355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Ник Лейн » Энергия, секс, самоубийство » Текст книги (страница 32)
Энергия, секс, самоубийство
  • Текст добавлен: 12 апреля 2017, 06:00

Текст книги "Энергия, секс, самоубийство"


Автор книги: Ник Лейн


Жанр:

   

Биология


сообщить о нарушении

Текущая страница: 32 (всего у книги 34 страниц)

Болезнь и смерть

Окончательная судьба клетки зависит от ее способности справляться с повседневными энергетическими задачами, а они зависят от метаболических потребностей ткани. Как и при митохондриальных заболеваниях, любое значительное нарушение работы митохондрий в активных клетках приведет к их быстрой гибели путем апоптоза. Что именно подает сигнал к апоптозу, не вполне понятно и опять же зависит от ткани, но, возможно, здесь играют роль два фактора – доля поврежденных митохондрий и уровни АТФ в клетке в целом. Конечно, эти факторы тесно связаны. Увеличение числа дефектных митохондрий неизбежно приводит к тому, что они не могут производить достаточно АТФ для удовлетворения потребностей клетки. В большинстве случаев, после того как концентрация АТФ падает ниже определенного порога, клетка неизбежно совершает апоптоз. Поскольку клетки с дефектными митохондриями самоуничтожаются, высокий уровень митохондриальных мутаций встречается редко, даже в тканях пожилых людей.

Судьба ткани и функционирование целых органов зависят от типов клеток, из которых они состоят. Если поврежденные клетки можно заменить (путем деления стволовых клеток, которые сохранили безупречные митохондрии), то гибель некоторых клеток путем апоптоза необязательно нарушает статус-кво. Однако если клетки, которым суждено умереть, незаменимы, как, например, нейроны или кардиомиоциты, то число рабочих клеток в ткани постепенно истощается, а оставшимся приходится выполнять двойную работу. Это, в свою очередь, подталкивает их к их собственному метаболическому порогу, и любые стрессовые факторы могут вызвать болезни. Иными словами, с возрастом подтолкнуть клетки в пропасть апоптоза могут разные случайные воздействия, как внешние (курение, инфекции, физиологические травмы, например сердечные приступы), так и внутренние (генетическая предрасположенность к болезням).

Представление о наличии связи между метаболическим порогом клеток и болезнями принципиально важно. Эта простая идея объясняет, каким образом митохондрии могут отвечать за весь диапазон дегенеративных заболеваний, хотя на первый взгляд не имеют к ним никакого отношения. Она позволяет понять, почему старческие заболевания у крыс начинаются через несколько лет, а у людей – через несколько десятков лет после рождения, а также почему птицы не стареют столь «патологически», как млекопитающие. Еще она позволяет понять, как можно излечить многие человеческие заболевания, причем не по отдельности, а одним махом. Короче говоря, она раскрывает секрет, как уподобиться эльфам.

В начале этой главы я перечислил слабые места «старой» митохондриальной теории старения. Теперь пришло время назвать еще одно: эта теория практически не позволяет увязать сам процесс старения с появлением возрастных заболеваний. Конечно, она постулирует гипотетическую взаимосвязь между образованием свободных радикалов и началом болезни, но в буквальном понимании из этого следует, что все старческие заболевания связаны со свободными радикалами. Это, очевидно, не так. Медицинские исследования показали, что старческие заболевания, как правило, представляют собой ужасающе сложный сплав генетических факторов и факторов окружающей среды, которые, как правило, не связаны ни со свободными радикалами, ни с митохондриями (по крайней мере, напрямую). Сторонники митохондриальной теории годами пытаются найти специфическую связь между генами и свободными радикалами, но тщетно. Мутации в некоторых генах действительно связаны с их образованием, однако общим правилом это не является. Например, из ста с лишним генетических дефектов, вызывающих дегенерацию сетчатки, хоть как-то связаны со свободными радикалами меньше десяти.

Связь между старением и возрастными болезнями обосновали Алан Райт и его коллеги (Эдинбургский университет). Их блестящая статья была опубликована в журнале Nature Genetics в 2004 г. Лично я считаю, что это самая значительная работа последних лет, потому что в ней изложена новая, единая концепция старческих заболеваний. Рано или поздно она должна вытеснить общепринятую парадигму, которая, на мой взгляд, ошибочна и контрпродуктивна.

