по-настоящему параллельных линий – говорят, что оно имеет положительную кривизну. Это пространство дает пример одной из неевклидовых геометрий, о которых я упоминал раньше.
Рис. 9.13.Вы стартуете на экваторе и упорно шагаете вверх по гринвичскому меридиану (0° долготы), все время лицом вперед. Я делаю то же самое, но начинаю из точки экватора при 90° западной долготы. Когда мы достигаем полюса, наши носы сталкиваются. Поэтому эти два меридиана не параллельны: в такой геометрии нет параллельных линий. Данная иллюстрация также показывает, как представить себе двумерную поверхность однородной положительной кривизны в виде поверхности трехмерной сферы. Мы говорим, что двумерная поверхность «вложена» в двумерное пространство.
Немедленным следствием существования неевклидовых геометрий является вывод, что геометрия есть наука экспериментальная, а не нечто (как думал Иммануил Кант, о чем мы узнаем в главе 10), справедливость чего можно установить одной лишь интроспекцией. Одна лишь интроспекция никогда не приводит к истине, что так чудесно проиллюстрировал Аристотель; интроспекция в союзе с экспериментом, конечно – темой нашей книги, – является необычайно чудесным и надежным гидом, что так великолепно проиллюстрировал Галилей. Мы стоим перед выбором перспективы для геометрии пространства: быть ли ей евклидовой, как, сидя в своих креслах, целых 2000 лет полагали Евклид и его последователи, или неевклидовой. Чтобы решить этот вопрос, мы должны обратиться к эксперименту и увидеть, например, столкнемся ли мы носами, если будем идти по параллельным путям достаточно далеко. Карл Фридрих Гаусс (1777-1855), один из величайших математиков, имел некоторое представление о том, что у евклидовой геометрии могут быть конкуренты:
На самом деле, поэтому я время от времени в шутку выражаю пожелание, чтобы геометрия Евклида была неверна.
Однажды этот концептуальный тупик был пробит в наибольшей мере немецким математиком с трагически короткой жизнью, Бернхардом Риманом (1826-1866). В своей выдающейся лекции, прочитанной в 1854 г. по случаю вступления в должность, он дал человеческому уму свободу, достаточную для того, чтобы вообразить себе неевклидовы пространства уже и с отрицательной кривизной. Рисунок 9.14 показывает двумерную поверхность отрицательной кривизны, вложенную в трехмерное пространство. Когда вы сидите в седле, вас поддерживает двумерная поверхность отрицательной кривизны. В этом пространстве через заданную точку можно провести бесконечное число линий, параллельных данной.
Рис. 9.14.Двумерная поверхность с отрицательной кривизной седлообразной формы, вложенная в трехмерное пространство.
Коль скоро мы преодолели интеллектуальный бугор и признали то обстоятельство, что существуют разные типы неевклидовых геометрий, мы способны перейти к представлению о пространстве, геометрия которого может меняться от места к месту. То есть различные области – пространства могут иметь разную кривизну. Например, мы можем представить себе пространство, похожее на гантель, полученное сжатием сферы в области экватора, превращающем его в талию гантели. Это пространство будет иметь положительную кривизну около полюсов и отрицательную кривизну в седлообразной окрестности экватора. Мы могли бы пойти дальше и вообразить более сложные пространства, втыкая пальцы в эту поверхность и создавая небольшие кратеры, испещряющие ее так, чтобы кривизна менялась от места к месту. Вам может понравиться рассматривать повседневные объекты, которые имеют поверхности с кривизной, меняющейся от места к месту (например, вы сами).
Когда мы думаем о пространствах, вложенных в пространства более высокой размерности, мы встаем на точку зрения надменного сверхсущества, которое может судить на глазок, имеется ли тут кривизна. Предположим, однако, что мы муравьи, и наше воображение ограничено реальным пространством, в котором мы обитаем: может ли муравей узнать, искривлена ли Земля, можем ли мы определить, искривлено ли наше пространство-время? Ответ уже следует из текущего обсуждения, поскольку путешествия, которые вы и я предприняли, и вопрос о том, столкнемся ли мы с вами нос к носу или нет, можно представить себе имеющими место на поверхности, независимо от того, считаем мы ее во что-то вложенной или нет. Таким образом, если вы и я отправляемся по двум параллельным с виду путям и сталкиваемся носами, то мы знаем, что пространство, в котором мы пребываем, имеет положительную кривизну. Это заключение не зависит от того, можем ли мы вообразитьнаше пространство вложенным в пространство более высокой размерности или нет.
