355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Павел Ощепков » Жизнь и мечта » Текст книги (страница 18)
Жизнь и мечта
  • Текст добавлен: 19 марта 2017, 03:30

Текст книги "Жизнь и мечта"


Автор книги: Павел Ощепков



сообщить о нарушении

Текущая страница: 18 (всего у книги 21 страниц)

Начало направленного движения их определяется только скоростью распространения электрического напряжения в цепи (она равна скорости света), а не фактическими скоростями перемещения каждого электрона. В этом случае в каждый момент времени через первую границу раздела переходит какое-то количество электронов и ровно столько же других электронов переходит через вторую границу раздела. Поэтому фактическое время перемещения тепловой энергии от первой границы раздела до второй границы ничтожно мало, в миллионы раз меньше времени обратной теплопередачи.

Для наглядности приведем такую аналогию.

Предположим, что вы держите длинный шланг, наполненный горячей водой (электроны в металлах и в полупроводниках тоже очень горячие – они имеют эквивалентную температуру в тысячи и десятки тысяч градусов даже при комнатной температуре проводника). Шланг через тройник присоединен одновременно к крану с холодной и к крану с горячей водой. Вы подходите к одному из них и открываете, например, кран с холодной водой.

Спрашивается: какая вода пойдет из шланга? Конечно, горячая, так как шланг был наполнен до этого горячей водой.

Холодная вода не могла мгновенно дойти до конца шланга.

264

Если бы шланг был наполнен холодной водой, а вы открыли бы в это время кран с горячей водой, то в первый момент и в течение некоторого времени из шланга лилась бы холодная вода.

Я привел это сравнение потому, что оно известно многим из житейского опыта: подобное явление при желании можно наблюдать даже в ванной комнате.

ДРУГИЕ ПРОСТЕЙШИЕ АНАЛОГИИ

Можно привести и другой пример, поясняющий суть дела.

Представьте себе очень длинный нефтепровод, например нефтепровод Баку – Батуми, весь наполненный нефтью.

В какой-то момент в Баку открыли вентиль, и нефть в Батуми польется, как известно, ровно через столько времени, сколько требуется звуковой волне, чтобы пройти по нефтепроводу расстояние от Баку до Батуми, хотя та нефть, путь которой был фактически открыт в Баку, дойдет до Батуми только через несколько дней, а может быть, и через несколько недель.

Примерно то же самое происходит и с переносом тепловой энергии движущимся электроном в описанной выше системе из двух разнородных проводников. Огромная скорость переноса тепловой энергии в этом случае делает возможным временное ее сосредоточение в одном месте за счет поглощения равного количества в другом месте.

Во времена, когда не было еще понятия об электронах, когда даже мысленно не могла быть представлена описанная здесь схема, молодой французский инженер Сади Карно писал: «Тепло есть не что иное, как движущая сила, или, вернее, движение, изменившее свой вид, – это движение частиц тел. Повсюду, где происходит уничтожение движущей силы, возникает одновременно теплота в количестве, точно пропорциональном количеству исчезнувшей силы.

Обратно, всегда при исчезновении тепла возникает движущая сила. Таким образом, можно высказать общее положение: движущая сила существует в природе в неизменном количестве; она, собственно говоря, никогда не создается, никогда не уничтожается, в действительности она меняет форму, т. е. вызывает то один род движения, то другой, но никогда не исчезает».

265

Многие теперь и ссылаются на Карно как на основоположника современной научной термодинамики, чтобы доказать, что теплота не может целиком переходить в другие формы энергии, в работу. Однако, как мы только что видели, сам Карно был определенным сторонником полной взаимопревращаемости тепловой и механической форм энергии. Если вспомнить, что он жил полтора века назад, можно только поражаться его прозорливости.

Вдумаемся в приведенные строки Карно. Они очень правильно трактуют философскую сторону поставленного здесь вопроса. Во всяком случае, в наше время он, наверное, был бы нашим союзником.

Чтобы закончить рассуждения о приведенной схеме, остановлюсь еще на одном очень важном вопросе.

Можно ли, хотя бы в принципе, осуществлять преимущественное движение электрических зарядов в замкнутой цепи?

