Текст книги "Десять великих идей науки. Как устроен наш мир."
Автор книги: Питер Эткинз (Эткинс)
сообщить о нарушении
Текущая страница: 17 (всего у книги 31 страниц)
Глава седьмая
Кванты
Упрощение понимания
Если кто-то заявляет, что знает, что такое квантовая теория, он не понял ее.
Ричард Фейнман
Великая идея: волны ведут себя как частицы, а частицы ведут себя как волны
Мы зависли на краю квантовой теории, погрузив большой палец ноги в ее кишащий опасностями бассейн. Пришло время нырнуть. Чтобы оценить значение воздействия этой необычайной теории, нужно заметить, что до конца девятнадцатого века волны были недвусмысленными волнами, а частицы были недвусмысленными частицами. На беду для наивного способа понимания, это определение не смогло пережить рубеж веков. К концу столетия из-за разброса наблюдений в классической физике завелся вирус. За несколько десятилетий двадцатого века занесенная им болезнь сокрушила классическую физику полностью. Этот вирус не только уничтожил некоторые из наиболее ценимых концепций классической физики, такие как частица, волна и траектория, но также разорвал в клочья наше устоявшееся понимание устройства реальности.
На месте классической физики – физики Ньютона и его прямых наследников (глава 3) – выросла квантовая механика. Никогда прежде не появлялась теория вещества, которая вызывала бы столько ужаса у философов. И никогда прежде не появлялась теория вещества, которая в руках физиков оказалась бы столь достоверной. Никаких исключений из предсказаний квантовой механики никогда не наблюдалось, и никакая теория не проверялась столь интенсивно и с такой высокой точностью. Проблема состоит в том, что, хотя мы можем пользоваться этой теорией с большим искусством и уверенностью, и несмотря на сто лет обсуждений, никто вполне не знает, что все это значит. Тем не менее существует оценка, что 30 процентов валового национального продукта США зависит от приложений квантовой механики в той или иной форме. Неплохо для теории, которую никто не понимает. Подумайте о потенциальных возможностях роста и повышения качества жизни (или неизбежного повышения качества смерти при развитии квантовых вооружений), которые могут быть выявлены, если мы вдруг поймем ее!
Вирус, которому предстояло разрушить классическую физику, был впервые обнаружен в конце девятнадцатого века физиками, изучавшими одну непроясненную проблему, связанную с излучением света нагретым телом. Чтобы понять, что произошло, нам следует знать, что свет есть форма электромагнитного излучения, а это означает, что он состоит из волн электрического и магнитного полей, распространяющихся со скоростью света, с. Длина волны этого излучения есть расстояние между гребнями волн и для видимого света составляет около 5 десятитысячных миллиметра. Каждый скажет, что это очень мало: да, но это почтиможно вообразить – просто представьте себе миллиметр, разделенный на тысячу кусочков, а затем разрежьте один из этих кусочков пополам. Свет различных цветов соответствует различным длинам волн излучения: красный свет имеет относительно большую длину волны, а синий свет – относительно малую (рис. 7.1). Белый свет является смесью всех цветов света. Малые изменения длины волн имеют значительные последствия: свет, используемый в дорожном движении, меняется от красного, через желтый к зеленому, с длиной волны, убывающей от 7,0 до 5,8, и затем до 5,3 десятитысячных миллиметра, и водители реагируют нужным образом на эти ничтожные изменения. Микроволновое излучение, используемое в микроволновых печах, тоже является электромагнитным излучением, но имеет длину волны в несколько сантиметров, что вообразить легко.
Рис. 7.1.Электромагнитный спектр и классификация разных его областей. Видимая часть спектра занимает очень узкую область длин волн, и длины волн (расстояния между соседними гребнями в волне, как показано на вставке) соответствующих цветов, воспринимаемых нами, даны в нанометрах (миллиардных долях метра) в прямоугольнике «Видимый свет». Числа в высоком вертикальном прямоугольнике представляют собой степени, в которые надо возвести десять, чтобы получить частоту в циклах в секунду (герцах, Гц), например, 8 указывает частоту 10 8Гц (сто миллионов циклов в секунду). Классификация областей не является жесткой, и у спектра нет ни верхней, ни нижней границы.