Мы можем развить эту мысль дальше и научиться измерять кривизну пространства количественно. Пойдемте со мной на Северный полюс (рис. 9.15). Теперь, когда мы здесь, давайте вытянем, каждый, по одной руке, указывая ею вниз прямо на юг, на Гринвич, вдоль меридиана 0°. Свисток, и вы отправляетесь на юг и идете, пока не достигнете экватора. Продолжая указывать рукой на юг, вы идете вдоль экватора, пока не достигнете 90° восточной долготы. Из этой точки, все еще показывая рукой на юг, вы возвращаетесь на Северный полюс. Я, в свою очередь, наблюдаю, как вы появляетесь из-за горизонта. Однако, к нашему общему огромному удивлению, мы обнаруживаем, что ваша рука повернута на 90° относительно моей, несмотря на то, что вы педантично указывали ею строго на юг на протяжении всего вашего путешествия! В плоском пространстве направления, наших рук совпадали бы, поэтому мы заключаем, что реальная поверхность Земли плоской не является. Более того, мы можем описать количественную меру «кривизны» как изменение угла, на который повернута ваша рука, деленное на площадь области, ограниченной вашим маршрутом, что дает 1 / радиус 2, где радиусявляется радиусом Земли. Так как радиус Земли равен 6400 км, кривизна ее поверхности составляет 2,4×10 −8 км −2. Это очень маленькая кривизна, указывающая на то, что нам придется делать обход очень большой площади, для того чтобы эффект стал заметным. Вот почему землемеры Хаммурапи не замечали ее: поля, которые они измеряли в Месопотамии, имели площади лишь в несколько тысяч квадратных метров, и кривизна Земли просто не могла быть видна. Кривизна футбольного мяча с радиусом 10 см равна 0,01 м −2, так что эта кривизна становится заметной на областях его поверхности, занимающих довольно небольшую площадь. Для сферы кривизна будет оставаться одинаковой, где бы мы ни начали наше путешествие и какую бы площадь мы ни обошли. Кроме того, кривизна на ней всюду положительна. Куриное яйцо также всюду имеет положительную кривизну, но ее значения меняются примерно от 0,2 см −2на тупом конце до 0,4 см −2на более круто искривленном остром конце.
Рис. 9.15.Кривизну поверхности можно измерить, не прибегая к представлению о вложении ее в пространство более высокой размерности. Наш подход заключается в совершении обхода вокруг точки, в которой измеряется кривизна, и в измерении разницы углов между линиями фиксируемого во время обхода направления. Например, если, как здесь показано, мы стоим на Северном полюсе, а наши руки указывают на юг, и вы идете к экватору по меридиану 90° западной долготы, затем вдоль экватора до гринвичского меридиана и возвращаетесь на Северный полюс, на протяжении всего путешествия держа руку повернутой к югу. Когда вы прибываете, мы обнаруживаем, что ваша рука повернута на 90° относительно моей. Из этого наблюдения мы можем сделать вывод, что кривизна этой поверхности равна 1 / радиус 2, где радиусявляется радиусом сферы.
У нас нет необходимости совершать путешествия по поверхностям реальной материальной Земли, футбольного мяча или яйца, чтобы вычислить кривизну. Если бы я оставался на месте, а вы бы путешествовали в пустом пространстве по замкнутой петле и в конце вашего путешествия мы увидели бы, что наши руки указывают в одном направлении, мы были бы вправе заключить, что эта область пространства является плоской и евклидовой. Если бы мы увидели, что между нашими руками есть угол, мы заключили бы, что эта область пространства искривлена и поэтому неевклидова. В этом случае относительное положение наших рук показало бы знак и величину кривизны данной области пространства. В общем случае, путешествие по разным областям пространства может давать разные результаты. Мы даже можем обнаружить, что различные ориентации петлеобразных путешествий вокруг одной и той же точки приводят к разным результатам. Это род эксперимента, который мы могли бы проделать, чтобы определить, геометрия какого рода преобладает в данной области пространства.
