
Текст книги "Жизнь и мечта"
Автор книги: Павел Ощепков
Жанры:
Биографии и мемуары
,сообщить о нарушении
Текущая страница: 11 (всего у книги 21 страниц)
Герц первым построил в 1888 г. генератор электромагнитных волн в виде элементарного вибратора, который до сих пор носит это название, и первый осуществил простейший способ приема этих волн. Он первым поставил опыты по передаче электромагнитных волн без проводов и изучил их преломление и отражение от различных твердых предметов. Однажды, после публичной демонстрации действия на расстоянии генерированных электромагнитных волн на приемный индикатор, кто-то спросил:
– Скажите, пожалуйста, господин Герц, какое значение может иметь ваше открытие для человечества, для последующего развития техники?
Он подумал немного и ответил:
– По-моему, никакого. Слишком малы те расстояния, на которые можно передавать электромагнитные волны. (Опыты проводились в пределах одной аудитории.)
Теперь все знают, что история убедительно опровергла эти слова знаменитого ученого. Прошло всего несколько лет, как другой пытливый человек – преподаватель физики минного офицерского класса Кронштадтского военно-морского училища Александр Степанович Попов, демонстрируя своим слушателям тот же самый опыт Генриха Герца по передаче электромагнитных волн на расстоянии, пришел к совершенно другому выводу.
Глубже задумываясь над природой электромагнитных волн, анализируя возможное применение этого явления, он пришел к твердому убеждению, что электромагнитные волны могут быть надежной основой для осуществления беспроволочной связи. Эту мысль он со всей ясностью высказал в 1889 г.
158
Он деятельно изыскивал и разрабатывал способы увеличения дальности действия генератора электромагнитных волн и вскоре создал антенну, без которой в наше время не обходится ни одно радиотехническое устройство связи. Потом он усовершенствовал когерер – первое устройство для приема радиоволн, основанное на свойстве металлических порошков повышать свою электропроводность под влиянием высокочастотных электрических колебаний. В 1895 г. А. С. Попов настолько усовершенствовал это устройство, что оно стало автоматически возвращаться в рабочее положение после каждого приема радиосигнала.
Эти и многие другие усовершенствования позволили А. С. Попову построить первые в мире передатчик и приемник, предназначенные для осуществления беспроволочной связи. 25 апреля G мая) 1895 г. А. С. Попов установил свой передатчик в здании Химического института Петербургского университета, а приемник в другом помещении, находившемся на расстоянии 250 м, где проходило заседание Физико-химического общества. С помощью этой аппаратуры, изготовленной, кстати сказать, им самим в творческом содружестве с лучшим другом и помощником П. Н. Рыбкиным, А. С. Попов передал первую в мире радиограмму. Она на глазах у всех членов Общества была принята, и мы знаем ее содержание. В первой радиограмме, переданной в эфир, Александр Степанович Попов выразил дань уважения к тому, кто первым осуществил передачу электромагнитных волн без проводов, —Генриху Герцу. Первыми словами, переданными по первому в мире радиотелеграфу, были: «ГЕНРИХ ГЕРЦ».
Вот вам и еще один факт – опыт один, а выводы, сделанные из него двумя учеными, совершенно различные.
Один из них не оценил практического смысла собственного опыта и потому не развил его, а другой усмотрел в нем великое будущее и потому пришел к замечательным достижениям, обогатившим человечество и ставшим гордостью русского народа.
Конечно, не обошлось без трудностей. Царские чиновники из Научно-технического комитета чинили А. С. Попову немало препятствий. Но были у А. С. Попова и друзья, в числе которых в первую очередь надо назвать вице-адмирала Степана Осиповича Макарова, который сам был крупнейшим новатором в русском флоте.
159
Он первым применил во флоте минные катера для атак против броненосных кораблей в русско-турецкой войне 1877—1878 гг. Он спроектировал первый в мире мощный ледокол «Ермак» и участвовал в его постройке. Он изобрел бронебойный наконечник для артиллерийских снарядов и многое другое. Поэтому он хорошо понимал трудности, которые испытывал неутомимый изобретатель А. С. Попов.
