355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Павел Ощепков » Жизнь и мечта » Текст книги (страница 12)
Жизнь и мечта
  • Текст добавлен: 19 марта 2017, 03:30

Текст книги "Жизнь и мечта"


Автор книги: Павел Ощепков



сообщить о нарушении

Текущая страница: 12 (всего у книги 21 страниц)

Да простят мне чрезмерно связанные «фактами» ученые: даже «всемогущий бог» и тот, вероятно, не смог бы избавиться от материальности мира, а они берут на себя сей непосильный труд. И это не в средние века, а в наше просвещенное время!

Значит, снова выходит, что факт существует, а выводы из него делаются совершенно различные, вплоть до отрицания самого факта.

172

Люди, умудренные опытом, такую возможность всегда хорошо себе представляли. Великий физиолог Иван Петрович Павлов так учил нашу молодежь: «Изучая, экспериментируя, наблюдая, старайтесь не оставаться у поверхности фактов, не будьте в плену у фактов. Не превращайтесь в архивариусов фактов. Пытайтесь проникнуть в тайну их возникновения, настойчиво ищите законы, ими управляющие».

Подобный же настойчивый совет мы находим у Дмитрия Ивановича Менделеева. Это очень верный совет, и его непременно должен помнить каждый исследователь, каждый изобретатель. Иначе можно оказаться в смешном положении перед историей и наделать глупостей в своей практической работе.

У многих может возникнуть, конечно, вопрос: почему же даже у людей сведущих один и тот же факт, одно и то же событие вызывает различные толкования? В чем тут дело? Ведь все наблюдают одно и то же событие, один и тот же факт, иногда, казалось бы, бесспорный.

Откуда же берутся разногласия?

Разногласия проистекают из того, что любое наблюдаемое явление природы, любое событие в реальном мире происходит вне зависимости от нашего сознания, от того, наблюдаем мы его или нет. А вот отражение этих фактов и событий в нашем сознании происходит уже на фоне наших конкретных знаний о других фактах и событиях. И одни, наблюдая какой-либо реальный факт, довольствуются лишь простой констатацией его, а у других он вызывает вереницы мыслей и побуждает их к творческому анализу, к нахождению взаимосвязи наблюдаемого факта с другими явлениями природы, с другими событиями. При этом анализирующая мысль идет как в сторону известных, так и в сторону предполагаемых, еще не открытых процессов,, так как ум человеческий по природе своей способен и к синтезу, и к анализу разрозненных сведений. А это значит, что многое зависит не только от простой суммы знаний наблюдателя, не только от его подготовленности, но и в огромной степени от его мировоззрения, от системы его взглядов, от методологии.

По мере развития теории и практики меняется и наше отношение к фактам.

173

Все хорошо знают, что плотность лучистой энергии от любого источника излучения, включая лазер, с увеличением расстояния уменьшается обратно пропорционально квадрату этого расстояния. С детства мы видели и видим, что лучи света всегда только расходятся и никогда сами по себе не сходятся, т. е. не концентрируются. Устройство фокусирующих линз и объективов мы здесь не рассматриваем, так как лучи за точкой фокуса вновь расходятся в принципе так же, как они расходились и до линзы или объектива.

А если учесть, что любое светящееся тело не является геометрической точкой, а всегда имеет реальные размеры, то уже только по одной этой причине никакая линза, никакой объектив не могут создать даже параллельного луча. Исходящие из разных точек светящегося тела лучи будут падать на линзу под разными углами, под разными же углами будут и расходиться по выходе из нее. Это хорошо знакомо всем еще со школьной скамьи.

Однако в самое последнее время работами советского ученого Г. А. Аскарьяна, американца Ч. Таунса и других было теоретически доказано, а теперь подтверждено и экспериментально, что с увеличением амплитуды колебаний когерентного луча света (лазера) происходит настолько сильное взаимодействие последнего с самим веществом, в котором он распространяется, что под влиянием мощности луча многие константы вещества перестают быть константами в принятом понимании этого слова. Под влиянием большого значения вектора электрического напряжения этих колебаний такие общепризнанные константы вещества, как диэлектрическая постоянная, коэффициент преломления, коэффициент поглощения и др., начинают менять свои номиналы на пути распространения луча. В результате этого внутри вещества образуется сужающийся канал, как бы волновод с физическими постоянными, резко отличными от основной массы тела. Такое взаимодействие луча с веществом приводит к тому, что лучи света, вместо того чтобы расходиться по законам общей геометрической оптики, начинают сами по себе сходиться, т. е. самофокусироваться.