Этот Bonpoic очень сложный, и подходов к его решению может быть несколько.

Начну еще раз с аналогий. Хотя они не служат доказательством, но очень часто помогают понять существо вопроса.

Тепловая энергия есть хаотическое, беспорядочное движение молекул. Если бы мы имели возможность наблюдать за одной какой-нибудь молекулой очень длительное время, то установили бы, что все направления движения для нее равно вероятны и все состояния энергии в пределах максвелловского распределения, установленного для данной температуры, равноценны. Молекула двигалась бы столько же раз вправо, сколько и влево, столько же раз вверх, сколько и вниз, и т. д.

В более крупных масштабах этот хаос можно наблюдать в движении ветра. Для большинства районов Земли все направления ветра равновелики и равноценны.

Конечно, есть на Земле районы, где отмечается преимущественное направление ветров. Но это только доказывает, что и в хаосе может быть определенный порядок.

Сейчас нас больше интересует полный беспорядок.

Спрашивается, можно ли из беспорядочного движения ветра получить упорядоченное, направленное течение энергии? Можно ли кинетическую энергию беспорядочного ветра, а следовательно, и беспорядочную энергию молекул воздуха превратить в упорядоченную энергию, например в потенциальную?

Оказывается, можно. Для этого надо только создать несимметричные препятствия на пути движения энергии этого вида. В простейшем случае это можно осуществить, например, так. Предположим, что в нашем распоряжении есть водное пространство достаточно большой величины.

266

И пусть над этим водным пространством в течение года или еще более длительного времени дуют ветры самого разного направления и самой разной силы. Одним словом, пусть в природе ветра будет полный хаос. И все же даже в этом случае можно преобразовать кинетическую энергию ветра в потенциальный вид энергии и затем добиться организованного перемещения водных масс, хотя сам ветер, как мы уже сказали, не имеет определенно выраженного направления.

При ветре на водной глади образуются, как известно, волны, движение которых в общем случае совпадает с направлением ветра. Если указанное водное пространство разделить несимметричным барьером (плотиной с различным наклоном стенок), то, встречая на своем пути барьер, волны будут либо отражаться от него, либо перекатываться через него. В том случае, когда волна набегает на крутую (вертикальную) стенку разделительного барьера, будет наименее вероятно ее прохождение через барьер и наиболее вероятно отражение от него. А в том случае, когда волна будет набегать на барьер со стороны пологой стенки, произойдет все наоборот – вероятность прохождения ее через барьер будет наибольшей, а вероятность отражения—наименьшей. При длительном наблюдении за такой системой мы обнаружим, что уровень воды в одной части бассейна повысится, а в другой понизится. Процесс изменения уровней будет продолжаться до тех пор, пока не наступит новое состояние равновесия, когда из-за высоты барьера для одной части бассейна уменьшится вероятность отражения волн, а для другой части – вероятность их прохождения через барьер.

Тогда наступит равновесие, характеризующееся образованием разных уровней воды справа и слева от барьера. Разные уровни воды означают, как известно, разные уровни потенциальной энергии, и поэтому можно сказать, что даже такая нехитрая система асимметричного барьера может привести к преобразованию хаотической, неорганизованной энергии ветра в организованное, направленное ее течение.

267

Очень наглядный и поучительный пример преобразования неорганизованного хаотического движения в организованную форму движения представляет собой классический чашечный анемометр – прибор для измерения скорости (|силы) ветра. Откуда бы и с какой бы силой ни дул ветер (кроме одного, осевого, направления), ось анемометра во всех случаях будет вращаться в одну сторону и с довольно высоким коэффициентом преобразования. Принцип действия такого анемометра основан на асимметрии лобового сопротивления чашечных крыльев.

Не так давно на страницах «Мадридского кодекса II» Леонардо да Винчи был обнаружен чертеж устройства ветряного двигателя весьма оригинальной конструкции.