В 1899 г. под руководством А. С. Попова и его неизменного помощника П. Н. Рыбкина, как уже было сказано, была организована радиосвязь между островом Гогланд и городом Котка во время операции по снятию севшего на камни броненосца «Генерал-адмирал Апраксин».
Опыты по установлению беспроволочной связи носили практический смысл, и можно сказать, что в России с этого времени началось применение радиосвязи.
В России же, как мы уже видели, родилась и радиолокация – величайшее изобретение в области применения электромагнитных волн за последние 50 лет. При создании его тоже не обошлось без двух различных оценок фактов, положенных в основу изобретения.
ТЕРНИИ НА ПУТИ АТОМНОЙ ЭНЕРГЕТИКИ
Волнующие строки о борьбе научных мнений можно найти и в летописи наших дней.
Мы живем в век изумительных открытий в области атомной энергетики, превращения одного вещества в другое, о чем веками мечтали алхимики. Эти мечты сбылись в наше время. С помощью современных средств воздействия на атомное ядро человек научился превращать одни химические элементы в другие и при этом высвобождать огромное количество скованной энергии.
Раскрепощен еще один колосс природы – внутриядерные силы.
Так ли гладко, как может показаться на первый взгляд, при современном победном шествии науки, развивались представления об этих силах в сознании даже самых крупных ученых нашего времени? Нет, далеко не гладко.
Первые исследования по атомной физике связаны, как известно, с именами таких крупнейших ученых, как Нильс Бор и Эрнест Резерфорд.
160
В июне 1919 г. в журнале «Философикал мэгэзин» Резерфорд опубликовал данные о своих исследованиях по бомбардировке атомов азота альфа-частицами. В результате этого ему удалось получить кислород и водород. Это было открытие поистине огромного значения, сравнимое разве только с переворотом в сознании людей, совершенным Коперником.
Ко времени опытов Резерфорда многие уже осознавали, что внутри атома дремлют огромные силы и что рано или поздно можно будет овладеть внутриядерной энергией. Например, один из крупнейших немецких физиков– лауреат Нобелевской премии Вальтер Нернст писал в 1921 г.: «Можно сказать, что мы живем на острове, сделанном из пироксилина. И благодарение богу, что мы пока не нашли еще спичку, которая могла бы поджечь его».
Однако сам Резерфорд, сделавший больше всего для атомной физики, заявлял, что человечество никогда не сможет использовать энергию, дремлющую в атоме.
Выступая на годичном собрании Британской ассоциации физиков в 1933 г., Резерфорд утверждал, что люди, толкующие о возможности получения атомной энергии в больших масштабах, «говорят вздор». Такого мнения он придерживался до последних дней своей жизни.
К сожалению, и некоторые наши ведущие физики длительное время придерживались примерно такого же мнения. Для них авторитет Резерфорда был непререкаемым. Иная точка зрения на факт существования внутриядерных реакций должна была еще завоевывать себе признание. Фриц Хоутермас, например, в документе, адресованном в 1932 г. Технической академии в Берлине, утверждал, что «эта мельчайшая, только что открытая в Кембридже частица (имеется в виду нейтрон, открытый Чэдвиком) может оказаться отличным средством высвобождения могучих сил дремлющей материи». Однако его слова в то время не привлекли к себе должного внимания.
Вскоре виднейший французский ученый Фредерик Жолио-Кюри заявил: «Мы отдаем себе отчет в том, что ученые, которые могут создавать и разрушать элементы, способны также осуществить ядерные реакции взрывного характера.
161
...Если удастся осуществить такие реакции в материи, то, по всей вероятности, будет высвобождена в огромных количествах полезная энергия».
Но даже и после этого очки скептицизма на носу некоторых ученых, государственных деятелей не позволили увидеть открывающихся перспектив. В 1939 г., т. е. уже много лет спустя после начала исследований по атомной физике, один из основоположников современной атомной физики – Нильс Бор указывал своему коллеге Вагнеру на 15 веских доводов, в соответствии с которыми, по его мнению, практическое использование процессов деления было невозможно. И примерно в это же время всемирно известный ученый Альберт Эйнштейн уверял американского репортера Лоуренса в том, что он не верит в высвобождение атомной энергии.