Диаметр такого самосконцентрированного пучка лучей в пределе может достигать одной-двух длин волн, и в таком нитевидном виде свет будет продолжать распространяться внутри среды. Плотность световой энергии в этом случае может достигать огромных значений.

174

Явление это представляет большой интерес и с научной, и с практической стороны. Теперь его внимательно изучают в соответствующих учреждениях Академии наук СССР.

Вот вам еще один пример того, как привычные факты, привычные представления (даже о константах!) под влиянием новых экспериментальных результатов сменяются, прямо скажем, на противоположные. Этого надо было ожидать, так как диалектическое представление о вечности движения материи неизбежно приводит к выводу, что и константы в этом всеобщем динамизме не исключение.

Привычное понятие о коэффициенте преломления света как о неизменной константе в этом случае остается таким только до тех пор, пока влияние света на физические свойства самой среды, в которой он распространяется, незначительно и потому незаметно. Килограмм веса также ведь не остается постоянным на различных широтах. Все зависит от конкретных условий взаимодействия различных физических процессов. Любой факт, оторванный от этих условий, может привести к неправильному пониманию явления.

Перечень необычных явлений в привычном нам мире можно продолжать и продолжать. Каждый из нас может, подумав, вспомнить что-то подобное.

Не так давно научный сотрудник Института металлургии имени А. А. Байкова Академии наук СССР

Константин Михайлович Климов с группой ученых провел серию весьма интересных и многообещающих опытов.

Вот их суть.

В современной технике, как известно, особо важную роль играют тугоплавкие и особо тугоплавкие металлы и сплавы. Эти металлы обладают очень высокой прочностью, кристалличностью и весьма трудно поддаются механической обработке, в частности прокатке или волочению. Чтобы прокатать, например, вольфрам до тонкой фольги, требуется провести не десятки, а сотни операций. И даже в этом случае получить фольгу нужной толщины из них нельзя. А между тем нужда в изделиях из этих металлов в современной технике очень велика.

175

Что же сделал Климов, чтобы преодолеть это затруднение? Он изолировал друг от друга валки, которыми прокатывают металл, и соединил их с низковольтным источником электрического тока соответствующей мощности. Прокатываемый металл, попадая в просвет между валками, замыкает их, и через него проходит ток определенной величины. Вследствие этого металл мгновенно приобретает в месте соприкосновения с валками особо высокую пластичность и необычно легко прокатывается за одну операцию до заданной, сколь угодно малой толщины.

Убедительный пример того, как привычные, веками проверенные приемы прокатки металлов могут быть в корне изменены. Такой способ прокатки дает большой экономический и производственный эффект.

А если распространить этот метод на все прокатное и волочильное производство? Думается, что двух мнений здесь быть не может.

ВСТУПАЕМ В НОВЫЙ, НЕВИДИМЫЙ МИР

Созерцание без мышления утомляет. Когда у меня нет все новых и новых идей для обработки, я точно больной.

И.В. Гете

Природа, создавая человека, открыла перед ним очень узенькое окно, через которое он может воспринимать красоту окружающего его мира. Чувствительность человеческого глаза к свету лежит в весьма ограниченном участке спектра электромагнитного излучения. Наш глаз может воспринимать только те волны, длина которых находится в пределах от 0,4 до 0,8 микрона. Все волны короче и длиннее – а их очень много – недоступны для человеческого глаза, они невидимы. Поэтому нам представляются прозрачными далеко не все предметы и среды окружающего мира. Для нас прозрачно только то, что хорошо пропускает сквозь себя электромагнитные излучения указанного выше диапазона волн. Все другие тела и среды воспринимаются нашим глазом как непрозрачные.