Нам также потребуется знать, что такое частота:если вы вообразите себя стоящим в точке, через которую перекатывается волна, то частотой будет число гребней, проходящих мимо вас за секунду. Длинные световые волны имеют низкую частоту, потому что мимо вас в секунду проходит лишь малое число гребней; коротковолновой свет обладает высокой частотой, поскольку мимо вас проходит много гребней. Для видимого света за секунду проходит около 600 триллионов (6×10 14) гребней, поэтому о его частоте говорят как о частоте в 6×10 14циклов в секунду (6×10 14герц, Гц). Красный свет имеет относительно низкую частоту, всего около 440 триллионов циклов в секунду; голубой свет имеет относительно высокую частоту, около 640 триллионов циклов в секунду. Мы воспринимаем это излучение как имеющее разные цвета, потому что разные рецепторы в наших глазах соответствуют разным частотам. Реальные числа в этой иллюстрации не имеют значения для дальнейшего, но знание их типичных значений и различных областей электромагнитного спектра является частью обшей культуры.
К концу девятнадцатого века были идентифицированы и выражены в виде законов две характеристики света, излучаемого нагретым телом, так называемого «излучения черного тела». В 1896 г. немецкий физик Вильгельм Вин (1864-1928) заметил, что интенсивность излучения черного тела, то есть яркость раскаленного тела, была наибольшей на длине волны, которая зависит от температуры по простому закону. Эта характеристика знакома нам качественно по повседневной жизни; ведь мы знаем, что объект светится при нагревании сначала красным свечением, а затем, когда его температура повышается еще больше, белым свечением. Этот сдвиг свечения указывает на то, что все больше и больше синего (коротковолнового) света добавляется к первоначально красному (длинноволновому) накалу по мере возрастания температуры, так что максимум интенсивности сдвигается к более коротким длинам волн. В 1879 г. австрийский физик Йозеф Стефан (1835-93) исследовал другое знакомое нам повседневное явление, резкое возрастание полной интенсивности излучаемого света при росте температуры, и выразил эту количественную зависимость в виде закона.
Ни закон Вина, ни закон Стефана не удавалось объяснить в рамках классической физики, несмотря на напряженные усилия очень талантливых теоретиков. В лекции, прочитанной 27 апреля 1900 г. в Королевском обществе, лорд Кельвин назвал неудачу попыток объяснить излучение черного тела одной из двух маленьких черных тучек, появившихся на горизонте классической физики (другой черной тучкой была неудача попыток обнаружить движение сквозь эфир). Двум черным тучкам Кельвина суждено было перерасти в бурный шторм, которому предстояло смыть наши концепции мира, способы, которыми мы производим наши расчеты и интерпретируем наши наблюдения, и наше понимание глубинной структуры реальности.
В состоянии раздражения Макс Планк (1858-1947) непреднамеренно и невольно породил квантовую теорию. 19 октября 1900 г. он предложил уравнение, которое, как казалось, объясняет законы Вина и Стефана, и в последующие недели бился над тем, чтобы дать своему выражению теоретическое обоснование. На лекции, прочитанной перед Германским физическим обществом 14 декабря 1900 г. – эта дата теперь считается днем рождения квантовой теории, – он представил свое решение. Во-первых, он изобразил излучение как явление, управляемое колебаниями осциллирующих атомов и электронов в нагретом теле, причем каждая частота колебаний соответствовала присутствию в излучении отдельного цвета. Это была стандартная точка зрения, и все его современники поступали именно так. Его современники также молчаливо предполагали, что энергия, каждого из этих осцилляторов меняется непрерывно, так же (думали они), как качание маятника может иметь любую амплитуду. Планк, однако, принял радикально иную точку зрения. Он предположил, что энергия каждого осциллятора может меняться лишь дискретнымишагами, скорее по лестнице, чем по скату. Более точно, он предположил, что энергия осциллятора данной частоты является величиной кратной ħ × частота, где ħ– новая универсальная константа, которую теперь называют постоянной Планка. То есть, он предположил, что для любого данного осциллятора лестницей допустимых энергий является величина ħ × частота, взятая 0, 1, 2, … раз.
Величина ħнастолько мала, что шаги энергии для большинства форм электромагнитного излучения (особенно для излучения, которое мы называем видимым светом) являются тоже малыми, так что их невозможно зарегистрировать, не прибегая к изощренным методам. Поэтому легко понять, как физики пришли к мысли, что энергия может меняться непрерывно. Разве, глядя на маятник, мы можем заключить, что амплитуда его колебаний меняется скачками? [29]29
Если вы отвечаете: да, то вы привираете. Скачки амплитуды маятника длиной 1 метр, со стограммовым шариком, качающимся с амплитудой 5 см, как у старых часов в высоком ящике, составляют только около 10 − 30см, что на пятнадцать порядков меньше, чем диаметр атомного ядра.