Теперь все знают, на чью сторону встала история в этом вопросе. Наука победно вышла на путь широкого использования атомной энергии во всех ее видах – от меченых атомов до гигантских атомных электростанций.
Так решилась судьба еще одного научного спора.
Но, может быть, все эти примеры характерны лишь для прошлых лет? Может быть, теперь уже нет таких фактов и наблюдений, которые неправильно понимаются или истолковываются? Может быть, наука стала всесильной и теперь без ошибок все объясняет?
По-видимому, так многим и представляется.
Но, как бы сильны мы ни были «задним умом», как бы нам ни казалось, что мы стали умнее и гораздо лучше разбираемся в окружающих нас фактах, чем это делали наши предки, на самом деле по отношению ко многим проявлениям сил природы, по отношению ко многим фактам нашей современности мы все еще стоим примерно в прежнем положении.
Да иначе и быть не может. Ибо ведь факты – это наша практика. А практика сама находится в состоянии непрерывного развития и совершенствования. Практика как критерий истины в одно и то же время и абсолютна и относительна. Она абсолютна, так как только в практике, только в фактах, только в прямых и конкретных наблюдениях можно найти подтверждение или опровержение правильности любых наших представлений, любых теорий. Но она и относительна, так как подтвердить или опровергнуть наши представления при их истолковании любая практика может только в условиях своего времени, своих, конкретно сложившихся ограничений.
162
Критерий практики никогда не может быть абсолютно завершенным, раз и навсегда установленным или преподанным. Факт сам по себе – это только внешнее проявление события, внутренняя же взаимосвязь его с другими событиями, с другими явлениями раскрывается лишь нашим сознанием.
ДРАМА ВЕЛИКОГО НЬЮТОНА
Первое, что воспринимает человек, появившись на белый свет, – это именно белый свет. Но представления о природе света до сих пор еще находятся в стадии развития.
Первые люди на Земле принимали свет как дар небес, как божественную силу. Они представляли его таким, каким видели, т. е. белым. Они видели и радугу, возникающую после дождя в мельчайших капельках воды, но сколько поколений сменилось, пока человек связал эти два явления между собой и понял, что белый свет – это сумма нескольких совсем не белых цветов – сумма цветов радуги. Теперь каждый школьник знает это. Он знает также и то, что луч белого света, если его пропустить сквозь трехгранную призму, разложится на составляющие цветные лучи. Если же сложить получившиеся простые цвета, вновь пропустив их, например, сквозь другую трехгранную приему в обратном направлении, то можно получить опять белый свет. Можно сложить даже не все, а только некоторые, так называемые основные, взаимно дополнительные цвета (красно-зелено-голубой или желто-синий), и получится тот же видимый белый свет. Этого можно достигнуть, если при сложении цветов регулировать и их яркость.
Так, через опыты Ньютона по разложению света на его составляющие, поставленные им в 1666—1672 гг., человек познал, что белый свет состоит из нескольких окрашенных цветов.
Однако при жизни Исаака Ньютона даже эти простые опыты с трехгранной призмой были встречены с большим недоверием. Нам теперь представляется, что и спорить-то здесь было не о чем. Но мысль о сложности белого света, открытие простых цветов и, наконец, установление связи между цветностью и коэффициентом преломления для современников Ньютона были совсем неожиданными и новыми.
163
Результаты своих опытов и выводы из них Ньютон изложил в рукописи под названием «Новая теория света и цветов». Когда эта рукопись была получена Королевским обществом (Британская академия наук), то для рассмотрения ее была назначена комиссия в составе трех видных ученых того времени – Р. Гука, С. Уорда и Р. Бойля.
В своем отзыве Гук в нескольких строках отдает должное тщательности и изяществу опытов, но возражает против того, что гипотеза, извлекаемая Ньютоном из опытов, правильна. Он не согласен с тем, что цвет является неотделимым первоначальным свойством лучей.
Утверждать, что все цвета содержатся как таковые в простом световом луче, было бы, – писал Гук, – то же самое, что говорить о наличии всех звуковых тонов в воздухе органных мехов или в струне скрипки, из которых они извлекаются». Разложение белого света на простые цвета в стеклянной призме вызывается, по Гуку, возмущением простого волнового движения в самой призме.