177

Однако прозрачных в обычном понимании тел и сред в природе очень мало, их буквально можно пересчитать по пальцам. Это – чистая вода, воздух да некоторые естественные кристаллы (кварц, каменная соль, флюорит и т. п.). Даже если к этому списку естественных прозрачных тел и сред добавить все искусственные (такие, как стекло, светлые пластмассы, светлые жидкости и вакуум), то и в этом случае прозрачных объектов вокруг нас будет ничтожно мало по сравнению с необозримым количеством непрозрачных.

Весь окружающий нас мир в основном непрозрачен.

Вся флора и фауна, недра земли и их ископаемые недоступны нашему глазу для внутреннего наблюдения. Мы можем созерцать их только с поверхности.

С помощью глаз мы получаем наибольшее количество сведений об окружающей нас действительности; эти сведения мы считаем наиболее достоверными. Известно изречение, что лучше один раз увидеть, чем сто раз услышать. И все же человеческий глаз очень далек от совершенства. Он имеет ограничения не только– по спектральной чувствительности, но и по ряду других свойств: он не видит, например, очень малых объектов наблюдения (и мы вынуждены пользоваться микроскопом); он не различает предметов, удаленных на большие расстояния (и это заставляет нас пользоваться телескопами), и т. д.

Словом, как и все другие органы чувств, глаз имеет свои жесткие ограничения, хотя устройство его изумительно тонко и сложно. Достаточно напомнить, что сетчатка глаза человека состоит из 140 миллионов ячеек, способных действовать безотказно в продолжение многих лет.

Человеческая мысль давно уже направлена на то, чтобы расширить пределы применимости человеческого глаза, дать возможность увидеть то, что недоступно ему по природным свойствам. И в этом направлении сделано немало.

Создание микроскопа в 1671 г. голландским мастером А. Левенгуком явилось первым крупным событием на этом пути. И пожалуй, нет сейчас ни одной научной или прикладной области знания (от медицины до металлургии и от биологии до агротехники), для развития которых микроскопы, или, как их называл М. В. Ломоносов, мелкоскопы, не сыграли своей исключительно важной положительной роли.

178

Уже первые, далеко не совершенные микроскопы позволили человеку увидеть тонкую структуру биологической ткани, микроструктуру многих материалов и веществ, возбудителей различных болезней. Применение микроскопов в металлургии и металловедении позволило детально изучить сложную структуру металлов и сплавов и тем обеспечить прогресс в этой важной для народного хозяйства области техники.

С помощью микроскопов были открыты и установлены многочисленные научные факты. Микроскопы дали человеку возможность увидеть то, что было скрыто от него в силу малости размеров наблюдаемых объектов.

Они ввели человека в совершенно новый, ранее неведомый для него мир микрообъектов.

Создание современных электронных микроскопов еще больше расширило возможности человека. С помощью электронных микроскопов сейчас наблюдают даже фильтрующиеся вирусы, т. е. субмикроскопические объекты.

Другим важным открытием, расширившим возможности наблюдения человеческим глазом, явилось создание телескопа, связанное с именем Галилея. С помощью телескопа человек увидел то, что ранее было скрыто от него в силу дальности наблюдаемых объектов.

Значение телескопов для развития общечеловеческой культуры также общеизвестно: они позволили установить законы движения небесных тел, открыть новые звезды, галактические туманности и т. д. Телескоп ввел человека в безбрежный океан звездного мироздания.

Однако человеческая мысль никогда не удовлетворяется достигнутым, она все время стремится вперед и вперед. Сейчас уже можно и обязательно нужно говорить о зарождении в наше время и развитии совершенно нового направления в области разработки средств прямого оптического наблюдения – внутривидения, интроскопии, что означает прямое и непосредственное видение внутри непрозрачных тел и сред. Интроскопы дают человеку возможность видеть то, что было скрыто до сего времени в силу непрозрачности.

