Текст книги "Жизнь и мечта"
Автор книги: Павел Ощепков
Жанры:
Биографии и мемуары
,сообщить о нарушении
Текущая страница: 10 (всего у книги 21 страниц)
Порой даже весьма ответственные технические и научные руководители делают иронические замечания в адрес тех, чьи головы обуревают идеи: дескать, «в воздухе носится» очень много всяких идей и мыслей, и мы не успеваем их осуществлять, а тут еще и вы придумываете все новое и новое...
Может быть, они правы? Конечно, нет! Все в жизни течет и развивается – то, что сегодня ново, завтра станет старым, а новейшее будет лучше нового. Если по какому-либо конкретному техническому вопросу есть две, пять, даже десять новых идей, то надо суметь выбрать из них лучшую, а может быть, отыскать и одиннадцатую, еще более совершенную. Пределов в научном и техническом творчестве нет и быть не может.
141
Но как же все-таки в таком случае действовать молодому новатору, молодому изобретателю? Чем он должен руководствоваться? И можно ли найти такие критерии, которые позволили бы правильно оценить смысл и ценность, своего творчества и тем самым обеспечить выигрыш во времени и средствах? Я уверен, такие критерии можно найти. Приведенные выше пять принципов служат той же цели, они могут помочь некоторым нашим новаторам избежать многих трудностей на своем пути.
В предыдущих главах я рассказывал, как зародилась в нашей стране идея радиолокации и как успешно она претворялась в жизнь. Здесь я еще раз хочу остановиться на этом открытии, с тем чтобы показать, что идея радиолокации родилась у нас не в результате случайного вдохновения, не как стихийное усовершенствование, а как закономерный итог творческого применения марксистского диалектического метода к анализу задачи и возможных средств ее разрешения. История открытия техники этого рода может наглядно и убедительно проиллюстрировать практический смысл перечисленных выше пяти принципов.
Теперь уже со всей определенностью можно говорить о том, что постановка задачи об использовании электромагнитных волн для целей обнаружения самолетов была своевременной и определялась вполне конкретными потребностями.
Развитие этой проблемы было описано. Здесь можно только подчеркнуть, что новое средство обнаружения, основанное на применении электромагнитных волн, возникло как результат логического использования научной методологии в практике решения подобных задач.
Тогда еще не были конкретно сформулированы те пять принципов, о которых здесь говорится, но процесс нахождения нового решения этой задачи в точности соответствовал изложенным принципам. Сначала следовал анализ задачи с точки зрения ее своевременности и потребности в ней. И, как было показано, этот анализ однозначно приводил к тому, что задача и своевременна и необходима. Нужно было проанализировать ее с точки зрения правомерности на основе законов природы, в первую очередь законов физики. Так было определено, что электромагнитные волны могут оказаться в этом случае не только единственно возможными, но и наиболее эффективными. Дальше была проведена проверка возможностей технического осуществления на современном уровне развития науки и техники и выбран головной, или отправной, эксперимент. Эксперимент подтвердил основную идею и тем дал возможность развивать работу.
142
Теперь мы знаем, что идея радиолокации не только решила возложенную на нее задачу, но и оплодотворила многие другие разделы современной физики, радиоэлектроники и радиотехники.
Конечно, одним примером нельзя исчерпать многообразие творчества. Жизнь гораздо богаче любых, даже самых совершенных схем. И мне хочется привести еще один пример того, как продуманный анализ задачи привел к открытию принципиально нового метода в области производства тонких и сверхтонких металлических нитей. Я имею в виду микропроволоку, метод получения которой связан с именем профессора Алексея Васильевича Улитовского.
Конечно, и в этом случае можно было бы пойти к цели по пути дальнейшего усовершенствования обычных способов протяжки прутков в проволоку через последовательно уменьшающиеся отверстия – фильеры. Этот процесс хорошо известен, и он тоже дает возможность получать все более тонкие проволоки. За последние годы по этому процессу также получены неплохие результаты.
Но, спрашивается, где предел возможностей в этой области? Можно ли методом волочения получить проволоку тоньше человеческого волоса? Можно ли получить этим методом проволоку из хрупких материалов, например из чугуна, висмута, сурьмы и т. п.?
