Текст книги "Жизнь и мечта"
Автор книги: Павел Ощепков
Жанры:
Биографии и мемуары
,сообщить о нарушении
Текущая страница: 15 (всего у книги 21 страниц)
Фридрих Энгельс дал достойную отповедь мракобесным теориям и взглядам. Он убедительно показал, что мир не создан по мановению божьего перста, что он не имеет начала и не будет иметь конца. Никакая «тепловая смерть» ему не грозит.
Эта работа Энгельса долгое время даже не была опубликована. Альберт Эйнштейн, которому рукописи Фридриха Энгельса под общим названием «Диалектика природы» были направлены на отзыв Центральным комитетом немецкой социал-демократической партии, признал их «не имеющими значения».
Только в 1925 г., уже после смерти великого Ленина, они впервые увидели свет у нас в СССР.
Но и после этого еще очень долго, вплоть до 1961—1962 гг., эти высказывания Энгельса почти не приводились и не цитировались в трудах по точным наукам – ссылок на них не было ни в физике, ни в теплотехнике.
219
Точные науки проходили мимо этих положений Энгельса, считая их противоречащими понятию энтропии, поколебать которое иные ученые и сейчас еще считают смертным грехом.
Даже такой прогрессивный ученый, как академик Абрам Федорович Иоффе, в своей книге «Проблемы современной физики», выпущенной в 1949 г., писал:
«Окружающий нас звездный мир так далек от равновесия, что мы можем ожидать только процессов, ведущих к росту энтропии».
Иными словами, Иоффе также говорит о неизбежности тепловой смерти. Правда, он тут же добавляет: «...но во Вселенной встречаются участки, где энтропия растет, как и участки, где она убывает. В целом энтропия то удаляется от максимального значения в одних местах, то приближается к максимуму в других». Но это не избавляет нас от грустной перспективы.
Мне не раз приходилось беседовать с Абрамом Федоровичем на эту тему. Были у нас и горячие споры. В последний раз он сказал:
– Поверьте мне, Павел Кондратьевич, в бога я не верю, я не приписываю ему сотворение мира. Я не знаю, кто создал мир, но я твердо знаю, что он идет только к постепенному выравниванию всех и всяких потенциалов, к состоянию наибольшей вероятности. Если и есть в мире где-то процессы созидания, то их можно выразить столь малой вероятностью, что она будет выражаться дробью, не более чем одна десятая и в знаменателе еще восемьдесят четыре нуля, – энтропию нельзя перешагнуть.
Некоторые другие физики высказывались на этот счет так:
– Помилуйте, да это же философия, политика. При чем тут физика?
Поскольку так часто ссылаются на энтропию, следует, пожалуй, остановиться на этом понятии несколько подробнее, хотя и не хотелось бы приводить здесь узкоспециальной терминологии.
В физике в самом общем случае под энтропией понимается мера вероятности существования данной системы. Чем больше энтропия, тем более вероятно состояние системы. Другими словами, приращение энтропии системы всегда больше или равно нулю[9].
220
Такое соотношение выражает, с одной стороны, принцип неуклонного возрастания энтропии, преобладания более вероятных событий над менее вероятными, а с другой стороны, оно является еще одной математической формулировкой второго закона термодинамики.
На основании изучения необратимых процессов в замкнутой системе Клаузиус пришел к выводу, что и во Вселенной в целом, которую, кстати сказать, никак нельзя считать замкнутой системой, энтропия стремится к максимуму, и тем «обосновал» неизбежность тепловой смерти ее. Он сделал вывод, что рано или поздно течение всех тепловых процессов прекратится и Вселенная достигнет равновесия.
Еще в прошлом веке многие ученые отрицали этот «энтропийный постулат» Клаузиуса и принцип необратимости. В их числе были европейские ученые Ю.-Р. Майер, Г.-Л.-Ф. Гельмгольц, К.-О. Мор, У.-Д.-М. Ранкин, В.-Ф.-Г. Нернст и другие. Однако реакционная философия использовала толкование Клаузиуса для того, чтобы доказать4 правильность религиозных представлений о «начале» и «конце» мира. На протяжении многих десятилетий оно преподносилось во всех учебниках как незыблемый закон природы и стало приниматься на веру.