Желание заглянуть внутрь изучаемых непрозрачных материалов, посмотреть на характер процессов, протекающих внутри непрозрачных сред, давно было заветной мечтой многих исследователей и практиков. Оно нашло отражение в многочисленных фантастических сочинениях и сказках и особенно укрепилось после открытия «таинственных» лучей Рентгена и Беккереля. Немало усилий было затрачено на разрешение проблемы видения в нейрозрачных средах, но только в наше время можно говорить о реальном ее решении.

179

Успехи современной физики и, в особенности, технической электроники определили совершенно новые и притом неожиданные перспективы в этом отношении.

В принципе стало возможным преобразование любых невидимых для глаза излучений в оптически видимые изображения. Невидимых излучений в настоящее время известно уже много (гамма-излучения высоких энергий, рентгеновские излучения, инфракрасные излучения, радиоизлучения миллиметрового и субмиллиметрового диапазонов), а кроме того, известны магнитные и электрические поля, упругие колебания высокой частоты, корпускулярные излучения различных видов и многое другое, что также обладает высокой проникающей способностью. И мы можем использовать это свойство для проникновения внутрь изучаемых непрозрачных материалов или процессов. В сочетании с новейшими методами электронного преобразования эти излучения позволяют практически осуществить видение в любой непрозрачной среде и сделать, таким образом, весь окружающий нас непрозрачный мир как бы прозрачным.

Значение интроскопии для современной науки и техники очень велико. Она в огромной степени расширяет естественные пределы применимости человеческого глаза, открывает перед нами как бы еще один новый и интереснейший мир.

В медицине она необходима для наблюдения за работой внутренних органов человека, для ранней диагностики таких тяжелых заболеваний, как злокачественные опухоли, для исследования внутренних кровоизлияний и твердых отложений на стенках кровеносных сосудов, для изучения процесса старения и склероза организма.

А сколько научных исследований, для успеха которых так необходимо видеть в тех областях спектра и в тех излучениях, где человеку не дано видеть!

Известно, что все окружающие нас тела испускают те или иные волны. Все химические и биологические процессы также сопровождаются излучениями. Если бы мы уже имели в своем распоряжении богатый арсенал принципиально возможных средств интроскопии, то мы увидели бы бесчисленное количество новых красок, которыми так богат мир. Мы могли бы, по желанию, смотреть на мир другими глазами, могли бы узнать, как видят некоторые другие обитатели Земли, спектральная чувствительность органов зрения которых отличается от чувствительности человеческого глаза. Перед нами могло бы открыться еще много новых окон в мир.

180

Интроскопия необходима для объемного исследования качества металла, наблюдения процессов кристаллизации металла в изложницах, и в особенности при непрерывной разливке стали, исследования кинетики объемных реакций в металлургии и химии, равномерности распределения легирующих добавок, для контроля горячего металла в потоке на однородность и сплошность его в прокатном производстве и для многого другого.

Средства интроскопии приобретут большое значение в доменном и мартеновском производствах для контроля за состоянием теплоизоляционных кладок в процессе производства металла. Из-за неравномерного выгорания и раскисления, из-за неоднородного качества огнеупоров в ходе работы доменных печей непрерывно изменяются геометрические размеры и форма внутренней футеровки.

По этой причине порой происходят крупные аварии.

Частые же профилактические остановки печей приводят к неоправданным экономическим потерям.

Использование радиоволн, в особенности сантиметрового и миллиметрового диапазонов, для постоянного наблюдения за состоянием футеровки позволит избежать этих потерь, повысить надежность работы подобных сооружений.

В машиностроении интроскопия необходима для исследования остаточных напряжений в металлах и в других непрозрачных материалах после их термической или механической обработки, для изучения зон перекристаллизации при закалке и отжиге, для исследования степени усталости ответственных деталей и узлов различных машин, процессов горения твердого или жидкого топлива в камерах высокого давления, механизмов трения и т. п.

Сейчас даже трудно перечислить все области науки и техники, которые нуждаются в средствах объемного исследования.

В полупроводниковой технике, например, интроскопия необходима для исследования совершенства кристаллической структуры монокристаллов, для выявления зон дислокаций, для исследования электрической неоднородности, степени надежности, для обнаружения включений, для изучения электрических процессов на границах p-n переходов и т. п.