Господствующую в современных медицинских исследованиях парадигму можно назвать геноцентричной. Сначала исследователи локализуют ген, потом выясняют, что он делает и как работает, потом измышляют какой-нибудь фармакологический способ решения проблемы и, наконец, воплощают это фармакологическое решение в жизнь. Я считаю, что эта парадигма ошибочна, так как основана на неверных представлениях о старении, а именно, что старение всего лишь мусорное ведро для генетических мутаций «замедленного действия», каждая из которых имеет свои следствия, с которыми надо работать индивидуально. Если помните, чуть выше я уже критиковал эту гипотезу Холдейна и Медавара на том основании, что, согласно последним генетическим исследованиям, старение – гораздо более гибкий процесс. Увеличьте продолжительность жизни, и все старческие заболевания откладываются на соответствующий период, если не навсегда. Более сорока разных мутаций увеличивают продолжительность жизни у нематод, плодовых мушек и мышей, и все они отсрочивают наступление дегенеративных заболеваний в целом. Иными словами, болезни старости связаны с первичным процессом старения, а он довольно гибок. Поэтому лучший способ бороться со старческими болезнями – это сосредоточиться на самом процессе старения.

Райт и коллеги рассмотрели определенные генные мутации, повышающие риск определенных нейродегенеративных болезней. Они не стали ломать голову над тем, что эти гены делают, а задумались о том, что происходит, когда одна и та же мутация встречается у животных с разной продолжительностью жизни. Такое действительно бывает, причем нередко. Модели генетических заболеваний, основанные на животных, играют важную роль в медицинских исследованиях и широко изучаются. Поэтому Райту и его коллегам оставалось только собрать данные по животным, у которых одни и те же генетические мутации вызывают сходные нейродегенеративные заболевания. Они нашли десять мутаций, по которым было достаточно данных, у пяти видов с радикально отличающейся продолжительностью жизни – мыши, крысы, собаки, свиньи и люди. Эти десять мутаций вызывали разные заболевания, но одна и та же мутация всегда вызывала одну и ту же болезнь. Основное различие касалось времени наступления заболеваний. У мышей болезнь развивалась на первом-втором году жизни, а у людей развитие той же самой болезни откладывалось на очень значительное время.

Важно понимать, что эти десять мутаций являются наследуемыми генетическими мутациями ядерной ДНК. Ни одна из них не имела никакого прямого отношения ни к митохондриям, ни к образованию свободных радикалов. Райт и коллеги рассмотрели мутации в гене HD при болезни Хантингтона, мутации в гене SNC при наследственной болезни Паркинсона и мутации в гене АРР при наследственной болезни Альцгеймера, а также мутации некоторых других генов, которые вызывали дегенеративные заболевания сетчатки и приводили к слепоте. Фармацевтическая промышленность вкладывает миллиарды долларов в исследования, нацеленные на поиск средств лечения каждого из этих заболеваний, так как эффективное лекарство приносило бы миллиарды долларов дохода в год. На эти исследования направляется больше интеллектуальных усилий, чем на авиакосмическое приборостроение, но никакого серьезного клинического прорыва нет. Говоря о прорыве, я имею в виду способ излечить болезнь или хотя бы отсрочить появление симптомов на срок более нескольких месяцев или, в лучшем случае, нескольких лет. Как скромно прокомментировали положение вещей Райт и его коллеги, «найдется немного ситуаций, в которых скорость развития нейродегенеративных заболеваний можно было бы изменить настолько значительно, насколько значительны показанные нами различия между видами». Иными словами, в плане замедления развития этих заболеваний медицинское вмешательство несравнимо более убого, чем естественные процессы у разных видов.

Райт и его коллеги проследили связь между временем начала болезни и ее развитием от первого появления симптомов до тяжелого состояния у разных животных. Они обнаружили очень тесную корреляцию между развитием болезни и уровнем образования свободных радикалов в митохондриях. Иными словами, у видов с высоким уровнем образования свободных радикалов болезни рано начинаются и быстро прогрессируют, хотя прямой связи с образованием свободных радикалов нет. Напротив, у животных с низким уровнем утечки свободных радикалов заболевания наступают гораздо позже и прогрессируют медленнее. Эта взаимосвязь не случайна, слишком уж тесная тут корреляция. Начало болезни каким-то образом связано с физиологическими факторами, регулирующими долгожительство. На генетические различия списать эту взаимосвязь нельзя, так как в каждом случае и генетические дефекты, и биохимические пути были одинаковы. Нельзя объяснить ее свободными радикалами вообще, так как большая часть мутаций не влияла на образование свободных радикалов. Наконец, эту связь нельзя было увязать с какими-либо другими аспектами уровня метаболизма, так как уровень метаболизма часто (например, что важно, у людей) не коррелирует с продолжительностью жизни.