Проект предусматривает горизонтальное вращение ветряного колеса. Это очень оригинальный проект, и можно только сожалеть, что в эпоху ветряных мельниц никто не знал о нем. Особенность спроектированного великим Леонардо устройства состоит в том, что ветряное колесо всегда готово к действию: откуда бы ветер ни дул, поворачивать крылья против ветра не надо. При всем хаосе всевозможных направлений ветра ветряное колесо такого типа будет вращаться только в одну, заранее заданную сторону. Особенность этого устройства состоит в несимметричном сопротивлении крыльев по отношению к усилиям ветра справа и слева от оси вращения.

На проекте имеется собственноручная пометка Леонардо да Винчи следующего содержания: «Проверить завтра, годятся ли ели в Порта делла Джустиции (во Флоренции) для постройки такой мельницы».

Еще одним примером преобразования хаотических движений в направленное, упорядоченное движение может служить механизм, который теперь широко используется в наручных часах для автоматического подзавода от неупорядоченных движений руки.

В движениях руки человека за большой промежуток времени нельзя выделить какого-либо преимущественного направления, однако стрелки часов идут, как известно, только слева направо.

В нашей лаборатории лет 10—12 назад был изготовлен небольшой механизм, который позволял демонстрировать принцип преобразования рассеянного хаотического теплового движения в организованное движение и на его основе непосредственно преобразовывать рассеянную тепловую энергию в энергию электрическую.

Внешний вид такого устройства представлен на вкладке.

268

Анализируя эти и многие другие примеры, в которых используется или может быть использован принцип асимметричного разделения процессов, можно утверждать, что преобразование хаотического движения в целенаправленное, упорядоченное вполне возможно.

Движение электронов проводимости внутри металла есть также хаотическое, неорганизованное движение, но если мы поставим в рассечку III приведенной схемы теплоэлектрического контура асимметричный потенциальный барьер, то сможем получить направленное, организованное движение зарядов внутри этой цепи. С методологической точки зрения это теперь не кажется неосуществимым.

Как сделать подобное устройство, технически теперь уже ясно. Для осуществления такого барьера может быть использован тоннельный эффект в тонкой разделительной пленке на границе двух металлов с различной работой выхода. Могут быть использованы и асимметричные потенциальные барьеры с детектирующими свойствами на пути свободного пробега электронов. Возможны и другие варианты.

ИНЕРЦИЯ МЫШЛЕНИЯ СИЛЬНЕЕ ЗДРАВОГО СМЫСЛА

Любопытный эпизод, вызвавший множество кривотолков, произошел несколько лет назад на одном из московских заводов. Эта история поучительна в двух отношениях. С одной стороны, она наглядно показывает столкновение двух точек зрения в вопросе о возможности использования энергии окружающего пространства, а с другой – подтверждает реальность создания зон с отрицательной температурой, по отношению к которым все окружающее пространство становится как бы «горячим телом».

Мне довелось побывать на этом заводе в период наиболее острых споров, собственными глазами посмотреть на так называемое «чудо» и лично убедиться, насколько прав был К. Э. Циолковский, говоря, что даже малейшее подтверждение идеи использования безбрежного энергетического океана, т. е. энергии окружающего нас пространства, будет воспринято с огромным недоверием.

События, о которых идет речь, имели столь широкий резонанс в отечественной и зарубежной прессе, что я чувствую настоятельную потребность поделиться с читателями подробностями этой истории и высказаться об истинном существе дела.

269

Отделением технических наук Академии наук СССР мне было поручено дать заключение по этому вопросу.

Пришлось детально изучить не только результаты измерений, но и все материалы, относящиеся к этому событию. В результате я с полной уверенностью могу сказать, что никакого повода для шума тогда не было бы, если бы полученные результаты измерений методологически понимались правильно.

Завод, о котором упоминалось, получил задание построить опытные аппараты микроклимата, основанные на использовании эффекта Пельтье. Все, вероятно, знают это физическое явление. Во внешнем проявлении оно элементарно просто: если через спай двух металлов (например, медного провода с алюминиевым) пропустить постоянный электрический ток так, чтобы он шел по направлению от меди к алюминию, то в месте спая будет выделяться некоторое количество тепловой энергии, большее, чем обычно выделяется в любом проводе вследствие его омического сопротивления. Если же электрический ток пропустить в обратном направлении, то этот же спай будет не нагреваться, а охлаждаться. Это явление широко известно, оно описано почти во всех курсах физики.