181

В гидротехнике средства объемного исследования необходимы для контроля подводных частей сооружений, для совершенствования ответственных узлов и механизмов.

В строительном деле интроскопы необходимы для контроля качества бетонных сооружений, для определения добротности древесины и других строительных материалов.

Средства интроскопии необходимы для улучшения условий работы портов и аэродромов в условиях густого тумана, дождя или снега, для видения сквозь облака и т. д. В будущем они потребуются, по-видимому, и при глубинном бурении, и для исследования недр земли с подвижных подземных снарядов.

В настоящее время серьезно ставится вопрос о глубинном бурении со дна океана или моря. И в этом случае большую помощь технике бурения могут оказать средства интроскопии. Они будут необходимы для дистанционного наблюдения (видения) в глубоководных слоях, в илистых отложениях и, наконец, для поиска места скважин в случае обрыва инструмента.

Список областей применения интроскопии можно было бы продолжать еще и еще, но в этом нет никакой необходимости. Всякому ясно, что весь окружающий нас мир – это мир объемных тел и предметов, и поэтому средства объемного исследования их без разрушения должны занимать все большее место в нашей практике.

Любая машина, любая деталь машины – это объемное тело, и работают они, как правило, всем своим сечением, всем своим объемом. Понятно, какое огромное значение имеют эффективные средства и методы контроля качества каждой детали.

Хочется отметить, что еще Петр I придавал большое значение проблеме качества и надежности. Широко известен его указ, изданный в связи с плохим качеством ружей, поставленных Тульской оружейной фабрикой царскому войску. Напомним, что царь повелел хозяина фабрики Корнилу Белоглаза бить кнутом и сослать в работы в монастырь, «понеже он, подлец, осмелился войску государеву продавать негодные пищали и фузеи».

А контролера «старшину Фрола Фукса бить кнутом и сослать в Азов, пусть не ставит клейма на плохие ружья».

182

В Вавилоне еще четыре тысячи лет назад существовал такой закон: если обваливался дом, то архитектора, построившего этот дом, предавали смертной казни. Если же при обвале дома гибли члены семьи его владельца, то предавали казни и членов семьи архитектора.

До недавнего времени мы ограничивались исследованиями состава и качества материалов или выборочно, или только с поверхности (микрофотографирование, спектральный анализ, рентгеноструктурный анализ, химический анализ). Но эти методы удовлетворяют только в том случае, если есть полная уверенность в однородности материала по всей толще, если проба, взятая с поверхности, будет однозначно характеризовать материал по всему объему.

Практика же показывает, что наблюдений с поверхности недостаточно. И для того чтобы разрешить это противоречие, необходимо всемерно развивать средства объемного исследования. Интроскопия в этом отношении и будет едва ли не самым мощным средством получения информации о технологических процессах и свойствах тел.

С помощью интроскопии человек не только расширит возможности объемного контроля руд, минералов, деталей машин, сооружений и т. д., но и откроет многие новые стороны различных процессов, которые до сего времени скрыты от наших глаз стеной непрозрачности.

Особенно важное практическое значение интроскопия получит в условиях автоматического управления и контроля за технологическими процессами. Современная автоматика и счетно-решающие устройства действительно могут делать чудеса. Но этот мощный арсенал современных средств, автоматизации будет давать правильные ответы лишь тогда, когда в него будут правильно вводиться входные данные. Входные же данные нужно добывать непосредственно из самих технологических процессов и именно в тот момент, когда эти процессы протекают. При современном крупном и высокоскоростном производстве данные, отстающие от хода процессов, практически непригодны. В схемы автоматики должна вводиться только текущая информация, а чтобы получить ее, и притом непосредственно из внутренних областей процессов или материалов, необходимы средства объемного контроля. Помочь решить эту задачу в значительной степени может интроскопия.

183

В настоящее время началось применение средств кибернетики в медицинской диагностике. Однако вычислительные машины могут успешно выполнить свою роль только при условии, что в них вводятся объективные входные данные, полученные непосредственно из живого организма. Средства интроскопии и в этом случае могут сыграть исключительно важную роль.