Скорее всего, говорил Райт, эта корреляция связана с тем, что при всех этих дегенеративных заболеваниях клетки погибают путем апоптоза, а образование свободных радикалов влияет на его порог. Любой генетический дефект создает клеточный стресс, что может привести к апоптозу. Наступит он или нет, зависит от общей степени стресса и способности клеток продолжать выполнять возложенную на них метаболическую работу. Если клетка больше не соответствует высоким требованиям, она совершает апоптоз. А вероятность того, что клетка не справится, зависит от общего метаболического статуса клетки, настройка которого, как мы видели, происходит за счет утечки свободных радикалов из митохондрий. Скорость, с которой клетки активируют ретроградную регуляцию и наращивают число дефектных митохондрий (что приводит к дефициту АТФ), зависит от скорости утечки свободных радикалов. Виды с быстрой утечкой свободных радикалов стоят ближе к порогу и поэтому чаще теряют клетки путем апоптоза.

Конечно, это только корреляция. Причинность этой взаимосвязи пока не доказана. Тем не менее одно исследование, опубликованное в Nature в 2004 г., предполагает, что причинно-следственная связь все же существует. Это исследование принесло некоторым из старших авторов, в том числе Говарду Джейкобсу и Нильсу Горану Ларссону (Каролинский институт, Стокгольм, Швеция), премию Декарта – престижную награду Евросоюза за исследования в области наук о жизни. Эти исследователи ввели мышам мутантную форму гена (такие мыши называются нокин (knockin) мышами, так как в их геном добавлен функциональный ген, в то время как обычно какой-то ген в геноме выключают, и тогда это называется нокаут (knockout). В данном случае нокинтен кодировал так называемый редактирующий фермент. Этот фермент, как редактор, исправляет ошибки, вкравшиеся во время репликации ДНК. В этом исследовании, однако, мышам был введен ген, который кодирует дефектную версию этого фермента. После «вычитки» генетической последовательности этим ферментом в ней оставалось больше ошибок, чем обычно, как если бы над текстом потрудился горе-редактор. Ген, использованный в этом исследовании, кодировал редактирующий фермент, специализированный для работы в митохондриях, так что наделанные им ошибки в основном относились не к ядерной, а к митохондриальной ДНК. Введя мышам этого халтурщика, ученые пожали плоды его работы – обычный уровень ошибок митохондриальной ДНК повысился в несколько раз. Это позволило им сделать два загадочных открытия. Одно из них, которое попало в газетные заголовки, заключалось в том, что такие мыши меньше живут и раньше начинают страдать от таких возрастных проблем, как потеря веса и волосяного покрова, остеопороз и кифоз (искривление позвоночника), пониженная плодовитость и сердечная недостаточность. Однако, возможно, самый загадочный аспект этого исследования заключался в том, что число мутаций не увеличивалось с возрастом мышей. По мере того как мыши старели, число митохондриальных мутаций в их тканях оставалось относительно постоянным. Именно это происходит у людей: существенного роста числа мутаций с возрастом не наблюдается.

Хотя авторам не удалось выявить причину наблюдаемого явления, мне кажется, что любые клетки, которые не в состоянии работать из-за накопившихся мутаций, просто элиминируются путем апоптоза. Таким образом, создается впечатление, что митохондриальные мутации не накапливаются с возрастом. В целом это исследование подтверждает важность митохондриальных мутаций для старения, но не соответствует исходной версии митохондриальной теории старения, согласно которой митохондриальные мутации должны накапливаться и приводить к «катастрофе ошибок». Тем не менее эти открытия поддерживают более тонкую версию митохондриальной теории, которая говорит о том, что груз мутаций постоянно облегчается за счет сигналов от свободных радикалов и апоптоза.