Само собой разумеется, что с уменьшением требуемого диаметра проволоки возникает проблема получения микронных отверстий в твердых материалах, из которых делаются волока (фильеры). А это уже само по себе представляет «твердый орешек». С уменьшением диаметра проволоки уменьшается и усилие, с которым можно ее протягивать. А это значит, что и деформация за одну операцию может быть допущена только минимальная.
Спрашивается, сколько же операций протяжки надо сделать, чтобы убавить диаметр проволоки, например, с 50 микрон до 10 микрон? Оказывается, сотни и даже тысячи операций. А если надо получить еще более тонкие проволоки (техника предъявляет такие требования)? Тут наступает уже полнейший «пас». Старая техника становится бессильной.
143
И вот анализ потребности в тонких и сверхтонких проволоках в связи с развитием новых областей техники (радиотехника, электроника, автоматика) и анализ возможностей решения этой задачи привел А. В. Улитовекого к мысли о получении проволок диаметром даже до долей микрона непосредственно из жидкого металла, минуя все способы протяжки и волочения.
Ныне это уже не предположение, не догадка, а реальный факт, освоенный технологический процесс, автор которого в 1960 г. посмертно удостоен Ленинской премии. Так «непреодолимые» трудности были преодолены в короткое время и очень красивым способом.
Об этой технологии подробно сообщала наша печать, и здесь нет необходимости повторяться. К сожалению, сейчас нет среди нас Алексея Васильевича Улитовекого, а он многое мог бы рассказать о своем методе творчества. Мне приходилось с ним работать, и я знаю, что при подходе к любой задаче он не ограничивался первым впечатлением, не рассматривал ее изолированно от дальнейших путей развития техники, а стремился прежде всего вскрыть внутренние противоречия и уже от них отправлялся дальше. Это-то и давало ему возможность находить эффективные и долго живущие решения. Неоднократные беседы с ним убедили меня в том, что основная схема его творчества хорошо вписывается в указанные выше пять принципов.
Более подробно о пятом принципе можно прочитать в следующей главе, где даны примеры критического осмысливания результатов головных экспериментов.
Любой эксперимент, любой новый факт, добытый в результате эксперимента, должен быть правильно оценен и проанализирован с точки зрения соответствия его поставленной цели и на предмет нахождения взаимосвязи его с другими процессами, возможными при решении данной задачи. При этом любой новый экспериментальный материал, даже явно противоречащий сложившимся «каноническим» представлениям, нужно не отбрасывать, а внимательно и всесторонне изучать. Такие материалы часто служат источником новых открытий.
Творческий путь решения задачи обязательно должен начинаться с анализа (пункт первый пяти принципов) и заканчиваться вновь анализом (их пятый пункт).
144
ОТ ПРОСТОГО К СЛОЖНОМУ
Понятие анализа очень емкое, и его нельзя облечь в одну какую-либо рекомендательную фразу. Но если говорить о самом главном, то в понятие анализа входит прежде всего нахождение взаимосвязей между процессами и компонентами, составляющими сущность изучаемого вопроса. Без точного знания этих взаимосвязей легко впасть в ошибку даже при строгом математическом расчете.
Попробуем привести пример. В этой главе мы уже говорили о первом пароходе и его создателе Фултоне.
Вернемся еще раз к теме парохода, по уже применительно к нашему времени.
В течение столетий русский человек называет Волгу и кормилицей, и красавицей, и матушкой-рекой.
Сколько песен в народе сложено про эту величественную реку!
Но всё ли мы знаем о ней, не таит ли она еще каких-либо возможностей? Оказывается, да, таит.
Для наглядности будем пользоваться только арифметикой– ее ведь никто еще не отменял. Пример простой, но, как мне кажется, он имеет и более широкий смысл.
Расстояние от Горького до Астрахани по Волге составляет около 2 тыс. км. Пусть на этом участке реки движется пароход, обладающий скоростью 15 км/ч.
Собственное течение реки примем за 5 км/ч. Тогда истинная скорость парохода, идущего вниз по течению реки, составит 20 км/ч (15+5), а плывущего в обратном направлении– 10 км/ч (15—5). Следовательно, средняя скорость парохода, идущего в ту и другую сторону, составит 15 км/ч (20+10) :2. Исходя из этого значения средней скорости полное время нахождения парохода в пути от Горького до Астрахани и обратное должно составить 266 ч (4000:15). Однако в действительности это не так. Вниз по течению пароход пройдет 100 ч (2000:20), а вверх по течению —200 ч (2000:10).