Так как в замкнутой или последовательной электрической цепи никакой металл не может быть включен с помощью одного спая, а будет обязательно иметь два спая (в начале и в конце провода), то автоматически обеспечивается, что при любом включении тока один из спаев будет выделять некоторое дополнительное количество тепла, а второй – поглощать точно такое же количество тепла. В случае применения полупроводниковых материалов этот эффект обычно усиливается.

Вот это-то свойство полупроводниковых материалов и было положено в основу создания аппаратов микроклимата, предназначенных либо для нагрева воздуха, либо для его охлаждения. Предполагалось, что в случае работы аппарата на нагрев воздуха все дополнительное тепло на теплых (или, как их обычно называют, «горячих») спаях будет выделяться за счет поглощения такого же количества тепла на холодных спаях. Для этой цели холодные спаи должны были омываться водой, например из водопроводной сети.

270

Вода, входя в аппарат при одной температуре, должна была несколько охлаждаться вследствие того, что она отдает часть своей энергии холодным спаям.

Все шло хорошо, и результаты калориметрических измерений более или менее совпадали с этими теоретическими предпосылками и расчетом. Но однажды случилось так, что вода в водопроводной сети была очень холодна (дело было зимой) и в таком виде была пущена в аппарат. Участники опыта тут же заметили, что вода вышла из аппарата не с более низкой температурой, а с несколько повышенной, т. е. подогретой. Это всех насторожило. Решили воду совсем выключить и провести опыт при тщательно изолированных в тепловом отношении холодных спаях. Оказалось, что и в этом случае обнаруживается дополнительное количество тепла на стороне горячих спаев.

Работники завода начали обращаться в один институт за другим за советом и помощью. Но каково же было их удивление, когда они отовсюду получали один и тот же ответ: «Этого быть не может». Самый крупный и авторитетный институт по полупроводниковой технике официально ответил, что полученные на заводе экспериментальные данные противоречат закону сохранения энергии и поэтому неправильны.

Получив такое заключение, работники завода стали обращаться в другие учреждения. Но авторитет института, давшего первое заключение, был настолько велик, что никто не решался его оспаривать. Все искали ошибки в измерениях. Делались различные догадки и предположения о причине ошибок – предполагаемых, скрытых, хотя никто конкретно не мог указать ни одной серьезной.

Некоторые ученые даже выступили в печати и заявили, что это была ошибка измерения. Они опять утверждали, что если бы это не было ошибкой измерения, то свидетельствовало бы о нарушении закона сохранения энергии.

Была даже создана комиссия для того, чтобы подтвердить мнение ученых.

И она это, по-видимому, сделала. Во всяком случае, никакого опровержения на статью трех ученых в нашей прессе не последовало. А в статье утверждалось, что если из аппарата выключить воду и при этом его к. п. д. будет превышать 100%, то это уже будет «чудом» – нарушением закона сохранения энергии. В этом состоял главный аргумент авторов критики.

271

Но факт, обнаруженный на заводе, существует независимо от официального мнения, и необычного в нем ничего нет, если посмотреть на существо дела другими глазами и разобраться в кажущемся нарушении закона сохранения энергии.

Поскольку я детально знакомился именно с существом дела, могу сказать, что во всей этой истории меня удивило не «чудо», о котором так много шумели, а создание мифа о якобы имевшем место нарушении закона сохранения энергии. Вот об этом-то я и хочу сейчас рассказать.

Построенный на заводе аппарат микроклимата в своей принципиальной основе можно представить в виде двух теплоизолированных камер – камера А и камера Б (см. рис.). Через обе камеры проходит электрическая цепь ML, состоящая из разнородных полупроводниковых элементов. Направление тока указано стрелкой.

В этом устройстве все спаи, на которых происходит охлаждение (спай N), расположены в первой камере, а все спаи, на которых происходит выделение тепла (спай S), – во второй камере.