Почти одновременно с Гуком критиками теории и опытов Ньютона выступили X. Гюйгенс и многие другие оппоненты.
Все это не могло не влиять на душевное равновесие гениального экспериментатора, уверенного в своих опытах. В письме к секретарю Королевского общества Ольденбургу от 8 марта 1673 г. Ньютон просит вычеркнуть его из списков академии. В другом письме, датированном 23 июня 1673 г., Ньютон пишет, что он не желает больше заниматься естественными науками и отказывается отвечать на критические статьи и письма, так как не желает быть вовлеченным в бесполезные пререкания.
К счастью, Ольденбург уговорил Ньютона остаться членом Королевского общества, и тот еще долго сотрудничал в нем, А для гарантии его членства руководство Общества освободило Ньютона от уплаты членских взносов в сумме 1 шиллинг в месяц. (В Английской академии наук и до сих пор академики вносят деньги за свое членство.)
Так проходила борьба за признание даже таких, казалось бы, простых истин, как открытые в опытах Ньютона по разложению стеклянной призмой обычного белого света.
164
Теперь о свете известно, конечно, гораздо больше. Мы знаем, например, что за видимым спектром излучения есть еще и невидимый «свет» – за видимыми фиолетовыми лучами следуют невидимые ультрафиолетовые лучи, а за красными – инфракрасные. Если полагаться только на наш собственный глаз, который может реагировать лишь на волны длиной от 0,4 до 0,8 микрона, т. е. только в весьма ограниченной области спектра излучения, то нельзя было бы обнаружить ни ультрафиолетовых, ни инфракрасных, ни каких-либо других лучей из числа уже известных к настоящему времени – ни Рентгеновых лучей, ни гамма-лучей, ни радиоволн самых разных длин и т. д.
Вот и выходит, что наш опыт, наша практика, всем известные факты весьма относительны. Человек принимал как несомненный факт и свет и радугу, но не мог связать их в одно понятие, не мог представить себе, что природа их одна и та же. Потребовалось время для создания таких технических средств, которые позволили искусственно разложить белый свет на составляющие и тем раскрыть его природу.
Но и новые опытные данные (новые факты), позволяющие доказать, что свет состоит из вполне определенных, конкретных цветов, соответствующих цветам радуги, опять-таки были далеко не полными. Ведь глазом нельзя обнаружить ни более коротких, ни более длинных волн, хотя, как мы знаем теперь, они имеют одну и ту же природу– это электромагнитные волны.
Только в 1800 г. В. Гершель показал, что за красными лучами в спектре есть еще лучи, которых мы не видим.
Он назвал эти лучи инфракрасными. И это открытие было сделано с помощью такой же стеклянной призмы, какой пользовался Ньютон. Только Гершель применил для регистрации света не простое наблюдение глазом, а термометр. При этом он обнаружил, что, перемещаясь за границу красного цвета, т. е. в ту сторону, где для глаза уже нет никаких лучей, термометр продолжает показывать присутствие какого-то таинственного излучения.
Так были обнаружены (открыты) невидимые для глаза инфракрасные лучи, входящие в качестве составной части в световые лучи Солнца или любого другого накаленного тела. Опыты Гершеля сильно расширили представления о природе света и дали толчок для дальнейших новых исследований в этой области.
165
Однако процесс дознания бесконечен. Поэтому без преувеличения можно сказать: да, теперь нам действительно многое известно о природе света. Но заявить, что мы уже все о нем знаем, все равно нельзя.
ШИРЯТСЯ ПОЗНАНИЯ О ВОЛНАХ
Во времена Ньютона считали, что свет – это мельчайшие частицы (корпускулы), которые попадают в глаз и там вызывают соответствующее раздражение. Потом опытами Гюйгенса было доказано, что свет имеет волновую природу, которая наиболее ярко проявляется при явлениях дифракции и интерференции.
Если взять в руки линейку с очень частыми делениями, например логарифмическую, и направить ее на источник света (по направлению к солнцу или к нити лампы накаливания) и смотреть вдоль этой линейки под очень малым углом зрения (лучше всего вдоль равномерной и самой мелкой шкалы), то мы увидим чередующиеся цветные полосы – цвета радуги. Происходит это потому, что свет, отражаясь от каждого штриха, достигает поверхности сетчатки нашего глаза в разное время. В этом случае волны, складываясь, взаимно ослабляются, даже совсем уничтожаются или, наоборот, усиливаются. Как говорят, волны интерферируют между собой.