Следовательно, полное реальное время нахождения парохода в пути будет 300 ч, а не 266 ч, как это было вычислено исходя из среднего значения скорости. Если бы мы взяли собственную скорость парохода равной 5 км/ч, то пришли бы к еще большему несоответствию. Средняя скорость движения парохода в этом случае была бы равна 5 км/ч (10+0) :2 и, следовательно, полное время нахождения парохода в пути туда и обратно исходя из этой средней скорости определилось бы в 800 ч (4000:5).
145
В действительности же оно будет равно бесконечности, так как пароход в этом случае никогда не сможет вернуться в Горький – его скорость вверх по течению будет равна нулю.
Отсюда вывод – пользоваться при расчетах средними значениями «величин не всегда безопасно. Такие расчеты без достаточного анализа их могут привести и к просчетам. Это замечание справедливо не только по отношению к пароходу на реке, «о и по отношению к электрону в соответствующих, конечно, для него условиях.
Другая сторона этого парадокса состоит в том, что в связи с великими стройками на Волге каскада мощных гидроэлектростанций кажущийся выигрыш во времени, определяемый из средних значений скорости, из нереального превращается в реальный. В самом деле.
Вполне можно представить, что со временем Волга обратится в одно сплошное длинное море, разделенное лишь шлюзами, и тогда (из-за колоссального разлива по ширине) течение ее будет настолько незначительным, что практически оно не будет влиять на скорость движения судов.
Скорость любого движущегося судна по Волге-морю в этом случае практически будет одна и та же как при движении вверх, так и при движении вниз.
Следовательно, средняя скорость парохода всегда будет равна истинной скорости, и поэтому приведенный выше выигрыш во времени, полученный из расчета средних скоростей, станет реальным.
Так у Волги обнаруживается еще один секрет. Это будет особенно важно для грузового транспорта, скорости которого не так велики по отношению к скорости естественного течения реки.
С другой стороны, при анализе задачи или результатов какого-либо эксперимента многие избегают сравнений и аналогий, хотя бы и очень наглядных, руководствуясь главным образом тем, что аналогии не являются доказательством. Но вместе с тем нельзя отрицать роль аналогий в методологии познания. Очень многое в науке и технике было открыто именно на основе изучения аналогичных процессов в смежных областях знаний. Мы уже говорили о том, что перенесение некоторых фундаментальных принципов из области радиотехники в область светоэлектроники позволило открыть в последней новые явления, аналогичные по своему содержанию радиотехническим принципам, но имеющие большое самостоятельное значение.
146
Траектории движения единичного заряда вокруг заряженного центра, снятые с помощью траектографа
Рамки и характер этой книга не позволяют делать широких обобщений по этому вопросу. Однако мне хочется хотя бы на одном примере показать, какое плодотворное значение имеют аналогии при анализе научно-технических вопросов.
147
Из школьных учебников, да и из учебников для вузов мы усвоили, что в основе устройства атома лежит ядро и вращающиеся вокруг него электроны. Из более поздних воззрений на этот счет можно сослаться на представление об электронном облаке вокруг ядра.
Самый простой атом – это атом водорода. Одни представляют себе устройство атома в виде планетарной системы, аналогичной звездным ассоциациям с их планетами, другие считают, что безизлучательное движение электронов на орбитах связано с особыми энергетическими уровнями и т. д.
Масштабы космических систем слишком велики, а масштабы атомных образований слишком малы для того, чтобы в земных условиях, имеющимися у нас средствами можно было построить соответствующие модели для наглядного изучения. Большинство читателей категорически скажет, что подобных моделей построить нельзя. Я тоже долгое (время считал, что это неосуществимо. Однако более детальный анализ этих, казалось бы, совершенно противоположных систем привел меня к убеждению, что модельное представление их все же возможно. На первый взгляд кажется, что трудности, связанные с чрезвычайно большими и чрезвычайно малыми размерами, непреодолимы. Но посмотрим, так ли это.