Мы нуждаемся еще в одном понятии, прежде чем получим возможность вполне оценить свойства искривленного пространства. Геодезическойназывается путь через пространство, который не отклоняется ни вправо ни влево. Геодезической в плоском пространстве является прямая линия. Значительная часть геометрии Евклида касается свойств фигур (таких, как треугольник и четырехугольник), построенных из отрезков геодезических – прямых линий – на плоскости. В некоторых видах пространств кратчайшим расстоянием между двумя точками является длина геодезической, соединяющей эти точки. На поверхности сферы геодезические проходят по большим кругам. Например, если мы путешествуем вдоль линии определенной долготы (такой, как гринвичский меридиан), то мы следуем по геодезической между двумя положениями с одной и той же долготой. Если две точки имеют разные широту и долготу, как Лондон и Нью-Йорк, кратчайшее расстояние между ними проходит по меньшей дуге большого круга, проходящего через них. Вообще говоря, коммерческие авиалинии проходят по геодезическим, соединяющим пункты вылета и назначения.
Настало время сделать шаг от искривленного пространства к искривленному пространству-времени. Этот шаг не столь травмирует, как можно было бы ожидать, поскольку большую часть необходимых понятий можно импортировать из нашего обсуждения искривленного пространства. Чтобы вообразить искривленное пространство-время, мы можем представить себе двумерное пространство с одной пространственной размерностью и одной временной, вложенное в трехмерное пространство, точно так же, как мы представляли себе двумерное пространство. Если пространство-время является плоским, геодезические представляют собой прямые линии на двумерной поверхности. Однако из забавной геометрии пространства-времени следует, что геодезическая, соединяющая две точки, соответствует наибольшему расстоянию между ними (вспомним Кастора и Поллукса). Искривленное двумерное пространство-время можно изобразить в виде изогнутого листа в трехмерном пространстве. Так же как в плоском пространстве-времени, геодезические – которые теперь могут извиваться по пространству в зависимости от его локальной структуры – соответствуют самым длинным интервалам между точками, которые они соединяют.
Теперь мы подошли к труднейшему месту всего обсуждения. В этой точке мы соединим вместе все предыдущие концепции. Великая идея, высказанная Эйнштейном в 1915 г., звучала так: масса искривляет пространство. Его величайшим достижением стало обнаружение точной связи между детализированной кривизной пространства-времени и распределением массы. У меня нет возможности представить вам точно эту связь, которая является одной из наиболее элегантных, хотя и сложных связей во всей науке. Однако было бы нехорошо с моей стороны, заставив вас столько потрудиться, чтобы дойти до этого места, бросить вас тут на мели. Поэтому я сделаю две вещи. Во-первых, я дам вам отдаленное представление о форме результата Эйнштейна. Затем я расскажу о некоторых его следствиях.
Здесь я должен просить вас вообразить куб со слегка искривленными сторонами, как если бы вы взяли куб, сделанный из резины, и встали на него так, что его края выпучились. В дополнение к этому я должен просить вас представить себе, что этот куб находится в пространстве-времени, а не просто в пространстве. Если быть вполне честным, надо отметить, что представление об обычном пространственном кубе является почти достаточным для передачи сути того, что я хочу сказать, поэтому не стесняйтесь, если вы невольно вернетесь к этому образу. Однако имейте в виду, что на самом деле нам следует разговаривать в терминах пространства-времени, а не в терминах пространства.
Вспомним четырехмерный куб, обсуждавшийся нами ранее (рис. 9.4). С этого момента мы будем представлять себе ребра, образующие куб, идущими вдоль геодезических линий области пространства, которую мы рассматриваем. Это значит, что мы должны представлять себе грани немного повернутыми и наклоненными, но таким образом, чтобы они правильно соответствовали друг другу при складывании для образования гиперкуба. Представьте себе, что наш тщательно склеенный гиперкуб посещают массы, находящиеся в его окрестности. Смысл кубов остается тем же самым: содержимое времени-подобных кубов (изображающее историю входов и выходов через поверхность реального ящика) представляет втекание и вытекание массы сквозь различные стенки области, находящейся в ящике, а два пространственно-подобных куба (ящики в начале и в конце рассматриваемого временного периода) представляют полную массу, находящуюся в ящике, в начале и в конце. «Полевые уравнения» Эйнштейна «всего лишь» устанавливают, что повороты и наклоны граней восьми кубов, конструирующих гиперкуб, пропорциональны полной массе внутри каждого из них. Это, по сути, и есть общая теория относительности.