В наше время толкование Клаузиуса уже не имеет той силы, как еще несколько лет назад. Теперь все чаще и больше раздается голосов о том, что постулат Клаузиуса не универсален. Эти голоса проникают в научную и техническую литературу, в учебники для вузов.
Антинаучность утверждения Клаузиуса о стремлении энтропии мира к максимуму заключается именно в том, что выводы о возрастании энтропии в изолированной системе он бездоказательно перенес на неизолированную и даже на безграничную систему, какой является Вселенная.
Один из основоположников статистической физики и физики кинетики австрийский ученый Л. Больцман, а затем польский физик-теоретик М. Смолан-Смолуховский и русский физик Н. Н. Пирогов, опираясь на законы статистической физики и теорию вероятностей, показали, что переход тепла от тел более нагретых к менее нагретым, сопровождающийся увеличением энтропии, является лишь наиболее вероятным в замкнутой конечной системе, а не абсолютно необходимым. В отдельных частных случаях даже в замкнутой системе энтропия может не увеличиваться, а уменьшаться. В микромире и в громадных пространствах Вселенной, к которым нельзя применять упрощенные выводы теории вероятностей, могут происходить процессы и с уменьшением энтропии.
221
Второй закон термодинамики носит, следовательно, не абсолютный, а статистический характер.
Очень важное замечание имеется в предисловии академика А. И. Берга к книге английского ученого Старффорда Вира «Кибернетика и управление производством», выпущенной Физматгизом в 1963 г. На странице 5 мы читаем: «Кибернетика, как самостоятельная наука, сформировалась именно благодаря тому, что было открыто единство процессов управления, где бы они ни происходили, ибо все они характеризуются точной количественной мерой – уменьшением энтропии».
ПРИРОДА —ВЕЛИКИЙ УЧИТЕЛЬ
Что в природе могут происходить самопроизвольные процессы, ведущие к образованию высоких температур, теперь должно быть совершенно бесспорным. По данным советских ученых В. А. Амбарцумяна, В. Г. Фесенкова, О. Ю. Шмидта и других астрономов, образование звезд происходит вечно, следовательно, и в нашу эпоху.
Теперь уже доказано, что в мире звезд и галактических туманностей непрерывно происходят новообразования. Но ведь и наша Земля также не представляет собой какое-то флуктуационное отклонение от некой мифической «линии равновесия», а является продуктом концентрации и только концентрации космической пыли, осколков и всяких других больших и малых небесных тел.
Отто Юльевич Шмидт был безусловно ;прав, когда выдвинул концентрационную теорию образования Земли.
Этот процесс концентрации происходит и сейчас.
Притягивая и воспринимая на себя или в свою атмосферу ежедневно тысячи и тысячи больших и малых метеоров, наша Земля и сейчас массой своей растет. На Солнце этот процесс концентраций идет, вероятно, еще быстрее.
Космическая пыль и метеориты, являющиеся продуктом распада некогда сконцентрировавшихся систем, сами продукт концентрации, поскольку не только все сложные тела, но и все сложные атомы представляют собой продукты образования из более простых частиц– нуклонов и атомов водорода, составляющих и заполняющих все межзвездное пространство.
222
С одной стороны, во всем обозримом межзвездном пространстве мы видим элементарные атомы водорода, состоящие из двух качественно противоположных частиц (протонов и электронов) и находящиеся в весьма рассредоточенном состоянии (их не более чем 104 атомов в 1 см3 пространства, а то и того меньше). С другой стороны, гигантские скопления этой материи в виде звезд, планет и т. д., в которых концентрация атомов доходит до 1022—1023 атомов в 1 см3 у поверхности, а в центре этих образований и того больше. В переводе на массу атомов водорода последние цифры должны быть увеличены еще на несколько порядков.
Если бы не было в природе процесса образования сложных атомов из более простых, мы не могли бы сейчас наблюдать естественный распад сложных радиоактивных элементов на более простые и тем более вызывать его искусственно. Процессы образования сложных атомов из более простых, а также обратного распада этих сложных атомов на более простые наглядно иллюстрируют собой закон концентрации и деконцентрации в действии.