Схема асимметричной тепловой нагрузки

272

Через первую камеру непрерывно протекает вода, а через вторую прогоняется воздух. Если бы никакого движения воды и воздуха не было, то во всей системе установилась бы некоторая средняя температура. Эту начальную температуру обозначим буквой 7Y При прохождении электрического тока через систему температура на горячих спаях будет повышаться, а на холодных – понижаться. Это будет продолжаться до тех пор, пока не наступит новое равновесие, определяемое тем, что по мере увеличения разности температур между холодным и горячим спаями будет увеличиваться количество тепла, оттекающего от горячих спаев в сторону холодных Спаев в силу теплопроводности самих полупроводниковых элементов. Распределение температуры вдоль электрической цепи в этом случае будет выражаться некоторой кривой синусоидального типа (на рисунке она изображена пунктирной линией).

В этом случае количество тепла, поглощенное на холодных спаях, будет в точности соответствовать количеству тепла, выделенному на горячих спаях.

Однако в условиях завода в связи с указанным эпизодом система была испытана в несколько иных условиях, а именно: проток воды через камеру холодных спаев был полностью выключен, подача воды прекращена.

Сами спаи были тщательно изолированы в тепловом отношении. Через камеру горячих спаев (для максимального съема с них тепла) интенсивно продувался воздух.

Таким образом, вся система была уже не симметричной, а носила резко выраженный асимметричный характер.

Что же изменилось в этом случае по сравнению с предыдущим положением? Оказывается, очень многое.

Чтобы определить истинное количество тепловой энергии на выходе прибора, надо разобраться в следующих процессах:

1. Вся электрическая энергия, подведенная к аппарату, в конечном счете преобразуется в тепло на омическом сопротивлении цепи от точки Oi до точки Ог. Количество тепловой энергии, выделившейся на этом сопротивлении, в точности соответствует затраченной электрической энергии. А так как все тепло выносится из аппарата продуваемым воздухом, внутри аппарата устанавливается температура, соответствующая данному режиму работы, и в аппарате не происходит ее дальнейшего повышения; следовательно, на выходе аппарата мы имеем коэффициент полезного действия, равный 100%. Ниже 100% значение этого коэффициента принципиально быть не может – это означало бы исчезновение подводимой к аппарату энергии.

273

2. Вследствие того что горячие спаи интенсивно омываются продуваемым воздухом, их температура понижается. Понижение температуры горячих спаев уменьшает тепловой поток от горячих спаев в сторону холодных.

Это немедленно сказывается на температуре холодных спаев – она еще более понижается. Устанавливается новое равновесие, при котором распределение температуры вдоль проводящих элементов будет уже иметь характер не прежней синусоиды, а некоторой другой кривой. Это новое распределение температуры на рисунке изображено сплошной линией.

В этом случае в первой камере устанавливается более низкая температура по сравнению с температурой окружающего пространства. Все окружающее пространство по отношению к месту холодных спаев и по отношению ко всей камере, где они находятся, будет представлять собой как бы «горячее тело», и тогда, согласно классическим законам физики, тепло из окружающей среды, как от всякого нагретого материального тела, пойдет в сторону более холодного тела, т. е. в камеру холодных спаев.

В природе не существует такой тепловой изоляции, которая абсолютно не проводила бы тепла. Любая изоляция в конечном счете в какой-то мере теплопроводна, только коэффициент теплопроводности у хороших теплоизоляционных материалов мал. Но как бы мал он ни был, он реален, и поэтому рано или поздно установится тепловой поток из окружающей среды в камеру холодных спаев. Здесь на холодных спаях тепловая энергия будет поглощаться движущимися электронами и переноситься на горячие спаи, где она вновь выделится в виде тепловой энергии. Эта тепловая энергия явится уже дополнением к тепловой энергии, ранее полученной за счет подведенной электрической мощности. Она составит первую прибавку к 100%.

3. Так как указанная система связана с внешней средой еще и проводами, то необходимо учитывать и теплопроводность самих проводов. От точки М, например, тепловой поток пойдет в сторону холодных спаев, а от горячих спаев в сторону точки L. Но поскольку система в тепловом отношении стала асимметричной, доля теплового потока, подтекающего к системе, и доля теплового потока, оттекающего от нее, в этом случае будут не равны. Тепловой поток по проводам в сторону холодных спаев будет больше теплового потока по проводам из камеры горячих спаев. Это даст вторую прибавку к теплу, замеряемому на выходе системы, сверх 100%.