[Закрыть]Однако скачкообразное изменение энергии является единственным способом объяснить свойства излучения черного тела, и скачкообразное изменение энергии – ее квантование– теперь установленный факт.
В частном разговоре Планк признавался своему сыну, что думал о своем открытии, как о сравнимом с открытием Ньютона. Тем не менее большую часть оставшейся жизни он отчаянно, но безрезультатно пытался объяснить квантование в контексте классической физики. Здесь заключаются два урока, полезных для нашего понимания научного метода. Один из них состоит в том, что революционные идеи набирают силы, сопротивляясь постоянным атакам. В отличие от других областей приложения человеческих сил, где сумасшедшие идеи без вопросов принимают в объятия, как дорогих и долгожданных друзей, в науке сумасшедшая идея есть предмет постоянных нападок, особенно – в самом деле, особенно – если она ниспровергает устоявшуюся парадигму. Второй урок заключается в том, что старики (и старухи, хотя для них в силу положения дел и к нашему сожалению, сегодня меньше эмпирических свидетельств) не лучшие проповедники радикальной науки, так как глубоко пропитаны условностями, заложенными в них воспитанием, которыми они, как правило, возмущались, проходя обучение. Как новые нравы, новые парадигмы принимаются только тогда, когда старое поколение вымирает.
Как бы то ни было, революционная, безумная идея Планка о том, что энергия распадается на куски, что она скорее является гранулированной, чем гладкой, что она больше похожа на песок, чем на воду, идея, которой предстояло преобразовать наше восприятие реальности, была встречена молчанием. Сначала ее считали математическим трюком. Физическая реальность этого предложения выявилась только в 1905 г., когда гладиатор Эйнштейн вступил на арену, вынул из ножен свой математический меч и сразил еще одного классического дракона.
Чтобы опознать этого дракона, нам придется снова погрузиться в атмосферу физики конца девятнадцатого века, этого лежбища драконов. На протяжении этого века все уверились, что свет – говоря шире, электромагнитное излучение – является волнообразным: он распространяется как волна. Эта уверенность существовала не всегда. Ньютон, позже поддержанный Лапласом, настаивал на том, что свет является потоком частиц, но экспериментальные свидетельства, полученные в девятнадцатом веке, убедили всех, что свет является волной. Наиболее убедительным свидетельством было явление дифракции, впервые описанное дотошным наблюдателем Леонардо да Винчи (1452-1519) и исчерпывающе и количественно изученное такими авторитетными физиками, как Гюйгенс, Юнг и Френель. Одним из наиболее драматических подтверждений волновой теории света было предсказание того, что в центре тени от сферического или круглого экрана, освещенного с другой стороны, должно находиться пятно света (рис. 7.2). В 1818 г. Огюст Френель (1788-1827) послал работу о теории дифракции на конкурс, проводимый Французской академией. Математик Пуассон, член жюри конкурса, отнесся весьма критично к волновой теории света и вывел из теории Френеля очевидно, абсурдное предсказание, за круглым препятствием должно появляться яркое пятно. Однако другой член жюри, Франсуа Араго, решил поискать яркое пятно Пуассона и обнаружил его экспериментально. В результате Френель выиграл конкурс, а волновая теория света была должным образом принята и стала неопровержимой с виду парадигмой. Итак, драконом оказался волновой характер света.
Рис. 7.2.Пятно Пуассона. В соответствии с волновой теорией света предсказано, что при помещении непрозрачного диска перед лампой в центре его тени появляется белое пятно.
Эйнштейн сразил дракона в 1905 г., когда показал, что свет все же следует считать состоящим из частиц. Эйнштейновское уничтожение парадигмы состояло из двух частей. Во-первых, он проанализировал термодинамические свойства электромагнитного излучений внутри нагретой полости и показал, что, для того чтобы соответствовать наблюдениям Планка, излучение должно состоять из частиц, а не из волн. Эти частицы света через десятилетие были названы фотонами, и мы будем далее использовать это наименование.