Из этих рассуждений следует несколько важных выводов. Во-первых, создается впечатление, что митохондриальные мутации действительно обусловливают старение и болезни, даже если они не всегда заметны, так как погибают вместе с совершившей апоптоз клеткой. Во-вторых, гены, связанные с определенными заболеваниями, вносят свой вклад в общий уровень клеточного стресса, повышая вероятность гибели клетки путем апоптоза.

Как следует из работ Алана Райта, неважно, что кодирует ген или что затрагивает конкретная мутация. Если мы посмотрим на различия между видами, то выяснится, что время наступления и характер клеточной смерти практически не зависят от самого гена, а зависят от того, насколько близко клетка подошла к порогу апоптоза. Это означает, что бессмысленно пытаться повлиять на конкретные гены или мутации. Весь караван медицинских исследований следует в неверном направлении. В-третьих, исследовательские стратегии, направленные на блокирование апоптоза, тоже, скорее всего, ни к чему не приведут, так как апоптоз является всего лишь удобным и бескровным способом избавиться от поврежденных клеток. Блокируя апоптоз, мы не решаем более глубокую проблему, а именно – неспособность клетки выполнять свою работу. Ей все равно суждена гибель, если не от апоптоза, то от некроза, а этот кровавый конец может только усугубить ситуацию. Наконец, и это крайне важно, дегенеративные старческие заболевания – все! – можно было бы существенно отдалить или даже искоренить, просто замедлив скорость утечки свободных радикалов из митохондрий. Если бы часть миллиардов долларов, идущих на поиск средств лечения отдельных старческих болезней, была бы направлена на поиски средств борьбы с утечкой свободных радикалов, мы, возможно, нашли бы способ излечить все старческие заболевания сразу. По самым скромным оценкам, это была бы величайшая революция в медицине после появления антибиотиков. Так возможно ли это?

18. Лекарство от старости

Старение и старческие заболевания связаны с утечкой свободных радикалов из митохондрий. К сожалению, а может быть к счастью, организм справляется с утечкой свободных радикалов из митохондрий куда более сложным путем, чем наивно полагала первая версия митохондриальной теории старения. Свободные радикалы не только несут смерть и разрушение. Они также играют жизненно важную роль, подстраивая дыхание к потребностям организма и передавая в ядро сигналы о проблемах с дыханием. Это возможно благодаря колебанию уровня утечки свободных радикалов из митохондрий. Высокий уровень утечки свидетельствует о низкой эффективности дыхания. Компенсаторные изменения активности митохондриальных генов в некоторой степени решают эту проблему. Однако если снижение эффективности необратимо и митохондриальные гены не могут вернуть контроль над дыханием, то свободные радикалы, выделяющиеся в большом количестве, окисляют мембранные липиды, а это приводит к исчезновению мембранного потенциала. Митохондрии без мембранного потенциала, по сути, мертвы, и клетка тут же утилизирует их. Поэтому избыток свободных радикалов способствует удалению поврежденных митохондрий. Менее поврежденные митохондрии начинают размножаться и занимают освободившееся место.

Без этого тонкого механизма саморегулирования не могли бы нормально функционировать ни митохондрии, ни клетки в целом. Митохондриальная ДНК накапливала бы мутации, и ситуация вышла бы из-под контроля («катастрофа ошибок»). Сигнальная роль свободных радикалов десятилетиями поддерживает дыхательную функцию долгоживущих клеток на почти оптимальном уровне. Испорченные митохондрии удаляются и заменяются свежими. В конце концов, однако, запас неповрежденных митохондрий иссякает (по крайней мере, в долгоживущих клетках), и клеткам приходится вводить в действие сигнальную систему нового уровня.

Если слишком много митохондрий одновременно теряют способность к нормальному дыханию, то общий уровень свободных радикалов в клетке поднимается, подавая в ядро сигнал об общей дыхательной несостоятельности клетки. Такие окисленные условия меняют картинку в калейдоскопе активных ядерных генов, и они пытаются скомпенсировать ситуацию. Этот процесс получил название ретроградной регуляции, потому что митохондрии и ядро как бы меняются местами: митохондрии начинают контролировать активность ядерных генов. Клетка входит в особое, стрессоустойчивое состояние и может пребывать в нем многие годы. Ее способности к производству энергии ограничены, но это ничего, если нагрузка не слишком велика. Однако любой сильный стресс может негативно сказаться на таких клетках или даже привести к отказу органа. Возможно, этот процесс вносит вклад в хроническое воспаление, свойственное многим старческим заболеваниям.