Дифракцию света лучше всего можно наблюдать при прохождении света через узкие щели или отверстия, а также при отражении света от мелкой решетки. В приведенном примере штрихи логарифмической линейки и играют роль такой дифракционной решетки.
Явление дифракции света, а точнее говоря, внешняя картина, наблюдаемая при этом явлении, послужила в свое время довольно веским основанием для заключения о том, что и материальные частицы (такие, как электроны, протоны и т. п.) также имеют волновую природу.
В 1927 г. Л.-Х. Джермер и К.-Д. Дэвиссон поставили в США опыты по отражению электронов от кристаллов твердого тела, а также по прохождению пучка электронов через весьма узкие отверстия. При этом они обнаружили, что электроны рассеиваются и отражаются в этих случаях по вполне определенному закону. На флюоресцирующем экране, на который они падают, в результате такого отражения образуются изображения в виде правильных концентрических кругов различной интенсивности.
166
По внешнему виду эти круги точно такие же, какие образуются при дифракции света. Внешнее сходство наблюдаемых картин было столь поразительно и вместе с тем столь убедительно, что у авторов опытов и в особенности у их последователей невольно возникало желание перенести законы, характеризующие волновую природу света, и на материальные частицы.
В это же примерно время советский физик Валентин Александрович Фабрикант ставил опыты по прохождению электронов через малые отверстия в металлах и получил аналогичные дифракционные картины при очень малой плотности электронного тока. Суммарный эффект прохождения электронов через такие отверстия дал такую же картину, как и волновая дифракция.
Теперь мы уже не сомневаемся, что электроны и другие материальные частицы действительно при некоторых условиях ведут себя как волны. Но этот дуализм в теории познания элементарных частиц свидетельствует лишь о недостаточности наших знаний об их истинной природе и в особенности о природе их взаимодействия с другими материальными телами и полями.
Опыты Джермера и Дэвисона, одно время считавшиеся чуть ли не самым главным доказательством волновой природы электрона, в настоящее время уже нельзя толковать так просто. Новые, более совершенные опыты по дифракции электронов свидетельствуют о том, что картина, получающаяся на светящемся экране или на фотопленке, куда падают электроны после прохождения малых отверстий, может, быть почти такой же и в том случае, когда в камере мимо отражающего кристалла будет проходить не по два и не по нескольку электронов, а только по одному в каждую единицу времени.
Практически это уже осуществлено. В этом случае ни о каком одновременном взаимодействии электронов с отражающей решеткой не может быть и речи, значит, не может быть и интерференции электронов (т. е. сложения или взаимного вычитания волн) в месте падения их на экран.
Каждый электрон в этом случае будет сам по себе проходить мимо отражающей поверхности и сам по себе достигать экрана наблюдения. Однако, как показал эксперимент, конечное распределение электронов на экране наблюдения и в этом случае получается точно таким же, как и при дифракции света, 167
Выходит, что наблюдаемый факт внешне как бы один и тот же, а причины, вызывающие явление, совершенно различны. И сколько еще таких фактов, которые мы оцениваем по первому впечатлению!
Когда было открыто радио, то считалось, что для целей связи длинные волны более ценны, так как они позволяют устанавливать связь на значительно большие расстояния, чем при использовании коротких волн.
Короткие волны в этом отношении считались менее ценными. И как менее ценные для служебных целей они были отданы тогда на откуп радиолюбителям для их практической работы.
Тогда в этом не было ничего удивительного, так как казалось, что чем длиннее волны, тем сильнее они должны преломляться в земной атмосфере. С этой точки зрения волны такого рода могут распространяться на значительные расстояния, даже за горизонт земли. Они как бы огибают на некотором расстоянии поверхность земли. У коротких же волн это свойство менее выражено, поэтому они не могут распространяться так далеко за линией видимого горизонта.
Факт (т. е. практика) и теория (т. е. объяснение этого факта) находились в полном согласии.