Вышло так, что предположение Эйнштейна встретило немедленную экспериментальную поддержку в виде фотоэлектрического эффекта, при котором электроны испускаются поверхностью металла, подвергаемого ультрафиолетовому облучению. Фотоэлектрический эффект имел некоторые странные свойства, объяснение которых выходило за рамки компетенции теории света. Однако они немедленно получали объяснение, как только этот эффект изображался в виде результата столкновения электрона и подлетающего фотона. Эта модель привела к точному расчету фотоэлектрического эффекта и была одним из достижений, упомянутых при получении Эйнштейном в 1921 г. Нобелевской премии по физике. Это была маленькая совместная шутка судьбы и физики, поскольку мы теперь знаем, как рассчитать фотоэлектрический эффект в терминах электромагнитных волн, так что это частное, подтверждение существования фотонов, все еще воспроизводимое в учебниках (включая написанный мной) как неопровержимое свидетельство, трещит по швам. Однако существование фотонов теперь вне сомнений, поскольку имеются многочисленные свидетельства других видов.
Примирение нового и экспериментально бесспорного взгляда на свет, как на состоящий из частиц, и старого и экспериментально бесспорного взгляда на свет, как на состоящий из волн, когда оно было предложено, оказалось, как можно себе вообразить, весьма трудным. Эта трудность сохраняется даже по сию пору, и мы еще вернемся к ней позже.
Теперь квантовый вирус проник в тело классической физики, и болезнь начала распространяться. Второй вклад Эйнштейна в становление квантовой теории также был сделан в судьбоносные 1905-1907 гг. Этот вклад решал более обыденную загадку, связанную с подъемом температуры материалов при их нагревании. Изучаемым свойством была теплоемкостьвещества, представляющая собой меру тепла, требуемого для того, чтобы увеличить его температуру на заданную величину. Еще в 1819 г., с беззаботной уверенностью, которая пришла из разрозненных экспериментальных результатов и находящейся еще в колыбели системы их обработки, французские ученые Пьер-Луи Дюлонг (1785-1838) и Алекси-Терез Пти (1791-1820) объявили, что с поправкой на число атомов в образце все вещества имеют одну и ту же теплоемкость. Все им поверили, хотя это очевидно неверно. Пятьдесят лет спустя, когда стал доступным больший объем данных и физики начали измерять теплоемкость при низких температурах, с неизбежностью стало очевидно, что закон Дюлонга и Пти был плохим описанием природы и, в частности, что все теплоемкости стремятся к нулю при понижении температуры.
Классическая физика могла объяснить закон Дюлонга и Пти с триумфальной легкостью из предположения, что тепло поглощается атомами, колебания которых становятся все более и более сильными. Поэтому представителей классической физики приводила в уныние необходимость признать, что этот закон неверен при низких температурах, а во многих случаях при комнатной температуре тоже. Проблема оставалась неразрешенной до тех пор, пока в 1906 г. на нее не обратил внимание необычайный ум Эйнштейна. Он принял концепцию осциллирующих атомов, но, вторя Планку, ввел решающее предположение, что атомы колеблются с энергиями, возрастающими скачками, как бы прыгая вверх по лестнице энергетических уровней. При низких температурах энергии окружения недостаточно, чтобы заставить атомы осциллировать. При высоких температурах имеется достаточно энергии, чтобы все атомы осциллировали, и теплоемкость выросла до классического значения Дюлонга и Пти. Эйнштейн сумел вычислить зависимость теплоемкости от температуры и получил довольно хорошее согласование с наблюдениями. Через несколько лет его модель усовершенствовал датский физик Питер Дебай (1884-1966), и это усовершенствование, не содержащее существенно новых идей, дало превосходное согласование с экспериментом.
Вклад Эйнштейна был решающе важным, потому что он распространил концепции, возникшие из исследования электромагнитного излучения, на чисто механическую систему колеблющихся атомов. Вирус совершил межвидовый переход от излучения к веществу.
Как только вирус обосновался в веществе, также как в излучении, болезнь подточила здоровье всей классической физики. Существуют даты и достижения вдоль всей линии развития, пролегающей от 1906 г., особенно порожденная богатым воображением, но несостоятельная модель атома водорода, предложенная в 1916 г. знаменитым датским физиком Нильсом Бором (1885-1962), которая, как сначала казалось, подтверждала применимость квантовых концепций к системе частиц. Однако решающей датой для нашего обсуждения явился 1923 г., когда вирус добрался до самого сердца вещества и разрушил понятие частицы.