Полевое уравнение Эйнштейна просто записать (при использовании достаточно богатого символического языка), но исключительно трудно решить. Тем не менее одно решение было найдено в течение нескольких месяцев после его первого появления в печати. Одним из немногих положительных событий во время Первой мировой войны было то, что служивший в России немецкий математик Карл Шварцшильд (1873-1916) нашел решение для области, лежащей снаружи от массы сферической формы, как, например, космическое пространство вокруг звезды или планеты, и решение внутри сферической однородной массы. Он умер несколько месяцев спустя, освобожденный от военной службы и пораженный редким кожным заболеванием, но термины решение Шварцшильдаи радиус Шварцшильдадали ему подлинное бессмертие. Еще одно решение было найдено в 1934 г. Х.П. Робертсоном и Д.Г. Уолкером для пространства-времени всех изотропных, однородных равномерно расширяющихся моделей Вселенной.
Давайте вообразим движение от центра однородной Земли в наружное пространство и представим себе форму пространства-времени. Чтобы проделать это, представим себе расположение в пространстве шести точек, связанных с углами восьмигранника (рис. 9.16). Внутри Земли кривизна пространства-времени является полностью «сжатой», в том смысле, что шесть точек восьмигранника лежат ближе друг к другу, чем в пустом пространстве. Это как если бы пространство-время внутри Земли сплющивалось.
Рис. 9.16.Приливные силы гравитации можно определить, рассматривая силы на шести пробных массах, укрепленных в углах восьмигранника. Две массы, расположенные вдоль направления, ведущего от центра Земли (или другого массивного тела), оттаскиваются друг от друга, а четыре массы на серой плоской поверхности стягиваются друг к другу. Это характеристики решения Шварцшильда для внешней области. Внутри Земли, в геометрии, задаваемой решением Шварцшильда для внутренней области, все массы стягиваются друг к другу.
Такое поведение является проявлением решения Шварцшильда для уравнения Эйнштейна в случае внутренней области сферической однородной массы. Мы можем представлять себе, что линии свободного падения лежат ближе друг к другу внутри Земли, а четырехмерное пространство-время имеет положительную кривизну – как сфера – с одинаковыми значениями на каждой двумерной плоскости с одной пространственной и одной временной осью координат. Кривизна на каждой плоскости в области с однородной плотностью постоянна, и в некоторой степени мы можем представлять себе ее похожей на кривизну листа резины в области вокруг покоящегося на нем тяжелого шара (рис. 9.17).
Рис. 9.17.Влияние массивного тела искривляет пространство подобно влиянию тяжелого шара, помещенного на резиновую поверхность. Частицы движутся по геодезической (одна из которых показана в виде жирной белой линии). Поскольку геодезические изгибаются на поверхности пространства-времени, устойчивое движение вдоль них для наблюдателя может выглядеть как путь частицы, притягивающейся к тяжелому телу. Если бы мы могли показать временное измерение также, мы увидели бы, что можем наблюдать явления, которые можно интерпретировать как ускорение и замедление тела, приближающегося к области тяжелой массы и удаляющегося от нее.
Когда множество из шести точек прорывается сквозь поверхность Земли и выходит во внешнее пустое пространство, решение Шварцшильда для внутренней области уступает место решению для области внешней. Теперь геометрия пространства-времени является «приливной», в том смысле, что две точки на линии, перпендикулярной к поверхности, движутся друг от друга вдвое быстрее, чем движутся друг к другу четыре точки, лежащие в плоскости, параллельной поверхности, так, что объем, заключенный между ними, остается постоянным. Мы можем представить себе влияние на пространство как растяжение в одном направлении (вдоль направления, указывающего на вносящую искажение массу) и сплющивание в двух перпендикулярных направлениях. Приливным эффектом без сомнения можно пренебречь: приливный эффект на Земле достаточен для того, чтобы исказить сферическую форму весьма неподатливой Луны всего на 1 км. Приливы в наших океанах как раз и являются проявлением влияния Луны на геометрию пространства-времени у поверхности Земли, с проявляющимся дважды в день вспучиванием геометрии на линии Земля-Луна. Поэтому, когда вы стоите на берегу и созерцаете спад и подъем прилива, вы наблюдаете тень геометрии Шварцшильда, пробегающую по поверхности Земли. Король Канут Великий [47]47
Король Англии (1016-1035), Дании (1018-1035) и Норвегии (1028-1035) – Прим. пер.
[Закрыть](994?-1035) не смог удержать геометрию в бухте.