Но радиолюбители, пользовавшиеся коротковолновыми диапазонами, очень скоро обнаружили, что на коротких волнах, вопреки предсказаниям специалистов, можно устанавливать связь на значительно большие расстояния, чем предполагалось раньше. Радиолюбители показали, что радиосвязь можно устанавливать вплоть до межконтинентальной и при очень малой мощности передатчиков.
В спешном порядке пришлось произвести переоценку ценностей. Было установлено, что короткие волны хорошо отражаются от верхних, ионизированных слоев атмосферы и поэтому обеспечивают прием их на невероятно больших расстояниях. Таким образом, теперь уже не длинные, а короткие волны стали считаться наиболее ценными для установления дальней связи. Оценка фактов сменилась на противоположную.
Радиотехники, работающие на коротких волнах, особенно радиолюбители, добиваются потрясающих успехов, устанавливая связи одна длиннее другой.
168
Теперь весь мир опоясан такими линиями связи. Однако никому даже в голову не приходило, что радиосигнал, посланный на коротких волнах, можно снова принять в том же самом месте, откуда он был послан. Только в 1947 г. советский инженер Н. И. Кабанов пришел к выводу, что радиосигнал, посланный в эфир на коротких волнах, многократно отражаясь от ионосферы и от поверхности земли, неминуемо должен вернуться к месту излучения. Отражение от поверхности земли не может быть строго оптическим, оно должно носить характер сложного распределенного отражения, поэтому в числе отраженных лучей должны быть и такие, которые в точности совпадают с направлением первоначального сигнала.
В зависимости от свойств и рельефа отражающей поверхности интенсивность отраженной энергии может быть различной, но она обязательно достигнет точки излучения.
Это было новое и смелое умозаключение. Многим оно казалось невероятным. Длительное время спор складывался не в пользу Кабанова, но в конце концов его точка зрения победила, и в 1960 г. Комитет по делам открытий и изобретений выдал Н. И. Кабанову диплом на открытие «эффекта Кабанова».
Теперь этот эффект очень хорошо проверен и подтвержден. Радиотехника и радиолокация обогатились еще одним мощным средством «просматривания» местности далеко за пределами горизонта земли. Эффект Кабанова дает возможность не только обнаруживать те или иные изменения на обследуемых участках земной поверхности, но и быстро определять наивыгоднейшую волну, необходимую для установления связи с любым пунктом земли. Направляя в заранее рассчитанное место радиосигнал на той или иной волне и регистрируя интенсивность пришедшего «радиоэха», нетрудно установить, какая из посылаемых волн дает наилучшие результаты.
Так было открыто еще одно очень интересное явление. в физике распространения радиоволн.
Можно ли сказать, что мы знаем уже все о радиоволнах, что в дальнейшем в этой области не будет открыто каких-либо новых явлений? Конечно, нет. Практика и теория находятся в постоянном развитии, непрерывно дополняя и оплодотворяя друг друга. Многое из того, что сегодня нам кажется абсолютно правильным, завтра – опровергается новой практикой.
169
НЕОБЫЧНОЕ В ПРИВЫЧНОМ
Каждый специалист, изучая историю своей дисциплины, обязательно найдет факты, отношение к которым с течением времени претерпевало коренные изменения.
Известь, например, тысячелетиями применялась в строительном деле только в гашеном виде. А вот изобретатель С. И. Смирнов доказал, что можно не только применять ее в негашеном виде, но и получать на ее основе камни особо высокой прочности. По методу Смирнова получены камни, пригодные даже для изготовления мельничных жерновов.
Профессор А. В. Улитовский, многое сделавший для прикладной физики, умел находить оригинальные пути решения даже тех задач, которые на основании общеизвестных фактов считались неразрешимыми. Он первым, например, предложил способ прокатки жидкого металла.
Специалисты пытались доказать, что сделать это невозможно, так как при любой системе охлаждения валки все равно разогреются и расплавятся. А Алексей Васильевич не только доказал полную реальность своего метода, но и продемонстрировал прокатку жидкого чугуна, имеющего температуру плавления около 1400° С, валками из алюминия, температура плавления которого всего 660° С.
В чем же здесь дело? Конечно, если валки охлаждать водой обычным способом, то такого теплосъема действительно будет недостаточно, чтобы снизить их температуру ниже точки плавления. Но разве охлаждение валков проточной, пусть даже холодной водой – единственный способ?