Хотя такие серьезные ученые, как Ньютон, придерживались точки зрения, что свет состоит из частиц, так что введение фотона не оказалось полностью сюрпризом, ни один серьезный ученый – за исключением нескольких обаятельно предприимчивых и занимавшихся обширными спекуляциями древних греков – не придерживался точки зрения, что вещество подобно волнам. Тем не менее в 20-е гг., пока общественность хлопала ушами, в точности эта самая концепция появилась и пустила корни. Отцом идеи стал герцог Луи де Бройль (1892-1987), потомок семьи, введенной во дворянство Людовиком XIV.
Вклад де Бройля в этот революционный взгляд был основан на обнаруженной им аналогии между распространением света и распространением частиц. Он рассуждал релятивистски, но мы можем проникнуть в его аргументацию без этого усложнения. Главной чертой геометрической оптики,версии оптики, которая исследует, как отражаются от зеркал и преломляются линзами световые лучи в виде прямых линий, является то, что лучи движутся по путям, соответствующим кратчайшему времени пробега между источником и местом назначения. Это утверждение по существу является принципом наименьшего времени, предложенным в 1657 г. французским советником кассационной палаты и хотя и любителем, но выдающимся математиком Пьером Ферма (1601-65), как обобщение наблюдений, которые Герон из Александрии проделал около 125 г. до н.э. и изложил их в поздней «Катоптрике». [30]30
Две предшествующих « Катоптрики», написанные соответственно Евклидом и Архимедом, не сохранились. – Прим. пер.
[Закрыть]Более точное название – принцип стационарного времени: странный оборот «стационарное время» просто означает, что время прохождения пути может быть либо минимальным, либо, в определенных случаях, максимальным. Мы ограничим наше обсуждение путями с наименьшим временем, но наши замечания легко можно распространить также и на пути с наибольшим временем. Загадка, с которой мы немедленно сталкиваемся, состоит в следующем: откуда свет, как кажется, заранее узнает путь, на прохождение которого будет затрачено наименьшее время? Если он начал двигаться по неверному пути, не будет ли более экономичным по времени продолжить движение, чем возвращаться к источнику и начинать сначала?
Волновая теория света приходит на помощь особо элегантным способом. Предположим, что мы рассматриваем произвольный путь между двумя заданными точками и представляем себе волну, извивающуюся по этому пути (рис. 7.3). Рассмотрим затем путь, лежащий очень близко к первому и волну, извивающуюся также и вдоль него. В пункте назначения гребни и впадины волн, прибывших этими разными путями, уничтожают друг друга: эта взаимная аннигиляция называется деструктивной интерференцией. Интерференция является характеристикой движения волн: она видна на поверхности воды, когда впадины одной ряби совпадают с гребнями другой, и смещение воды гасится. Однако существует один путь, для которого различие между гребнями соседних волн столь мало, что они не уничтожают, а усиливают друг друга: это взаимное усиление называется конструктивной интерференцией. Это явление также наблюдается в рябях на воде, когда гребни совпадают и смещение воды увеличивается. Пути, на которых интерференция конструктивна, это пути очень близкие к прямой линии – в общем случае, к пути с наименьшим временем пробега – между источником и пунктом назначения.
Рис. 7.3.На верхнем рисунке мы видим искривленный путь между двумя фиксированными точками и другой искривленный путь, близкий к нему. На этих путях нарисованы волны с одинаковой длиной волны. Хотя они начинают путь с одной и той же амплитудой, когда они достигают конечной точки, их амплитуды сильно различаются. Если бы мы представили себе полный пучок волн, бегущих по близким путям, мы смогли бы увидеть, что амплитуды в конечной точке все очень различны и интерферируют деструктивно, давая в результате нулевую амплитуду. На нижнем рисунке мы видим то же самое, но для прямолинейного пути и одного из путей, близких к нему. В этом случае все волны, прибывающие в конечную точку, имеют очень похожие амплитуды и не интерферируют деструктивно. Мы делаем заключение, что при полной свободе передвижения по любому маршруту, единственным выживающим путем оказывается путь, близкий к прямой линии.