Движение любого тела (от планеты до электрона) по криволинейной траектории может происходить, как известно, только при условии, что это тело обладает собственной кинетической энергией и что на него непрерывно действует сила, направление которой в общем случае не совпадает с направлением движения тела.
При круговом или эллиптическом движении такой силой будет центростремительная сила, определяемая напряженностью силового поля в данной точке пространства.
Ниже1 написано выражение для кинетической энергии движущегося электрона (I). Правая часть этого уравнения выражена в электрон-вольтах. Связь между радиусом кривизны в данной точке и центростремительной силой дается следующим уравнением (II), правая часть которого также выражена в электрон-вольтах (на единицу длины, конечно).
148
Из этих двух уравнений легко определяется радиус кривизны траектории движения тела. Из уравнения (III) видно, что радиус этот не зависит от абсолютных величин U и Еп, а только от их отношения. Следовательно, модель для иллюстрации движения электрона вокруг ядра может быть построена в любом масштабе. Этот вывод носит принципиальный характер, так как он дает возможность построить с помощью электронно-механических систем модель планетарной системы атома.
На приведенных выше двух рисунках представлены траектории движения единичного заряда вокруг заряженного центра, снятые с помощью специального самодвижущегося аппарата (траектографа) с автоматическим рулевым управлением и автоматическим вычерчиванием траектории.
Из этих рисунков вполне можно видеть, что такой системой имитируется не только эллиптическое движение электрона вокруг ядра, но и его процессия. Если аппарат оставить на длительное автоматическое вычерчивание траекторий, то такими траекториями будет занята определенная зона, в которой электрон никогда не удалится дальше предельного радиуса и не приблизится к ядру ближе минимального расстояния. Плотность почернения этой диаграммы одновременно будет иллюстрировать и вероятность пребывания частицы в данной зоне. С точки зрения наших обычных представлений о малом времени (вплоть до микросекунд и даже наносекунд) невозможно, конечно, проследить единичную траекторию электрона, так как теоретическое время обращения электрона на одном витке составляет около 10-16 секунды, и, следовательно, за одну микросекунду произойдет более миллиарда оборотов.
Само собой разумеется, что дискретная структура «облака» в этом случае не будет выступать, она будет завуалирована множеством из множества траекторий.
Приведенную картину не следует, конечно, рассматривать как доказательство планетарной системы атомов, она описана здесь только с единственной целью – для иллюстрации диапазона аналогий. Вместе с тем она, может быть, натолкнет кого-нибудь на поиски механизма актов поглощения и актов излучения квантов света орбитальными электронами. Эти вопросы все еще остаются белыми пятнами в науке, так же как остается еще не раскрытой физическая сущность закона Ома, несмотря на его относительную древность.
149
Подвергая критическому омысливанию и анализу понятия, порой даже общепринятые в науке, мы, несомненно, будем обогащаться новыми идеями. Еще выдающийся представитель XVIII столетия, немецкий писатель, публицист и ученый Г.-К. Лихтенберг говорил, что «общепризнанные мнения и то, что каждый считает делом давно решенным, чаще всего заслуживают исследования». Исследование же, оторванное от анализа взаимосвязей, неизбежно ведет к метафизичности.
ЕГО ВЕЛИЧЕСТВО ФАКТ
Особенностью живого ума является то, что ему нужно лишь немного увидеть и услышать для того, чтобы он мог потом долго размышлять и многое понять,
Джордано Бруно
«Как ни совершенно крыло птицы, оно никогда не смогло бы «поднять ее ввысь, не опираясь на воздух. Факты – это воздух ученого. Без них он никогда не может взлететь».
Так писал И. П. Павлов в своем известном обращении к молодежи.
В любой сфере деятельности человека нет ничего более достоверного и убедительного, чем факты. В нашей жизни они всегда считаются самыми непреложными, неоспоримыми доводами в пользу высказанного предположения.
По мнению большинства, факт наиболее полно подтверждает любое состояние предметов, их взаимное отношение друг к другу, их развитие. Ссылками на факты мы всегда стремимся закончить деловой разговор. Вот почему мы так часто употребляем такие выражения, как «факты говорят сами за себя», «факты решают все», «давайте факты» и т. п. Как будто факты сами по себе действительно могут что-то говорить или решать. Факты нередко принимаются как абсолютная истина, как закон. Это настолько укоренилось в нашем сознании, что порой против такой аргументации затрудняешься что-либо возразить.