Интересные данные о возникновении высоких температур на Солнце сообщил в 1962 г. директор Крымской астрофизической обсерватории член-корреспондент Академии наук СССР профессор А. Б. Северный. Ввиду большого значения этих данных для рассматриваемого нами вопроса приведу их возможно полнее. В «Правде» от 3 января 1962 г. профессор Северный писал: «Особый интерес представляет изучение спектра Солнца, дающего ценнейшую информацию об атомных процессах, химическом составе, температуре, давлении в солнечных газах. Спектр позволяет измерять солнечные магнитные поля, следить за их изменением. Так, например, большая работа по расшифровке спектров солнечных вспышек и магнитных полей, связанных с ними, проведенная в Крымской астрофизической обсерватории, привела к заключению, что вспышки – своеобразные взрывы, возникающие в результате быстрого сжатия магнитных полей, приводящего к кратковременному нагреву небольшого объема солнечного газа до очень высоких температур – около 30 миллионов градусов.
223
Другими словами, в основе явления вспышки лежит процесс превращения энергии солнечного магнитного поля в тепловую энергию. Столь быстрый нагрев приводит к возникновению рентгеновского излучения и выделению частиц большой энергии – осколков термоядерных реакций. Ускоряясь в магнитных полях Солнца, частицы достигают энергии космических лучей. Процесс сжатия одновременно приводит к выталкиванию солнечного газа с большими скоростями в космическое пространство.
Специфика космических процессов—в огромных масштабах явлений. Поэтому в лабораторных условиях подчас бывает трудно воспроизвести их. Например, чтобы осуществить процесс, сходный с солнечной вспышкой, потребовалось бы, вероятно, создать магнитное поле с напряженностью около миллиона эрстед, чего пока мы не в состоянии сделать. Однако не подлежит сомнению, что воспроизведение в условиях лаборатории некоторых космических процессов, влекущих за собой сверхмощные выделения энергии, может сыграть революционную роль в энергетике будущего».
Бели эти наблюдения и выводы найдут в дальнейшем подтверждение, то они, несомненно, сыграют крупную роль в развитии представлений о вечном круговороте энергии в природе. В сообщении профессора Северного довольно убедительно показано, что при средней температуре поверхности Солнца около 6000° С на ней наблюдаются явления, сопровождающиеся повышением температуры до многих миллионов градусов. Это ли не подтверждение возможности перехода энергии из низкопотенциального состояния в более высокопотенциальное?
СОЛНЦЕ.
КРУГОВОРОТ ЭНЕРГИИ НА ЗЕМЛЕ
Но надо заметить, что подобные процессы происходят и у нас на Земле, хотя они и не достигают столь высоких температур. Если бы кто-нибудь наблюдал за земным шаром издалека, то он, несомненно, заметил бы очень яркие вспышки, обусловленные огромной температурой грозовых разрядов. Температура Земли и ее атмосферы, как всем известно, не составляет и 300° Кельвина.
224
Температура молекул испаренной воды, составляющих грозовое облако, тоже не выше. Однако, собираясь, сосредоточиваясь, концентрируясь из рассеянного состояния, молекулы воды образуют мощные грозовые тучи, разряд которых создает температуры, измеряемые сотнями тысяч, если -не миллионами градусов.
Если продолжить эту аналогию, то примерно такой же характер мы должны приписать и нашим гидроэлектростанциям. Они являют собою яркий пример сосредоточения энергии испаренных над океанами частичек воды.
Моря и океаны, согретые Солнцем, ежегодно отдают в атмосферу в виде водяного пара около 500 000 миллиардов кубических метров воды. Это почти 1/300 часть общего объема всей воды на Земле. Обращаясь в дождь и снег, эта огромная масса оводы вновь возвращается на Землю и образует наши могучие реки. Над материками конденсируется приблизительно 1/10 часть испаренной воды.
Сама же электроэнергия, добытая на гидроэлектростанциях из этого вечного круговорота, может быть обращена в тепловой источник практически неограниченно высокой температуры. В ряде лабораторий уже созданы электрические установки, имитирующие грозовые молнии. Конечно, они еще не достигают масштабов реальных молний, но энергия рек и здесь приводит к образованию колоссальных температур. Сама природа подсказывает «нам пути, по которым следует идти для отыскания процессов, обратных рассеянию энергии. Такие процессы существуют, и когда-нибудь человек научится ими управлять.
Разве можно жалеть свои силы ради осуществления такой мечты!