274

4. Фактором, влияющим на фактический тепловой баланс на выходе системы, при определенных соотношениях параметров может явиться также перенос тепловой энергии движущимся электроном. Электрон, являющийся носителем зарядов, в любом проводнике обладает некоторой собственной кинетической и потенциальной энергией. Это его состояние определяется не только химической природой материала проводника, но и его температурой. Во всей внешней, по отношению к аппарату, электрической сети энергия электрона находится при одном уровне, а внутри прибора в камере холодных спаев и во всем пространстве прибора он должен будет сменить ее на меньшее значение, так как средняя температура электрической цепи здесь ниже температуры окружающей среды. В этой камере он отдаст, таким образом, холодным спаям часть своей энергии. А так как система резко асимметрична, то на горячих спаях энергия электрона не успеет восстановиться. Электрон выйдет из аппарата с пониженным значением своей энергии. Он восстановит ее только во внешней цепи, придя вновь в равновесие с температурой проводов и окружающей их среды. Энергия, отданная электроном в камере холодных спаев, вновь выделится в камере горячих спаев и таким образом составит третью и наиболее существенную прибавку к тепловой энергии на выходе аппарата.

Если записать тепловой баланс работы указанного аппарата, то он может быть представлен так:

Qполн = Qдж + ΔQo.c + ΔQт.п + ΔQэ.r.

В этом выражении:

Qполн – полный тепловой поток на выходе аппарата;

Qдж – тепло, полученное за счет преобразования электрической энергии в тепловую на омическом сопротивлении цепи;

ΔQo.c – часть теплового потока, полученная за счет тепловой энергии окружающей среды, поступившей через изоляцию камеры холодных спаев;

ΔQт.п – часть теплового потока, полученная за счет асимметрии по подводящим проводам;

ΔQэ.r – часть теплового потока, полученная за счет переноса тепловой энергии окружающего пространства электронным газом.

275

Каждая из этих трех прибавок больше нуля, поэтому общий выходной поток даже при самой идеальной тепловой изоляции не может быть меньше 100% по отношению к подведенной мощности. Он может быть только больше 100%.

Выходит, что уже в настоящее время есть доказательства того, что подведенная к аппарату электрическая мощность может давать приращение за счет энергии окружающего пространства.

Самое главное в этом опыте состоит в том, что получено еще одно доказательство возможности образования потенциальных зон с пониженной по отношению к окружающему пространству температурой без потери энергии на этот процесс. В этом состоит главный результат, и к нему люди будут еще многократно обращаться, думая о возможности концентрации энергии в будущем.

То, что казалось неправдоподобным в этих опытах, оказалось вполне закономерным. И я уверен, что пройдет каких-нибудь 10—20 лет, и мысли об устройстве асимметричных потенциальных барьеров не будут казаться несбыточными. Мы уже привыкли к тому, что невозможное сегодня становится возможным завтра.

Вся живая природа представляет собой пример асимметричного течения процессов. Пока материя развивается, в ней идут процессы только в сторону накопления массы и энергии. Из многообразия явлений и «строительного» материала природа выбирает только те, которые соответствуют развитию ее от простого к сложному, и отбрасывает все то, что не соответствует этому направленному течению процессов.

НАГЛЯДНЫЙ ПРИМЕР КОНЦЕНТРАЦИИ РАССЕЯННОЙ ЭНЕРГИИ

Возвращаясь к идее переноса и организованного накопления тепловой энергии в одном месте за счет поглощения ее в другом месте окружающей нас среды, мы должны еще и еще раз обратить свои взоры на живую природу. Надо хорошенько понять и изучить сущность преобразований энергии в живой природе. Это обязательно приведет к таким открытиям в технике, о которых мы пока и не мечтали, о существовании которых мы еще и не подозреваем. Материя едина, и в живой природе, как наиболее высокоорганизованной форме ее существования, несомненно, должны проявляться и более сложные, более высокие законы развития.