А. В. Улитовский применил воду не в виде сплошного потока, а в виде дисперсной (т. е. раздробленной на мельчайшие частицы) массы, подаваемой на внутренние стенки валков под высоким давлением. В этом случае тепло расходуется уже не только на нагрев воды до температуры кипения, но и на процесс полного испарения ее. Это позволило резко увеличить теплосъем со стенок валков, и прокатка жидкого чугуна стала возможной.
Чугун в твердом состоянии, как известно, не катается, он хрупок, и получение из него листа обычными способами невозможно, а вот новый подход к задаче дал желаемый результат. Этот метод получил широкое развитие, его авторы были удостоены Государственной премии, и теперь существуют заводы по производству чугунного листа методом прокатки металла в жидком виде.
170
Как видим, к оценке фактов надо подходить с умом и осторожно. То, что сегодня считается невозможным на основе всем известных фактов, завтра становится возможным на основе более глубокого их анализа.
Примеры противоречивых выводов из одних и тех же фактов можно найти и в наше время. Таких примеров немало. Вот один из них.
Если пропустить электрический ток по цепи, состоящей из разнородных проводников, то каждое место соединения этих проводников помимо джоулева тепла будет выделять (а в некоторых случаях поглощать) еще некоторое дополнительное тепло в количестве, пропорциональном количеству прошедших электронов. Это так называемое явление Пельтье.
Существует несколько взглядов на сущность этого факта, однако точная его природа все еще остается загадочной.
Если температура электрической цепи, содержащей два спая из разнородных проводников, равна температуре окружающей среды, то совершенно естественно, что спай, который выделяет дополнительное тепло, при прохождении тока приобретает температуру более высокую, чем температура окружающей среды, а в том спае, который поглощает тепло, температура станет ниже температуры окружающей среды, В первом случае тепло будет отдаваться в окружающее пространство, во втором случае оно будет поглощаться из окружающего пространства, которое можно значительно увеличить, если систему искусственно сделать асимметричной (подробнее об этом говорится в главе «Навстречу девятому валу»).
По отношению к холодному спаю в этом случае вся окружающая среда становится как бы «горячим телом». Это вполне логичный вывод, и он соответствует опыту.
171
Да иначе и быть не может, так как в каждом проводнике электроны по своему энергетическому состоянию строго соответствуют химической природе материала проводника. В двух соприкасающихся проводниках, изготовленных из различных металлов, обязательно будут различны и средние энергии электронов. Следовательно, если электрон из проводника одной химической природы переходит в проводник другой химической природы, то меняется и его энергия, и ровно настолько, насколько отличается средняя энергия электронов в одном металле (проводнике) от средней энергии электронов в другом металле. При переходе через эту границу электрон обязательно отдает часть своей избыточной энергии новому проводнику, и она обнаруживается в виде тепла.
Если же электрон перешел с меньшей энергией, чем та, которой обладают электроны в новом для него проводнике, то он, взаимодействуя с решеткой металла и с другими электронами этого нового для него проводника, отберет у него часть тепла, вызовет понижение температуры этого металла, так как часть энергии от других электронов решетки он примет на себя. Это проявится в виде охлаждения данного спая двух проводников.
Теперь все это представляется очевидным, как и то, что любая окружающая среда будет находиться во взаимодействии с этим процессом. И все же до сих пор некоторые специалисты, даже весьма известные и ведущие, вопреки логике отрицают такую возможность. Они утверждают: если холодные спаи электрической цепи омываются водой примерно той же температуры, как и средняя температура проводов, то дополнительная энергия действительно может в этом случае черпаться из этой воды; если же воду исключить из этого процесса, то такого явления быть не может. По мнению этих специалистов, появление дополнительной энергии в этом случае было бы нарушением закона сохранения энергии и доказательством возможности создания вечного двигателя.
Получается очень странно и непонятно: если окружающей средой является вода, то из нее можно почерпнуть дополнительную энергию, а если воды нет, то и дополнительной энергии быть не может! Как будто, выключая воду, мы вместе с ней выключили и весь материальный мир, и нам осталось «великое ничто».