В стареющих органах наиболее поврежденные клетки удаляются благодаря сигнальной системе, основанной на действии свободных радикалов. Эта система связана с нарушением дыхательной функции. Когда уровень АТФ в клетке падает ниже определенного порогового значения, клетка совершает апоптоз и выбывает из строя. Таким образом усугубляется возрастное «усыхание» органов, но в то же время удаляются неправильно работающие клетки, так что остальные могут функционировать оптимально. Внезапного коллапса, экспоненциальной «катастрофы ошибок», которые были бы неизбежны, играй свободные радикалы чисто разрушительную роль, не происходит. Кроме того, тихая клеточная смерть путем апоптоза как альтернатива кровавому некрозу снижает уровень воспаления в ткани, а значит, продлевает жизнь.

Итак, апоптоз совершают метаболически несостоятельные клетки. Это значит, что вероятность того, что клетка совершит апоптоз, отчасти зависит от метаболических запросов органа. Метаболически активные органы, например мозг, сердце и скелетные мышцы, будут активно терять клетки путем апоптоза. Точное время наступления клеточной смерти зависит от общего уровня стресса. Как мы видели в части 5 книги, настройка этого уровня – заслуга митохондрий, а одним из важных факторов, вовлеченных в процесс настройки, является накопление свободных радикалов. В результате долгоживущие животные поддаются возрастным заболеваниям ближе к концу жизни, а короткоживущие капитулируют быстрее. Общий уровень стресса в клетке может повыситься в связи с определенными наследственными или приобретенными генетическими мутациями или физиологическими травмами, такими как падения, сердечные приступы, болезни, курение и т. п. Из этого можно сделать крайне важный вывод: если митохондрии «настраивают» вклад всех генетических и внешних факторов в старческие заболевания, то теоретически должно быть возможно излечить или отсрочить все такие заболевания сразу. Справиться с ними по отдельности, как мы пытаемся сейчас, нельзя. Все, что нужно, – это снизить утечку свободных радикалов на протяжении жизни.

В этом и заключается проблема. На каждой стадии существования клетки физиология работы митохондрий и самой клетки зависит от сигналов, которые подают свободные радикалы. Попытки подавить образование свободных радикалов лошадиными дозами антиоксидантов могут только усугубить ситуацию (впрочем, не факт, что это вообще возможно). В книге «Кислород» я выдвинул идею о том, что организм невосприимчив к высоким дозам антиоксидантов (теория «двойного агента»). Мы удаляем лишние антиоксиданты из организма, потому что они теоретически могут нарушить чувствительную сигнальную систему, основанную на свободных радикалах. Возможно, я умаляю потенциальную пользу антиоксидантов (будем считать это реакцией на то, что обычно ее безбожно преувеличивают). Может быть, они на что-то и годятся, но, честно говоря, я сомневаюсь, что от них есть толк для чего бы то ни было, кроме корректировки погрешностей питания. Думаю, что если мы хотим сохранить здоровье и продлить жизнь, то нам надо преодолеть притягательную силу антиоксидантов и заново обдумать проблему.

Что еще можно было бы сделать? Скорость утечки свободных радикалов у птиц ниже, чем у млекопитающих. Поняв, чем птицы отличаются от млекопитающих, мы, возможно, поймем, как можно излечить старение и сопутствующие ему заболевания. Можем ли мы стареть, как птицы? Это зависит от того, как это у них происходит.

Согласно новаторской работе Густаво Барха, утечка свободных радикалов в основном наблюдается в комплексе I дыхательных цепей. Поставив серию технически хитрых, но концептуально простых экспериментов с использованием ингибиторов дыхательных цепей, Барха и его коллеги нашли ту единственную субъединицу комплекса I, в которой происходит утечка (всего в комплексе I сорок с лишним субъединиц). Другие методы подтвердили этот результат. Пространственное расположение комплекса таково, что свободные радикалы выходят прямо во внутренний матрикс митохондрии, то есть оказываются в непосредственной близости от митохондриальной ДНК. Понятно, что попытки предотвратить утечку должны быть прицельно направлены на этот комплекс. Неудивительно, что антиоксидантная терапия не работает! Кроме того, что антиоксиданты могут спутать сигнальной системе все карты, их практически невозможно доставить в такое маленькое пространство в достаточно высоких концентрациях. В конце концов, в одной митохондрии находятся десятки тысяч комплексов, а в каждой клетке обычно есть сотни митохондрий. А клеток в человеческом теле порядка 50 триллионов. К счастью, как подсказывают нам птицы, так делать и не надо; уровни антиоксидантов у птиц довольно низкие. Как же они снижают утечку свободных радикалов?