Теперь мы подходим к сути этой аргументации. Свет не знает заранее и не имеет необходимости знать, какой из путей окажется путем с наименьшим временем пробега: он испытывает всепути, но только на путях, очень близких к пути с наименьшим временем пробега, волны не гасят друг друга. Деструктивная и конструктивная интерференции становятся тем более точными, чем короче длина волны света, и только геометрическая прямая линия выживает при бесконечно малой длине волны, которая и является тем пределом, в котором физическая (волновая) оптика становится геометрической оптикой. Полная свобода действий дает в результате ясно выраженное правило. Это наипрекраснейший вид научного объяснения, когда волк полного отсутствия ограничений появляется в шкуре овечки систематического поведения, анархия появляется в виде правил, беспорядок служит основой порядка, а свобода обоснованием контроля.
Держа в уме это объяснение, обратимся к рассмотрению частиц. Путь частицы, в соответствии с классической механикой, определяется силами, действующими на нее в каждый момент (как мы это видели в главе 3). Однако, так же как и в случае распространения волн, мы можем свести это описание к утверждению, касающемуся полного пути. В 1744 г. французский математик и астроном Пьер-Луи Моро де Мопертюи (1698-1759) объявил, что путь, проходимый частицей, таков, что ассоциированная с ним величина, называемая действием, является минимальной. К своему принципу наименьшего действияМопертюи пришел скорее из теологических, чем из физических соображений, поскольку в своем Essai de cosmologie(1759) он утверждал, что Божественное Бытие несовместимо ни с чем, отличным от предельной простоты и наименьшего расходования усилий. К несчастью для этой точки зрения, современная версия принципа признает, что в некоторых случаях частица выбирает путь наибольшего действия, поэтому более удачным названием является принцип стационарного действия.Для простоты мы ограничимся путями наименьшего действия.
Определение «действия», данное Мопертюи, было темным и менялось в зависимости от задачи, за которую он брался; тем не менее в нем заключалось зерно правильной идеи, которую выразил в математически строгой, но ограниченной форме шведский математик Леонард Эйлер (1707-83), а затем, почти в то же время, в 1760 г., Жозеф Луи Лагранж (1736-1813) придал ей окончательный вид. Эти исторические перипетии, однако, не должны нас отвлекать: важным здесь является то, что существует вполне определенная величина, называемая «действием» – представьте себе, что оно сродни «усилию» – и частица выбирает путь, соответствующий наименьшему действию, наименьшему усилию. Загадка, с которой нам немедленно приходится столкнуться – теперь я перефразирую слова, сказанные мною выше – состоит в следующем: откуда частица, как кажется, заранее узнает путь, дающий в результате наименьшее действие? Если она начала двигаться по неверному пути, не будет ли более экономичным по отношению к действию продолжить движение, чем возвращаться к источнику и начинать сначала?
Де Бройль был поражен аналогией между основными законами оптики и законами динамики частицы, выраженными в виде принципов наименьшего времени и наименьшего действия соответственно. Он видел, что проблема кажущегося наличия у частицы предварительного знания о том, какой путь будет соответствовать наименьшему действию, могла быть решена в точности тем же способом, что и для света, при условии, что с частицей можно ассоциировать волну. Тогда анархия приводила бы к закону: волны, ассоциированные с частицей, исследовали бы все пути между источником и местом назначения, и только те из них, которые соответствуют прямой линии (если нет никаких действующих сил, или, в более общем случае, если присутствующие силы действуют аналогично зеркалам и линзам) подверглись бы конструктивной интерференции и выжили бы в процессе взаимного уничтожения со своими соседями. Эта аннигиляция становилась бы все более точной с уменьшением длины волны этих «волн вещества», и в пределе бесконечно малой длины волны мы вновь получили бы вполне определенный путь в пространстве. Иными словами, появилась бы ньютоновская динамика с частицами, следующими по точным траекториям.
Исследуя эту аналогию, де Бройль смог вывести выражение для длины волны своих волн вещества:
Длина волны = ħ / импульс,
где ħ– постоянная Планка, а импульс частицы является произведением его массы и скорости (как мы видели в главе 3). Таким образом, постоянная Планка (напомним, что Планк называл свою постоянную «квантом действия») входит в описание динамики вещества на очень глубоком уровне, касаясь самого сердца движения. Отметим, что из-за ее вхождения в импульс в знаменателе этого выражения появляется масса, поэтому можно ожидать, что большие массы (мячи, люди, планеты) имеют крайне малые длины волн. Ваша длина волны, когда вы бодро проходите 1 метр в секунду, составляет приблизительно лишь 1×10 −35м, поэтому ваше движение можно интерпретировать в соответствии с динамикой Ньютона, и вы можете путешествовать, не слишком опасаясь подвергнуться дифракции и оказаться в Падуе вместо Пизы. Вряд ли надо удивляться, что волны столь малой длины прошли незамеченными и что ньютоновская динамика оказалась столь успешной в применении к видимым, «макроскопическим» телам. Однако, когда рассмотрению подвергаются электроны, мы входим в другой мир, поскольку они настолько легки, что их импульсы малы, а длины волн соответственно велики. Длина волны электрона в атоме сравнима с диаметром самого атома, и для них ньютоновская динамика больше не может служить приемлемым приближением.