Мы можем приписать кривизне численное значение. Радиальная кривизна (кривизна плоскости с одной осью вдоль радиального направления, а другой временной) равна −2 × масса / радиус 3, где радиусесть расстояние рассматриваемой точки от центра сферической концентрации массы (звезды или планеты, рис. 9.17). Заметим, что эта кривизна является отрицательной (седлообразной), в точности как на листе резины в области вне зоны, где покоится шар. Каждая из двух плоскостей с одной осью вдоль направления, перпендикулярного радиальному, а другой временной, имеют кривизну, равную масса / радиус 3. Эта кривизна положительна, поэтому мы можем представлять себе каждую из этих двумерных поверхностей похожей на поверхность сферы. Эти значения кривизны сохраняют объем 3-куба, поскольку растяжение в одном направлении компенсируется более слабым сжатием в двух перпендикулярных направлениях. Более того, кривизна тем меньше, чем больше мы удаляемся от центра Земли, и на больших расстояниях от Земли пространство-время является плоским.
Еще одной чертой геометрии Шварцшильда является замедление хода часов, расположенных вблизи массивного объекта. Значение доли замедления по отношению к ходу часов, находящихся далеко от массивного тела, равно масса / расстояние, где расстояниеесть расстояние от центра массивного тела. Если бы мы рассматривали влияние массы Земли на часы, помещенные в самолет, мы должны были бы принять в расчет, что они идут быстрее, чем часы на уровне моря (потому что самолет немного дальше от центра Земли, и его область пространства-времени немного меньше искривлена), но время бежит медленнее из-за того, что самолет находится в движении. Масса Земли мала, поэтому влияние движения коммерческих авиалайнеров мало. Тем не менее в кругосветном путешествии на высоте 10 000 м со скоростью 850 км/час гравитационный эффект ускоряет часы примерно на 0,2 микросекунды, в то время как влияние скорости замедляет их только на 0,05 микросекунды. Проверка общей теории относительности, проводимая таким методом, в реальности принимает в расчет влияние посадки и взлета, так же как изменения скорости самолета во время полета.
Почему мы уделили так много внимания геодезическим в пространстве-времени? В пустом пространстве частицы движутся по прямым линиям. Другими словами, они движутся по геодезическим плоского пространства-времени. Это наблюдение подчеркивает важность геометрии при определении путей. Когда пространство-время искажается в присутствии массы – при подходе ближе к звезде, – частицы продолжают двигаться по геодезическим, но эти геодезические искривлены. В действительности кривизна пространства-времени в окрестности массивного тела, подобного звезде, может быть столь велика, что геодезические сворачиваются в спираль. Иными словами, по мере течения времени, планета выглядит движущейся вокруг звезды по почти повторяющимся, очень близким путям, почти по эллипсам. То есть планета движется в пространстве-времени по геодезической, описываемой в пространстве почти замкнутой орбитой. Вдалеке от звезды – скорее как возле Плутона, чем возле Меркурия – пространство искривлено меньше, и планете приходится дольше бороздить пространство-время, прежде чем путь почти замкнется. Другими словами, по удаленным орбитам планеты движутся медленнее, чем по орбитам близким к звезде. На самом деле пути планет не являются совершенными эллипсами: они следуют немного иным путем при каждом новом обороте и для наблюдателя, способного видеть лишь пространство, описывают нечто вроде «розетки» вокруг центральной звезды. Объяснение точной формы подобного розетке пути Меркурия – так называемой прецессии перигелия– было одним из первых успехов общей теории относительности (рис. 9.18).
Рис. 9.18.В соответствии с теорией Эйнштейна, путь планеты (в частности, планеты, близкой к своей звезде, подобно Меркурию) не является совершенным эллипсом, а более похож на «розетку». Точка наиболее близкого подхода планеты к звезде вращается вокруг звезды. Движение этой точки для планеты, вращающейся вокруг Солнца, называется прецессией перигелия. Классическая (ньютоновская) механика тоже предсказывает прецессию, но объясняет лишь половину ее наблюдаемого значения в 43 секунды дуги за век (0,12 тысячных градуса в год). Общая теория относительности предсказывает точное ее значение. Прецессия орбит систем двойных звезд – движение периастра, точки наибольшего приближения звезды-спутника к главной звезде системы – много больше и, достигая нескольких градусов в год, легче поддается наблюдению.
Мы уничтожили гравитацию. Теперь мы понимаем, что движение планет не является реакцией на силу, называемую тяготением, а просто представляет собой естественное движение тела вдоль геодезической пространства-времени. Иначе говоря, движение есть проявление геометрии.