Хорошо известно, что пока новая идея не завоюет масс, не станет достоянием общества, она не получит материальной силы; в лучшем случае она остается в мечтах, в фантазиях, а иногда и этого удела ей не предоставляют. Так происходит пока и с этой идеей, хотя теперь все больше и больше голосов раздается в ее защиту.
Даже на Западе, где марксистское мировоззрение не в почете у ученых буржуазного толка, раздаются голоса сомнения в справедливости всеобщности принципа энтропии.
В 1961 г. в Государственном издательстве физико-математической литературы вышла книга Дж. Пирса под названием «Электроны, волны и сообщения». В этой книге есть такие строки:
225
«В термодинамике энтропия служит мерой неупорядоченности систем. Неупорядоченность может быть интерпретирована в смысле того, насколько мало известно наблюдателю о данной системе. Некоторые физики соотносят энтропию общей теории информации с энтропией физических систем. Как только наблюдатель выявил что-нибудь в физической системе, так энтропия системы снизилась, ибо для наблюдателя система стала менее неупорядоченной. Зная больше о физической системе, можно произвести большую работу за счет систем. И обратно, эти физики утверждают, что получение информации о состоянии системы, ведущее к снижению энтропии системы, требует затраты работы, реальной физической работы. Если бы это было не так, то можно было бы построить вечный двигатель, который был придуман Джеймсом Клерком Максвеллом. Основу такого двигателя составляет некое воображаемое существо, его называют «маковелловским демоном», которое в состоянии отсортировать находящиеся в физической системе молекулы с малыми тепловыми скоростями. Общая теория информации призвана показать, что «максвелловский демон» не в состоянии обеспечить выигрыш в работе.
Читатель ие должен смущаться, если изложенное в предыдущем абзаце окажется для него неясным. Я и сам не был бы в состоянии доказать справедливость содержащихся там утверждений». (Подчеркнуто мною.—П. О.)
В нашей литературе имеются указания и более определенные, чем эти туманные рассуждения. Так, в учебнике термодинамики профессора И. П. Базарова, выпущенном в конце 1961 г. Издательством физико-математической литературы, на странице 83 сказано дословно следующее:
«Наблюдения и открытия звездных ассоциаций показывают, что материя обладает никогда не утрачиваемой способностью к концентрации энергии и превращению одних форм движения в другие. (Подчеркнуто мною.—П. О.)
Правда, это сказано пока в отношении космических процессов, автор не взял яа себя смелость перенести эти рассуждения в наши земные условия. Но ведь материя едина, она составляет неразрывное целое, и я уверен, что рано или поздно сказанное выше будет подкреплено данными и из наших земных условий.
226
Вечная материя с ее причудливыми и многообразными формами не только подтверждает факт концентрации материи, а соответственно и энергии в наших земных условиях, но и дает возможность открыть более общие законы движения материи, поскольку она сама являет собой пример развития от простого к сложному.
Существуют растения, в которых процесс концентрации вещества, а следовательно, и энергии происходит дважды. По данным профессора А. Д. Александрова, лимонное дерево, например, в своих листьях сосредоточивает питательных веществ значительно больше того количества, которое необходимо ему для формирования листьев. В листьях лимонного дерева в процессе роста образуются своего рода кладовые запасов углеводов. А когда плоды начинают созревать, они питаются этими запасами. Не будь в живой природе процессов концентрации энергии, не было бы в ней и процессов накапливания питательных веществ, обладающих присущей им свободной энергией. Любопытный факт наблюдается также и в цветке викториярегия: температура его листьев всегда несколько выше температуры окружающей среды.
Сам человек в действительности выполняет функций «максвелловского демона».
Что же касается микроорганизмов, то они даже в условиях полной темноты продолжают свою жизнедеятельность. Концентрируя (сосредоточивая) в себе рассеянную химическую энергию слабых растворов, они переводят ее в благородную энергию продуктов синтеза – в белок, спирт, жиры, энзимы и т. д. Не только в поверхностном слое воды, но и на огромных глубинах морей и океанов, под вековой толщей ледяного покрова в Арктике ни на минуту не прекращается сложная и многообразная жизнь микроорганизмов. Вся биосфера Земли находится в состоянии непрерывного изменения и обновления– в ней круговорот форм существования живой материи происходит вечно.