Де Бройль поистине заслужил свою Нобелевскую премию, которая и была ему вручена в 1929 г. за «открытие волновой природы электрона». Нобелевский комитет, однако, был не вполне прав в своей формулировке: волновая природа частиц, обнаруженная де Бройлем, присуща всем частицам, а не только электронам. Электроны являются легчайшими из общеизвестных частиц, поэтому его предположение для них наиболее очевидно; но не существует частицы или скопления частиц (включая мячи, людей и планеты), в принципе не обладающих связанным с ними волновым характером. Существование этого волнового характера было подтверждено экспериментальной демонстрацией того, что электроны проявляют наиболее характерную черту волн, дифракцию. В 1927 г. американец Клинтон Дэвиссон (1881-1958) заслужил свою порцию Нобелевской премии 1937 г., показав, что электроны дифрагируют на одиночном кристалле никеля, а Джордж Томсон (1892-1975), работая в Абердине, заслужил свою долю премии, показав, что они дифрагируют, проходя через тонкую пленку. С тех пор подвергались дифракции целые молекулы. Привлекательным аспектом семейной науки является то, что Дж.П. Томсон получил свою премию за демонстрацию того, что электрон является волной, в то время как его отец, Дж.Дж. Томсон, получил свою за демонстрацию того, что электрон является частицей. Завтрак у Томсонов, возможно, бывал подернут ледком.
Мы находимся в том моменте, когда революция уже висела в воздухе, хотя не была еще полностью сформированной и не осознавалась. Даже де Бройль на самом деле не знал, что он имел в виду под своими «волнами вещества». Что, однако, было установлено, так это дуальностьвещества и излучения, то, что они обладают характеристиками как волн, так и частиц. Было показано, что свет, который долго считали подобным волне, имеет и другое лицо и ведет себя как частицы. Было показано, что вещество, которое долго считали состоящим из частиц, имеет второе лицо и ведет себя как волна. И снова на ум приходит образ куба (рис. 6.12), у которого один ракурс выглядит для нас как квадрат, а другой как шестиугольник.
Вирус, который теперь разрушил наиболее нежно лелеемые концепции физики, вошел в полную силу в 1926 г., когда природа волн вещества де Бройля начала проясняться. Как мы увидим далее, мало-помалу стало ясно, что наш уничижительный термин «вирус» не слишком уместен, поскольку постепенное выметание затемняющей пыли классической физики выявило гораздо более простой, ясный и понятный мир внутри. Старшее поколение, пропитанное классической традицией, не сумело найти выражения для новой простоты и в результате только сбивало с толку молодых. В дальнейшем я надеюсь показать молодым и восприимчивым умам ту простоту, которую квантовая механика внесла в наше понимание мира.
Прожектор новых достижений теперь поворачивается, чтобы осветить двух гигантов квантовой теории, загадочного немца Вернера Гейзенберга (1901-76) и романтически решительного австрийца Эрвина Шредингера (1887-1961). Каждый из них сформулировал уравнения, позволяющие нам вычислять динамические свойства частиц (к которым мы будем и далее обращаться), заменяющие ньютоновские законы движения. Их формулировки, называемые соответственно матричной механикойи волновой механикой, выглядели совершенно непохожими друг на друга, и их философии соответственно были различными. Но вскоре было показано, что обе формулировки математически идентичны, так что конкурирующие философии стали делом персонального выбора. Математике присущи эти повадки хамелеона, отображающего себя в физический мир различными, но эквивалентными путями, для того, чтобы мы никогда не спешили с презрением относиться к чужой формулировке, поскольку может оказаться, что она эквивалентна нашей собственной. Смесь матричной и волновой механик теперь принято называть квантовой механикой, и далее мы будем использовать только этот термин.