Точного ответа пока нет, но есть несколько вариантов. Возможно, птицы отчасти используют их все. Один вариант заключается в том, что различия прописаны в последовательностях небольшого числа митохондриальных генов. Лучшее доказательство такой возможности, как ни забавно, было получено в исследованиях митохондриальной ДНК человека. В 1998 г. Масаши Танака и его научная группа опубликовали в журнале «Ланцет» данные о том, что почти две трети японских долгожителей имеют одну и ту же вариацию митохондриального гена – точечное изменение кодирующей последовательности одной из субъединиц комплекса I. Распространенность этой мутации в популяции в целом составляет около 45 процентов. Иными словами, если у вас есть это изменение, то у вас есть на 50 процентов больше шансов дожить до ста лет. Этим преимущества не ограничиваются. У вас также вполовину меньше шансов оказаться в больнице во второй половине жизни: вероятность всех возрастных болезней резко снижается. Танака и коллеги показали, что это изменение приводит к небольшому снижению скорости утечки свободных радикалов. В каждый конкретный момент это дает лишь небольшое преимущество, но они незаметно накапливаются на протяжении всей жизни и наконец складываются в один большой плюс. Это именно то доказательство, которое требовалось для подтверждения теории о том, что все возрастные заболевания могут быть связаны с одним простым механизмом. С другой стороны, тут есть и минусы. Эта мутация практически не встречается за пределами Японии, и хотя ее распространенность в этой стране помогает объяснить исключительное количество японцев-долгожителей, всем остальным от нее мало проку. Это открытие, естественно, положило начало охоте на гены долгожительства по всему миру, и вроде бы нашлось еще несколько митохондриальных мутаций с похожим эффектом. Тем не менее проблема заключается в том, что, даже если мы знаем, какой ген и как надо изменить, проделать это на практике означает прибегнуть к генетической модификации человека. Учитывая огромные потенциальные преимущества, это, возможно, стоило бы того… но тут мы входим в этически мутные воды выбора признаков человеческого эмбриона. Поэтому, если общество не сделает поворот на 180° в своем отношении к генетической модификации, нам останется ограничиться замечанием о том, что все это представляет исключительный научный интерес.

Но генетическая модификация – не единственная опция. Возможно, птицы снижают уровень утечки свободных радикалов за счет разобщения дыхательных цепей. Напомню, что при разобщении нарушается взаимосвязь между потоком электронов и производством АТФ, и образующаяся при дыхании энергия рассеивается в виде тепла. Так, разобщение велосипедной цепи нарушает связь между нажатием на педали и движением вперед, велосипедист потеет, но никуда не движется. Огромное преимущество разобщения дыхательной цепи заключается в том, что электроны продолжают течь по цепи (велосипедист по-прежнему жмет на педали), а это, в свою очередь, снижает утечку свободных радикалов. (Разобщение цепи велосипеда тоже можно использовать – для сжигания лишней энергии, – правда, это будет уже не велосипед, а тренажер.) Поскольку высокий уровень утечки свободных радикалов связан и со старением, и с болезнями, а разобщение снижает этот уровень, то оно, наверное, может увеличить продолжительность жизни. Дыхание можно разобщить лишь отчасти (переключить скорость на велосипеде), так что некоторое количество АТФ будет по-прежнему синтезироваться, но часть энергии будет рассеиваться в виде тепла (когда мы катимся на велосипеде под горку, мы можем по-прежнему крутить педали, но цепь при этом задействована не будет). Мораль такова: обеспечивая постоянный поток электронов по дыхательной цепи, разобщение ограничивает утечку свободных радикалов.