151
В науке такое слепое преклонение перед фактами часто приводит к большим недоразумениям, к замедлению в развитии целых отраслей знания, в особенности в некоторых разделах точных наук, в технике, в естествознании.
И как бы это ни показалось парадоксальным, но не осмысленный до конца факт часто ведет к ложному истолкованию его.
ОТ КОПЕРНИКА ДО ГАЛИЛЕЯ
В течение многих тысячелетий люди видели, что Солнце всходит и заходит. Они видели, да и сейчас видят, что Земля стоит на месте, а Солнце и все другие небесные светила движутся по небосводу. И для миллиардов людей на протяжении тысячелетий это было действительно «непреложным фактом». Ведь никто не видел, не слышал и не ощущал, что движется Земля, зато все ежедневно видели собственными глазами, что Солнце движется. Таков был «факт», всеми наблюдаемый. В течение миллионов лет никто не сомневался в его непреложности. И только совсем недавно (конечно, в масштабах всей истории существования и развития человечества) нашлись смелые люди – Николай Коперник (1473—1543), Джордано Бруно (1548—1600), Галилео Галилей (1564—1642), которые иначе, чем все остальное человечество, осмыслили всем известные «факты» и пришли к заключению, что не Солнце движется по небосводу, а Земля вращается вокруг своей оси и вместе с другими планетами обращается вокруг Солнца.
Это было дерзкое по тем временам умозаключение.
Оно коренным образом расходилось с наблюдаемым фактом.
Великий польский астроном Николай Коперник в своем труде «Об обращениях небесных сфер» первым объяснил наблюдаемые движения небесных светил вращением Земли вокруг оси и обращением планет (в том числе и Земли) вокруг Солнца. Это учение делало переворот во всем естествознании того времени. Это был отказ от общепринятого учения о неподвижности Земли.
152
Выводы Коперника были столь смелыми и столь непохожими на то, что всеми наблюдалось и всеми проповедовалось (особенно церковью), что он сам побоялся опубликовать свой труд. Плоды почти тридцати летнего труда увидели свет только после смерти автора, его опубликовали друзья Коперника. Однако при этом не обошлось без курьеза. Зная, какой отголосок может вызвать опубликование трудов Коперника, особенно среди церковников, издатели предпослали книге предисловие, в котором указали, что на вычисления Коперника надо смотреть не как на серьезный научный труд, объясняющий небесные явления, а как на занятные упражнения ума. И только в этом смысле они, издатели, сочли возможным опубликовать его труд.
Ровно через пять лет после смерти Коперника родился мученик науки Джордано Бруно. За проповедь нового учения, за смелое развитие коперниковой системы взглядов о строении солнечной системы он был сожжен инквизицией на костре в Риме в 1600 г. Бруно был одним из великих итальянских мыслителей. Он был материалистом и атеистом, боровшимся против схоластики и католицизма. Он мог бы еще многое сделать, если бы не оборвалась его жизнь. Незадолго до смерти, в 1584 г., он написал два сочинения: «О бесконечности, Вселенной и мирах» и «О причине, начале и едином», за которые культурное человечество будет чтить его вечно.
Гонимый церковью, Бруно всю свою жизнь провел в скитаниях. Развивая учение Коперника, он убежденно и страстно проповедовал бесконечность Вселенной и бесчисленность миров. Больше всего он ненавидел догматиков, которых саркастически называл «созвездием педантов».
Жизнь замечательного, разностороннего и бесстрашного ученого была трагически оборвана, но свет его разума будет всегда сиять человечеству.
Другой итальянский ученый, Галилео Галилей – астроном, физик и математик, также чуть было не поплатился жизнью за развитие гелиоцентрических («гелио» – солнце по-гречески) взглядов Коперника.
Галилей многое сделал для науки: он открыл закон инерции, изучал падение тел, движение маятника, первым в истории науки наблюдал с помощью изготовленной им самим зрительной трубы (телескопа) небесные светила.