276

Создание асимметричного потенциального барьера внутри металлов могло бы приблизить нас к осуществлению описанной схемы организованного перераспределения энергии окружающего пространства – к концентрации ее в одном месте и к поглощению в другом. Но пока это только мечта.

Я не собирался излагать здесь какие-либо конкретные технические пути решения данной проблемы. Да это, вероятно, и не под силу одиночкам. Это задача, требующая усилий многих и многих первооткрывателей, новаторов в науке и технике. Я ставил своей целью лишь показать, что такая проблема, с моей точки зрения, не представляется несбыточной мечтой, она вполне реальна. Но. как все действительно великое, ее решение не приходит в результате случайного открытия. Этому должен предшествовать большой труд и еще раз труд. И если мы сделаем свой труд организованным, целеустремленным, а не беспорядочным, то эта цель будет, несомненно, к нам приближена.

Чтобы показать реальность использования энергии окружающего пространства для нужд человека, сошлюсь на всем известные тепловые насосы.

В представлении многих тепловой насос – это обращенная тепловая машина, в которой осуществляется обратный тепловой цикл. В такие машины вводится, как известно, не тепловая энергия, а, наоборот, работа-энергия, и как результат такого обращенного теплового процесса получается выделение тепловой энергии за счет отнятия ее от холодильника. Коэффициент полезного действия для обычной тепловой машины, как уже было сказано выше, в идеальном случае равен соотношению:

Поскольку в данном случае процесс здесь обращенный, то и коэффициент полезного действия для такого процесса будет также обращенным:

277

Численное значение такого коэффициента теоретически много больше единицы, и это обстоятельство часто приводит к путаным толкованиям. Однако то, что он больше единицы, – совершенно бесспорный факт. В ряде стран есть уже установки, которые предназначены, например, для отапливания зданий за счет тепла, содержащегося в водах рек или каких-либо других водоемов. На приведенной (см. вкладку) фотографии представлена одна из таких установок, сооруженная в Англии для отопления Вестминстерского дворца водой Темзы.

Конечно, в созданных пока установках для осуществления процесса перекачки тепла используется механическая или электрическая энергия, подводимая к насосу, и поэтому такие машины нельзя еще считать устройствами самоорганизованного перераспределения энергии. Но по своему характеру они являются как бы первой ступенью на пути к практической концентрации энергии.

В самом деле. По приведенному выше соотношению к. п. д. для тепловых насосов значительно больше единицы. В случае перекачки таким насосом тепловой энергии от тел с температурой 290° К к телу с температурой, например, 300° К, т. е. с перепадом температуры в сторону ее повышения в 10°, теоретический к. п. д. по этой формуле получается равным 30. Это означает, что в идеальном случае 1 кВт*ч, затраченный на приведение машины в действие, может обеспечить выделение тепловой энергии в 30 раз больше, чем было затрачено на осуществление этого процесса. Тепловой энергии выделится в этом случае 30 кВт*ч (при соответствующем, конечно, пересчете калорий на ватты).

Однако ведь эта энергия возникла не сверхъестественным чудом, не «из ничего», а путем отнятия именно данного количества энергии от воды, из окружающего воздуха и т. п. В этом нет никакого чуда. Только близорукий может не видеть, что и здесь соблюдается закон сохранения энергии. Здесь все законы остаются на месте и строго выполняются. Но энергия, отнятая от окружающего пространства, до этого считалась совершенно потерянной, «мертвой», обесцененной, рассеянной. И если ее удается вторично использовать, например, для обогрева жилища, для подогрева воды или для других потребностей человека, то разве это не сосредоточение рассеянной энергии, не концентрация ее?

Главный электрик города Норвича (Англия) Дж. Самнер в статье «Новый способ отопления холодной водой», помещенной в «Британском союзнике» за 1947 г., так описывает применение тепловых насосов:

278

«В трех местах земного шара – Норвиче (Англия), в Цюрихе (Швейцария) и в Индиане (Америка) – есть здания, которые отапливаются холодом рек и озер.

В Норвиче и Цюрихе источником тепла является холодная вода из реки, протекающей около отапливаемого здания. В Америке в качестве источника тепла с низкой температурой используется земля.


    Ваша оценка произведения:

Популярные книги за неделю