Случайно ли именно в наше время возникла идея интроскопии? Нет, не случайно. Возникновение ее определяется прежде всего потребностями общественного производства. На некоторые из них выше было уже указано. Если мы проанализируем общий характер этих потребностей, то должны будем сделать такой вывод: в современных условиях крупномасштабного и поточного производства совершенно по-новому формулируются требования к методам контроля технологических процессов и ответственных изделий. Если несколько лет назад в большинстве производств можно было довольствоваться выборочным контролем изделий, дефектоскопией, лабораторными исследованиями проб и образцов, то в настоящее время эти средства и методы сплошь и рядом оказываются далеко не достаточными. При производстве, например, сверхмощных установок (я имею в виду турбогенераторы мощностью в 100 тыс. и 500 тыс. кВт, атомные реакторы большой мощности, машины высокого давления и т. п.) выборочный контроль изделий уже недопустим. Качество материалов и деталей, идущих на сооружение таких объектов, должно иметь стопроцентную гарантию надежности. Такие же требования предъявляются при создании ракет и многоместных пассажирских самолетов; они неизбежно возникнут и перед отправкой будущих глубинных снарядов в сторону литосферы земли.

Уникальный характер, высокая стоимость, ответственное назначение этих сооружений определяют необходимость обеспечения самой высокой степени надежности.

Повышенные же требования к надежности, в свою очередь, диктуют необходимость развития новых методов получения информации о свойствах тел.

Ярко выраженная тенденция современного технического прогресса – непрерывное увеличение концентрации материально-технических средств и инженерной мысли в одном сооружаемом объекте, будь то воздушный лайнер или ракета, атомоход или автоматизированная домна. Примеры мы видим всюду.

184

Достаточно сказать, что каждая из машин Красноярской гидроэлектростанции по своей мощности эквивалентна почти десяти Волховским гидроэлектростанциям. Мощности тепловых энергоблоков достигли почти фантастических размеров. Вдуматься только, какому количеству предприятий дают жизнь такие энергоцентры!

От надежности, от бесперебойной работы гигантских энергетических систем зависит жизнедеятельность не только отдельных фабрик и заводов, но и целых экономических районов. А если учесть, что современные тепловые энергоблоки в своем устройстве содержат километров 100 и более труб в одном агрегате и что любой сантиметр этих труб может вывести из строя всю эту гигантскую систему, то станет совершенно очевидным, почему требования к надежности, к качеству каждого сантиметра таких труб теперь неизмеримо возросли. Не менее важна проблема надежности и в других областях техники. Требования к качеству теперь настолько повысились, что их можно было бы охарактеризовать стопроцентной гарантией, теоретически степень надежности должна быть не ниже, чем 99,99999999%.

Технико-экономическая эффективность любого нового технического сооружения теперь определяется не столько достигнутыми при этом высокими техническими параметрами, что, конечно, также очень важно, сколько долговременностью работы машины, агрегата, сооружения, конструкции и т. п. Именно это в конечном счете определяет их технико-экономическую эффективность, только в этом случае затраты общества на их сооружения могут быть оправданы.

При скоростном и поточном производстве многих видов изделий (металлических труб, листов, слябов, блюмсов, резиновых смесей, шин), при автоматической сварке металлов и сплавов, в производстве ответственных керамических изделий, пластмасс, стеклопластиков и т. п. также необходимы более надежные и более быстрые методы получения информации о ходе технологических процессов и качестве продукции, с тем чтобы эти данные могли быть непосредственно использованы для управления и корректировки самих технологических процессов.

Интроскопия как новый многоэлементный метод информации, несомненно, послужит очень ценным средством для решения подобных задач. В ряде случаев методы интроскопии уже стали практически необходимыми при ускоренном контроле технологических процессов.