153
Он обнаружил горы на Луне, открыл четыре спутника Юпитера, фазы Венеры, звездное строение Млечного Пути, пятна на Солнце я многое другое. В своей книге «Диалог о двух главнейших системах мира – Птолемеевой и Коперниковой» A632 г.) он уточнил и блестяще развил учение Коперника о движении Земли. А в конце концов, несмотря на все содеянное для человечества, он был в 1633 г. осужден римским католическим судом за вольнодумство и инакомыслие.
Под угрозой смерти и страшной кары, которая падет на его семью, Галилео Галилей отказался на суде от своего учения. Однако, выходя из зала суда, он бросил слова, ставшие крылатыми: «А все-таки она вертится!»
Тем самым он дал понять, что сила, а не разум заставила его отказаться от своих убеждений. Разум его всегда оставался на стороне прогрессивного учения. Он знал, что защищает правое дело, и это придавало ему сил.
Вот вам и факты – всеми наблюдаемые и всеми подтверждаемые. Сколько жертв пришлось принести человечеству, чтобы доказать ошибочность подобных «фактов»!
При этом надо помнить, что у тех, кто первым выступил против общепризнанных взглядов на строение солнечной системы (Николай Коперник, Джордано Бруно), не было никаких других фактов, кроме тех, что наблюдались всеми. Как и все, они видели ту же картину небесных светил, какую до них видели все люди. Но обобщение и анализ результатов наблюдений позволили им прийти к совершенно иным, противоположным взглядам.
Не будь этих великих мучеников науки, может быть, еще на столетие задержалось бы то гигантское развитие естествознания в области астрономии, которое мы сейчас наблюдаем.
Только глубокий анализ, казалось бы, бесспорных фактов, только нахождение истинной взаимосвязи между ними позволило первооткрывателям правильно оценить эти факты и найти новое им объяснение. Это было величайшее, дерзновенное по тому времени открытие.
Не менее поразительно и то открытие людей глубокой древности, которое позволило двигаться силой ветра против ветра. Подумать только, какой переворот был совершен этим, если даже сделан он был не сознательно, случайно.
154
И на заре человечества, как сейчас, ветер гнал волны на воде в ту сторону, куда дует. Все видели также, что случайно упавшее в воду дерево или любой другой плавучий предмет под влиянием ветра движется по направлению ветра. Заметив это, человек научился пользоваться силой ветра для того, чтобы переправляться на бревнах, плотах или первобытных пирогах с одного острова на другой. На какой-то ступени своего развития он научился (пользоваться и парусом, увеличивающим скорость движения плавучих средств. Но сколько тысячелетий прошло, прежде чем человек дошел до сознания, что с помощью ветра можно двигаться напротив ветра.
Любой рыбак или спортсмен теперь пользуется этим открытием, даже не задумываясь о том, что когда-то оно казалось абсурдным.
А жаль, очень жаль, что мы редко об этом задумываемся. Возможность двигаться с помощью силы против той же силы таит в себе глубокий смысл. В объяснении этого факта все еще нет единого мнения. Большинство сходится на том, что силой можно воспользоваться для движения против этой же силы только в том случае, когда мы имеем дело с ветром и водной поверхностью.
А разве движение воды относительно дна реки не представляет собой тот же случай взаимодействия двух сред? А движение света относительно гравитационного поля? Все это примеры одного и того же порядка.
ОТ ГАЛЬВАНИ ДО ВОЛЬТА
Продолжая разговор о различном отношении людей (прежде всего ученых) к неоспоримым, казалось бы, фактам, хочется остановиться еще на нескольких примерах. Вспомним открытие первых искусственных источников электрического тока. Электричество пронизывает теперь всю нашу жизнь, а между тем не все знают, что первые опыты с источниками электрического тока были истолкованы ложно.
Итальянский -врач Луиджи Гальвани (1737—1798) первым наблюдал появление электричества при прикосновении разнородных металлов к телу лягушки. В 1791 г. он опубликовал работу по электрофизиологии, в которой подробно описал свои опыты. Сначала он наблюдал, как при разрядах от электростатической (электрофарной) машины происходит сокращение мышц лягушки.