О самопроизвольном обновлении продуктов органического синтеза написано немало книг. Эта тема не перестает волновать и фантастов. Замечательный советский фантаст – романист Александр Беляев также посвятил ей часть своего творчества. В романе «Вечный хлеб» он очень красочно и ярко показал борьбу за обладание источником непрерывно нарождающегося хлеба.
227
Хлеб, конечно, и на полях в определенных условиях самопроизвольно произрастает в виде злаков. Однако профессор Брайер в этом романе нашел секрет самопроизвольного роста готового хлеба из рассеянных химических элементов окружающей питательной среды.
Рассказ, конечно, фантастичен, но и он не так далек от истины, если убрать из него некоторые упрощения.
Французский врач А. Бомбар поставил перед собой почти такую же задачу и даже на собственном опыте решил проверить ее. В 1952 г., после долгих и трудных приготовлений, он на маленькой парусной лодке предпринял попытку переплыть Атлантический океан без каких-либо запасов съестных продуктов. Он поставил перед собой цель доказать, что человек может существовать :в морской стихии, питаясь только тем, что дает само море.
«Море кормит миллионы людей, снабжая их рыбой и другими продуктами, – размышлял Бомбар.– А потерпевшие кораблекрушение гибнут в нем от голода и жажды. Какая злая ирония: погибать от голода в огромной миске с «живым супом» из планктона и страдать от жажды среди безбрежных просторов воды!» Так кратко, но выразительно Бомбар охарактеризовал свою цель. И он достиг ее! Он переплыл океан, питаясь только тем, что дает само море.
Разве это не «максвелловский демон», сознательно управляющий течением процессов?
Известный американский ученый, «отец» кибернетики Н. Винер так излагал свое отношение к идее «максвелловского демона»:
«Легче, конечно, отвергнуть вопрос, поставленный Максвеллом, чем ответить на него. Самое простое – отрицать возможность подобных существ или механизмов.
При строгом исследовании равновесной системы мы действительно найдем, что в равновесной системе они не могут существовать. Но если мы примем с самого начала это положение и не будем пытаться доказать его, то мы упустим прекрасный случай узнать кое-что новое об энтропии и о возможных физических, химических и биологических системах».
История развития в нашей стране кибернетики наглядно показывает, как новое направление в науке порой незаслуженно квалифицируется лженаукой.
228
В любом справочнике или энциклопедии издания первых послевоенных лет можно прочесть, что кибернетика—реакционное течение в науке. Однако не прошла и 10—15 лет, как эта «лженаука» опрокинула все утверждения своих противников и прочно вошла в жизнь. Ныне ей придается огромное значение, ибо она практически помогает решать насущные задачи организации производства и повышения производительности труда.
Продолжая свои рассуждения о возможности самонаправленного течения созидательных процессов, Винер далее пишет:
«Закон возрастания энтропии справедлив только для полностью изолированной системы и -не применим к изолированной части такой системы. Поэтому мы должны рассматривать в идее Максвелла энтропию системы газ – демон, а не энтропию одного газа. Энтропия газа есть лишь один компонент общей энтропии более широкой системы».
На вопрос, можно ли найти другие, связанные с «демоном» компоненты, входящие в эту общую энтропию, Винер отвечает: «Бесспорно, можно. Демон может действовать лишь на основании принимаемой информации, а эта последняя, как легко доказать теперь, представляет собой отрицательную энтропию».
В своих спорах с противниками взглядов на возможность осуществления процессов, ведущих к концентрации энергии, я иногда привожу пример, который кое-кому, может быть, покажется чрезмерно простым, но он очень нагляден.
Представьте себе, что, изрядно проголодавшись, вы сели за стол и перед вами поставили котлеты и яблоки.
Вы тянетесь за котлетой. Ведь не бог же и не черт руководит вашими действиями? На это мне отвечают, что руководит ими в этом случае чувство голода.
Но ведь чувство голода – только внешнее проявление глубоких биологических процессов, происходящих в организме. Если мы считаем себя не сверхъестественными существами, а частицей самой природы, то должны признать, что природа может поддерживать себя сама и не только поддерживать, но и развиваться, накапливая в нас до определенного возраста силы и энергию.
На это опять могут возразить, что пища, которую человек принимает, используется с коэффициентом полезного действия ниже 100% и поэтому здесь нет никакого процесса концентрации.