185

Схема преобразования «фотокатод – экран»

Если иметь в виду различные виды излучений (от гамма-квантов высоких энергий до радиоволн миллиметрового диапазона и от упругих колебаний высокой частоты до корпускулярных излучений) и их спектральный состав, то мы можем сказать, что в природе нет непрозрачных тел. Все зависит от правильности выбора вида и спектрального состава излучения. Для лучей нейтрино, например, и шар земной прозрачен.

Человеческая кровь в соответствующих условиях прозрачна даже в ближней инфракрасной области излучений, а большинство тканей живого организма прозрачно в области 12—14 микрон. Металлы и жидкости хорошо пропускают, как известно, ультразвуковые волны и кванты высоких энергий.

С точки зрения физических законов распространения и поглощения указанных видов излучений в твердых и жидких телах постановка проблемы интроскопии вполне правомерна. Но правомерна ли ее постановка в наше время с точки зрения технических возможностей решения? Положительный ответ мы должны дать и здесь.

Успехи современной физики, а технической электроники в особенности, дают нам ключ к решению указанной проблемы.

Под видением в непрозрачных средах и телах я понимаю прежде всего прямое оптическое видение в отраженных и рассеянных лучах с заданным коэффициентом трансформации размеров изображений.

186

Чтобы показать реальность разрешения проблемы интроскопии уже в наше время, остановимся для примера на одном из видов техники этого рода – на инфракрасной интроскопии.

Выбор этот не случаен. Принцип видения в непрозрачных средах и телах в настоящее время можно наиболее наглядно показать именно на примере применения для этой цели инфракрасных лучей, так как техника преобразования их в оптически видимые изображения хорошо разработана.

Приборы, преобразующие невидимые инфракрасные лучи в оптически видимые, получили название электронно-оптических преобразователей (сокращенно – ЭОП).

Впервые такой преобразователь был создан в 1934 г. голландским физиком Холстом де Буром. В дальнейшем системы ЭОП были усовершенствованы многими авторами. В настоящее время они являются уже вполне отработанными техническими приборами и могут применяться для решения ряда практических задач.

Кратко устройство и принцип действия электроннооптических преобразователей инфракрасных лучей можно изложить так. В вакууме на две параллельные, обращенные одна к другой стеклянные поверхности наносятся два слоя с особыми свойствами. Один из них (первый по ходу лучей) является фотокатодом, чувствительным к инфракрасным лучам указанного диапазона волн, другой представляет собой тонкий слой вещества, способного светиться под ударами электронов – флюоресцирующий экран. Под действием инфракрасных лучей с фотокатода вылетают, или, как говорят, эмитируют, электроны. При этом плотность электронного потока с отдельных участков фотокатода пропорциональна интенсивности инфракрасного излучения, падающего на эти участки.

Между фотокатодом и флюоресцирующим экраном приложено высокое напряжение, служащее для ускорения электронов. Двигаясь в поле этого высокого напряжения, электроны за счет поля приобретают дополнительную энергию и в таком виде падают на флюоресцирующий экран. Яркость свечения экрана в этом случае пропорциональна величине приложенного ускоряющего напряжения и плотности электронного тока при некоторых постоянных коэффициентах, характеризующих качество люминофоров.

187

Таким образом, при постоянном значении приложенного ускоряющего напряжения существует прямая зависимость между яркостью свечения каждого участка люминофора и величиной падающего на него электронного потока. Если на фотокатод было спроектировано изображение в невидимых для глаза инфракрасных лучах, то на экране оно будет оптически видимым, так как величина электронного тока с каждого участка фотокатода, в свою очередь, пропорциональна интенсивности падающего на фотокатод инфракрасного излучения.

Благодаря такому устройству человек приобретает возможность различать предметы и изображения в инфракрасных лучах так же, как если бы он обладал способностью видеть в этих невидимых для глаза лучах.

В современных электронно-оптических преобразователях между фотокатодом и флюоресцирующим экраном обычно присутствует еще один элемент – электронная линза. Она необходима для более правильного переноса электрона с фотокатода на флюоресцирующий экран, для улучшения четкости передачи электронного изображения. По принципу выполнения линзы бывают электростатические и электромагнитные.


    Ваша оценка произведения:

Популярные книги за неделю