В части 4 мы отметили, что мыши с разобщенным дыханием имеют более высокий уровень метаболизма и живут дольше, чем их нормальные сородичи. Кроме того, в части 6 мы говорили о том, что разная восприимчивость африканцев и эскимосов к болезням может быть связана с различиями в разобщении. Если продолжать в том же духе, то можно допустить, что уровень разобщения у птиц выше, чем у млекопитающих похожего размера, и что это может объяснить, почему они дольше живут. При разобщении производится тепло, так что если уровень разобщения у птиц и правда выше, они должны производить больше тепла, чем млекопитающие. И действительно, птицы поддерживают температуру тела на более высоком уровне, чем млекопитающие, примерно 39 °C, а не 37 °C. Это может быть следствием повышенной теплопродукции, связанной с разобщением. Однако на практике, как показывают измерения, это не так. Разобщение дыхательных цепей у птиц и млекопитающих организовано сходным образом, поэтому температурные различия, надо полагать, связаны с различиями в теплоотдаче и теплоизоляции. Видимо, перья лучше, чем меховая шубка.

Тем не менее это вовсе не ставит крест на идее, что разобщение может нам помочь. Благодаря ему можно было бы в принципе не только снизить утечку свободных радикалов и тем самым продлить жизнь, но и сжигать больше калорий и эффективно худеть. Можно было бы одним махом справиться и со всеми старческими заболеваниями, и с ожирением! Увы, имеющийся опыт применения средств от ожирения довольно печален. Пробовали, например, использовать разобщитель динитрофенол, но он оказался токсичным, по крайней мере в использовавшихся высоких дозах. Еще один разобщитель – это популярный клубный наркотик экстази. Он хорошо иллюстрирует потенциальные опасности: поскольку при разобщении образуется тепло, любители повеселиться под кайфом танцуют, посасывая воду из пристегнутой к спине бутылки. Некоторые, кстати, все равно умирают от перегрева. Понятно, что тут нужен более деликатный подход. Забавно, что аспирин тоже слегка разобщает дыхание. Интересно, не с этим ли связаны некоторые из его загадочных полезных качеств?

Исследование Барха предполагает, что меньшая утечка свободных радикалов из комплекса I у птиц связана со снижением его восстановленного состояния. Вспомним, что молекула называется восстановленной, когда получает электроны, и окисленной, когда теряет их. Соответственно, низкое восстановленное состояние означает, что у птиц в любой конкретный момент времени через комплекс I проходит относительно мало электронов. Мы видели, что каждая митохондрия содержит десятки тысяч дыхательных цепей, и в каждой цепи есть свой собственный «подтекающий» комплекс I.

В низком восстановленном состоянии лишь немногие имеют дыхательный электрон, а в остальных – хоть шаром покати. Если вокруг относительно мало электронов, то они с меньшей вероятностью покидают цепи и образуют свободные радикалы. Барха утверждает, что похожий механизм лежит в основе ограничения калорий – единственного надежного метода увеличения продолжительности жизни у млекопитающих на данный момент. В этом случае тоже снижается восстановленное состояние, хотя потребление кислорода практически не меняется. Более того, эти рассуждения объясняют уже упоминавшийся «спортивный парадокс» – тот факт, что спортсмены потребляют больше кислорода, чем обычные люди, а стареют с той же скоростью. Физические нагрузки ускоряют поток электронов, а это снижает восстановленное состояние комплекса I. Электроны быстрее покидают его, что снижает реактивность комплекса. Поэтому регулярные физические нагрузки необязательно повышают скорость утечки свободных радикалов, у спортсменов в хорошей форме они могут даже понижать ее.

Общее во всех этих случаях одно – низкое восстановленное состояние. Это можно сравнить с полупустым шкафом или, скажем, с резервом мощности предприятия. Однако резерв мощности у птиц отличается от резерва мощности при физических упражнениях или при разобщении дыхания и производства АТФ. В последних двух случаях утечка свободных радикалов ограничена, потому что электроны текут по цепи. Когда они покидают один комплекс, он освобождается и готов принять следующий электрон; можно сказать, что освобождается некоторый резерв мощности. В результате менее вероятно, что электроны будут утекать с образованием свободных радикалов. У птиц, однако, в отличие от млекопитающих с эквивалентным уровнем метаболизма и степенью разобщения, высокий резерв мощности поддерживается в состоянии покоя. Иными словами, при прочих равных условиях у птиц больше резерв мощности и поэтому ниже утечка свободных радикалов. А поскольку утечка ниже, они дольше живут.


    Ваша оценка произведения:

Популярные книги за неделю