229
Но разве при этом надо исходить от котлеты? Ведь не она лезет в рот к человеку, ее берет человек, расходуя при этом энергии, безусловно, меньше, чем приобретает с котлетой. Если бы это было не так, то человека не существовало бы на свете.
Ни о каком коэффициенте полезного действия для природы говорить нельзя. Природа никогда ничего не теряет, ничего не проигрывает. В ней действует только один закон – закон сохранения вещества и энергии, и она его никогда не нарушает. Представление же о коэффициенте полезного действия, характеризующем наши двигатели, сильно расходится с тем, что в действительности происходит в природе. Думаю, что термин «коэффициент полезного действия» в принятом понимании лучше заменить термином «коэффициент преобразования».
Тогда и недоразумений на этой почве было бы, наверное, меньше.
НАУЧНАЯ ОБЩЕСТВЕННОСТЬ И ПРОБЛЕМА КОНЦЕНТРАЦИИ ЭНЕРГИИ
С тех пор как в моем сознании отчетливо определился термин «концентрация энергии», противоположный широко распространенному понятию о рассеянии энергии, прошло более 40 лет. И надо прямо сказать, что порой этот термин было небезопасно произносить вслух – многие считали его свидетельством невежества и были готовы «предать анафеме» всякого, кто его произносит.
Можно преклоняться перед смелостью тех ученых, которые именно в этот период борьбы за новую идею нашли в себе мужество выступать в ее поддержку.
В начале 50-х годов в нашей лаборатории образовалась небольшая, но инициативная группа по изучению проблемы концентрации энергии, начавшая разработку ее методологических основ. Было задумано составить записку, которая отражала бы все научно-философские основания правомерности постановки проблемы.
Деятельное участие в составлении такой записки принял тогда Виктор Иванович Рыбалко. В итоге в 1953 г. была написана работа под названием «Закон концентрации энергии – фундаментальный закон природы». В обсуждении и составлении указанной записки принимали участие и некоторые другие сотрудники лаборатории и института. Всем им моя глубокая благодарность.
230
Надо было выяснить отношение к ней научной общественности, найти первую поддержку новым идеям среди ученых. Кого было больше в то время – скептиков или оптимистов? Конечно, скептиков. Да это и неудивительно: ведь куда проще и спокойнее присоединиться к официальной точке зрения по этому вопросу, зафиксированной во всех учебниках, начиная от предназначенных для начальной школы и кончая вузовскими, и сводившейся к тому, что энергия может только рассеиваться. Что ж, тем ценнее те смелые выступления, которые были направлены на поддержку новых идей.
Как и следовало ожидать, первую и решительную поддержку мы нашли у биологов, людей, непосредственно связанных с изучением живой природы.
В отзыве на нашу работу заведующий кафедрой физической и коллоидной химии Тимирязевской сельскохозяйственной академии профессор, доктор сельскохозяйственных наук С. А. Алешин писал:
«...именно эта способность зеленых растений концентрировать лучистую энергию Солнца (через фотохимическую реакцию возбуждения хлорофилла) в виде химической энергии синтезированных углеводов позволила одному из крупнейших физиков нашего времени – Жолио-Кюри полагать, что не столько атомная энергия, сколько массовый синтез молекул, аналогичных хлорофиллу, произведет подлинный переворот в энергетике мира.
Таким образом, те положения, которые развивают авторы в рассматриваемой монографии, находятся в созвучии со взглядами, разделяемыми лучшими представителями науки».
Заведующий кафедрой дарвинизма Московского государственного университета профессор Ф. А. Дворянкин 27 июня 1953 г. высказал свою точку зрения так: «Закон концентрации энергии, который кажется столь невероятным некоторым физикам, на самом деле совсем не ужасающе смелое обобщение, а лишь констатация закона сохранения материи и ее движения, только взятого под другим углом зрения – со стороны вечности источников энергии, со стороны их неуничтожимости и несотворимости.
Во всяком случае, инициативу авторов следует поддержать, все равно, справились или нет они, по мнению специалистов, с доказательствами. Вопрос, поднимаемый авторами, не случайно встал перед наукой.