155
Потом он решил проверить, не производят ли такое же действие естественные электрические разряды – молнии. С этой целью он при помощи медных крючков подвесил cвежепрепарировавные лапы лягушки на железную ограду балкона. Оказалось, что судорожные сокращения мускулов происходят и без молнии, т. е. без искры, стоит лишь лапе лягушки прикоснуться к железной ограде. Этими наблюдениями врач Гальвани сделал величайшее открытие в физике того времени, но ни он сам, ни его современники-физики не смогли правильно нанять и объяснить наблюдаемые ими факты.
В результате своих опытов Гальвани пришел к ложному выводу, что источникам электричества в этом случае является живая ткань лягушки. На этом основании он создал теорию «животного электричества».
Теперь-то мы знаем, что в биологических тканях действительно протекают электрические процессы. Но в упомянутых опытах Гальвани речь шла совсем не об этом, не о тонких электрических процессах, протекающих в живой ткани, а о возникновении электричества при простом прикосновении разнородными металлами к препарированной (мертвой) лягушке.
Созданная Гальвани теория «животного электричества» вскоре стала общепризнанной и господствовала в науке длительное время, до тех пор, пока другой итальянский ученый (проживавший, правда, больше во Франции) не повторил эти опыты и не пришел на основании их к совершенно другому выводу. Этим ученым был Александр Вольта (1745—1827).
В своих мемуарах Вольта пишет, что он повторил опыты Гальвани и получил тот же самый результат, но пришел к заключению, что электричество содержится не в живой ткани, а в тех разнородных металлах, которыми Гальвани прикасался к препарированной лягушке.
Вольта установил, что электродами в опытах Гальвани служили медь и железо, а мышцы лягушки (вернее , их лимфа) [7] служили лишь промежуточной средой – электролитом. Поняв это, Вольта сумел сделать первый искусственный источник электрического тока – вольтов столб, собранный из последовательно соединенных одинаковых элементов, из которых каждый состоял из чередующихся медных и цинковых кружочков, проложенных суконными прокладками, смоченными в растворе кислоты или щелочи.
156
В память о заслугах того, кто первым наблюдал появление электрического тока между двумя металлами, соединенными жидкостью, Вольта назвал свои элементы гальваническими. Мы и сейчас пользуемся этим названием.
Изучая историю развития учения об электричестве, можно убедиться, что новая трактовка опытов Гальвани не без препятствий сменила старую, уже признанную.
Сам Гальвани резко выступал против «металлической», как он называл, теории электричества, созданной Вольта. Дело доходило даже до взаимных оскорблений и анонимных писем с угрозами. Такова была сила инерции уже принятого однажды понятия.
Победил, как мы знаем, Вольта. Он одержал победу потому, что его теория была более прогрессивной, хотя и не совсем точной с точки зрения современных представлений.
Теория «животного электричества» Гальвани не привела, как известно, ни к каким практическим результатам, а теория Вольта, позволила создать искусственные источники электрического тока и тем самым помогла сделать огромный шаг вперед по пути изучения электрических процессов. Теперь можно без преувеличения сказать, что, не будь в свое время созданы гальванические элементы, мы не имели бы столь развитой электротехники.
Во всей этой истории поучительно то, что два ученых, и не рядовых, а оставивших глубокий след своей деятельности и в других областях исследований, произвели один и тот же опыт, получили одни и те же результаты (т. е. один и тот же факт), но выводы из этих опытов они сделали совершенно различные. Теория первого была бесплодной и, как мы знаем теперь, неправильной, а теория второго стояла ближе к истине и потому позволила ее автору прийти к величайшему открытию своего времени. Если иметь в виду все последующие работы по электричеству, включая опыты Эрстеда и Фарадея, то легко прийти к выводу, что в первой гальванической батарее – в вольтовом столбе – уже были заложены основы современных электростанций.
157
СМЕЛЫЕ ОПЫТЫ А. С. ПОПОВА
Единственный ли это случай, когда ученые, исследователи приходили к ложным выводам на основе собственных опытов? Нет, не единственный. Таких примеров много.
Вот случай, который ближе всего к нашей современности. Выдающийся немецкий физик Генрих Герц, изучая творческое наследие великого Фарадея и Максвелла, пришел к мысли о возможности экспериментально подтвердить существование электромагнитных волн, природа которых вытекала из общей теории распространения электромагнитного поля, созданной Максвеллом в 1863 г.