231
Из рукописи К. Э. Циолковского
Исследования в этой области, когда они завершатся открытиями, переведут всю физику на новый, качественно более высокий уровень. Это, по моему мнению, должно быть ясно даже любому непосвященному. Откроется новое поле управления интенсивными источниками энергии, может быть, 232 столь же даровое, как открытие способа идти «а парусах против ветра, которое древним тоже казалось абсурдным».
Мы нашли солидарную поддержку и среди специалистов физико-математических наук. Профессор, доктор физико-математических наук А. А. Гухман 10 мая 1953 г. писал по этому поводу в президиум Академии наук СССР следующее: «Принцип возрастания энтропии, который утверждает увеличение энтропии совокупности тел, охватываемых любым реальным процессом (и, следовательно, устанавливающий неизбежность рассеяния, «деконцентрации» энергии), отнюдь не является универсальным законом природы. Широко распространенное понимание этого принципа как некоего мирового закона, стоящего рядом с законом сохранения и превращения энергии и его дополняющего, неправильно. Для такого понимания нет никаких рациональных физических основ. Оно коренным образом противоречит материалистическому мировоззрению и в своем логическом развитии приводит к фидеизму.
Таким образом, резюмируя, мы должны сказать, что в очень острой и конкретной форме поставлен большой, чрезвычайно сложный вопрос. Нет никаких общих принципиальных оснований отклонять его. В конечном счете вопрос сводится к опытам и к конкретным результатам экспериментальных исследований».
Профессор, доктор физико-математических наук А. В. Улитовский 26 января 1953 г. писал: «Задача, поставленная в работе тов. Ощепкова, весьма актуальна, своевременна и созвучна нашей эпохе.
Решение ее нельзя откладывать на долгие годы.
По своей разработанности обширная программа экспериментов показывает высокую степень знания насущных вопросов современной электроники. Нет сомнения в том, что углубленная проработка поставленных в программе вопросов уже на ранней стадии работы приведет к практически полезным выводам до того, как будет решена проблема в целом».
Примеряю в то же самое время в своем отзыве на работу под названием «Закон концентрации энергии и новые проблемы электроники» начальник кафедры кандидат технических наук В. И. Лутовинов писал в президиум Академии наук СССР:
233
«Полагаю, что работа и предложения П. К. Ощепкова имеют государственное значение и заслуживают самого серьезного внимания и поддержки».
Профессор, доктор физико-математических наук Э. М. Рейхрудель 25 мая 1953 г. по этому же вопросу высказался так:
«...положительное решение хотя бы части поставленных вопросов может дать качественно новые направления в современной физике и технике.
Широта обсуждаемых в работе методологических и научных проблем и смелость в постановке новых вопросов– в связи с принятым стилем изложения, – возможно, приведут к тому, что не все читающие работу сразу поймут ценность заложенных в ней идей».
Заслуженный деятель науки, профессор Г. К. Хрущев 20 октября 1953 г. в своем отзыве на работу «Закон концентрации энергии – фундаментальный закон природы» писал:
«Работа читается с большим, неослабевающим интересом. В ней много смелых, но, как мне кажется, вполне обоснованных мыслей, идей. Подкупает эта работа большой искренностью и непреодолимым стремлением к поискам новых путей в науке, путей, открывающих большие перспективы законам развития природы».
Один из авторов прославленной «катюши.», дважды лауреат Государственной премии И. И. Гвай в своем отзыве на ту же работу 8 февраля 1954 г. писал в президиум Академии наук СССР:
«Плодотворное решение задач, сформулированных тов. Ощепковым и его сотрудниками, может дать нашей стране изобилие энергии, а тем самым и изобилие в материальной и культурной жизни всего общества... Надо поддержать и оказать немедленную помощь в развертывании работ в этом направлении. Эти работы даже в ходе последовательного выполнения отдельных этапов обещают обогатить нашу страну и нашу науку и технику новыми реальными ценностями».
Чтобы лично оказать проблеме творческую поддержку, Иван Исидорович Гвай в том же году перешел в нашу лабораторию на постоянную работу и трудился в ней до конца своей жизни.
Тогда мы еще не знали, что в своих стремлениях имеем такого мощного союзника, как прославленный корифей науки Константин Эдуардович Циолковский.
234
ВЕЛИКИЙ ИЗОБРЕТАТЕЛЬ И ГЕНИАЛЬНЫЙ МЫСЛИТЕЛЬ