355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Ник Лейн » Энергия, секс, самоубийство » Текст книги (страница 16)
Энергия, секс, самоубийство
  • Текст добавлен: 12 апреля 2017, 06:00

Текст книги "Энергия, секс, самоубийство"


Автор книги: Ник Лейн


Жанр:

   

Биология


сообщить о нарушении

Текущая страница: 16 (всего у книги 34 страниц)

Зачем митохондриям гены

Вот теперь мы можем понять, почему митохондриям (и хлоропластам) нужен контингент собственных генов. Посмотрим на последнего переносчика дыхательной цепи – цитохромоксидазу (мы обсуждали ее в главе 4). Представим, что в клетке 100 митохондрий. У одной из них мало цитохромоксидазы. Дыхание в этой митохондрии замедляется, в дыхательных цепях возникает затор электронов, которые теперь могут покидать цепи и образовывать свободные радикалы. Митохондрия неэффективна, более того, она скоро нанесет вред сама себе. Чтобы исправить ситуацию, ей нужно больше цитохромоксидазы, и она посылает своим генам сообщение: Больше цитохромоксидазы! Как такое сообщение работает? Сигналом могут быть и сами свободные радикалы: внезапное повышение их количества может менять активность генов за счет факторов транскрипции, которые вступают в действие, только если их окисляют свободные радикалы (то есть они редокс-чувствительны). Иными словами, если цитохромоксидазы не хватает, электроны утекают из цепи в виде свободных радикалов, и их внезапное появление воспринимается клеткой как сигнал, что цитохромоксидазы мало, и она реагирует соответственно[45]45
  Как именно клетка интерпретирует сигнал и «узнает», что цитохромоксидазы мало, это хороший вопрос. Свободные радикалы сигнализируют также о низкой потребности в АТФ, но тогда клетка не пытается улучшить ситуацию за счет добавления новых комплексов: спрос на АТФ остается низким, а поток электронов – медленным. Но клетка может определять уровень АТФ, и поэтому в принципе возможна комбинация двух сигналов – «высокий уровень АТФ» и «много свободных радикалов». В такой ситуации надо рассеять протонный градиент, чтобы поддержать нормальную скорость потока электронов (см. часть 2). Есть данные, что именно это и происходит. Напротив, если дыхательных комплексов недостаточно, то уровень АТФ упадет и поток электронов снова затормозится. Теперь сигналом будет сочетание «низкий уровень АТФ» и «высокий уровень свободных радикалов». Теоретически такая система может различать ситуацию, когда нужно больше дыхательных комплексов, и ситуацию, когда потребность в АТФ низкая. – Примеч. авт.


[Закрыть]
.

Представим, что гены находятся в ядре. Когда приходит сообщение, ядро посылает приказы производить больше цитохромоксидазы. Только что отчеканенные белки отправляются в митохондрии, снабженные обычной адресной биркой, но на ней не написано, в какую именно митохондрию их нужно доставить. С точки зрения ядра все митохондрии одинаковы и находятся по одному и тому же адресу (и трудно представить, как это могло бы быть иначе, потому что популяция митохондрий постоянно обновляется). Поэтому свежая цитохромоксидаза попадает во все 100 митохондрий. Митохондрия, которой не хватало цитохромоксидазы, не получает столько, сколько ей надо. Остальные же получают слишком много и тут же посылают обратно в ядро сообщение: Выключите производство цитохромоксидазы! Такая ситуация с очевидностью совершенно неприемлема. Митохондрии неизбежно потеряют тогда контроль над дыханием, и свободных радикалов будет слишком много. Клетки, потерявшие контроль над дыханием, будут элиминироваться отбором. В самом крайней случае – и это очень существенно – неспособность контролировать дыхание приведет к ограничению числа митохондрий, которые клетка может поддерживать.

Посмотрим, что будет, если гены, отвечающие за производство цитохромоксидазы, останутся в митохондриях. Сигнал «Больше цитохромоксидазы!» дойдет только до локального контингента генов. Они будут продуцировать цитохромоксидазу, которая тут же включится в дыхательные цепи, нормализуя поток электронов и окислительно-восстановительное равновесие. Сигнал «Хватит! Прекратить производство цитохромоксидазы» тоже дойдет только до локальных генов одной конкретной митохондрии. Такое быстрое локальное реагирование может происходить в любой митохондрии клетки и в принципе может быть разнонаправленным в разных митохондриях в одно и то же время. Клетка в целом сохранит контроль над скоростью дыхания и окажется в выгоде, несмотря на высокие затраты, связанные с поддержанием многочисленных генетических станций. Переместить гены в ядро было бы гораздо худшим решением.

В этом месте профессиональные биохимики, а также внимательные читатели найдут что возразить. Во второй части книги я упомянул, что дыхательные комплексы состоят из большого числа субъединиц (до 45 отдельных белков в комплексе I). Митохондриальные гены кодируют лишь некоторые субъединицы, а большинство субъединиц кодируется ядерными генами. Это означает, что дыхательные комплексы – смесь продуктов двух разных геномов. Как тогда могут доминировать митохондриальные гены? Уж конечно, все конструктивные решения должны приниматься с участием ядра? Нет, необязательно. Такое впечатление, что дыхательные комплексы собирают сами себя на основе нескольких базовых субъединиц: после того как эти базовые белки встраиваются в мембрану, они одновременно действуют как маяки и как каркас для сборки остальных субъединиц. Поэтому если митохондриальные гены кодируют эти важнейшие субъединицы, они будут контролировать число новых строящихся комплексов. По сути, митохондрии принимают инженерные решения и маркируют мембрану флажком, вокруг которого происходит самосборка ядерных компонентов комплекса. Учитывая, что ядро одновременно обслуживает сотни митохондрий, общее число флажков в клетке в конкретный момент времени должно оставаться довольно постоянным. Менять общую скорость транскрипции в ядре, чтобы компенсировать флуктуации в отдельных митохондриях, не придется, а вот жестко контролировать скорость дыхания во всех митохондриях клетки сразу вполне получится.

Если все это так, то теория Аллена позволяет сделать конкретные предсказания относительно того, какие именно гены должны были остаться в митохондриях. Они должны кодировать в основном базовые электрон-транспортные белки дыхательной цепи, например цитохромоксидазу, – которые потом будут воткнуты в мембрану как флажок, означающий «Строить здесь!». Так и есть (см. рис. 11).

Рис. 11. Очень упрощенная схема дыхательной цепи, показывающая кодирование субъединиц. Каждый комплекс собирается на многочисленных субъединицах (в случае комплекса I их примерно 46). Некоторые из них кодируются митохондриальными генами, а некоторые – ядерными. Гипотеза Джона Аллена говорит, что митохондриальные гены нужны для локального контроля скорости дыхания, а для этого субъединицы, кодируемые митохондриальными генами, должны быть базовыми субъединицами, включенными в мембрану. Эта схема показывает, что в общем и целом это так и есть: субъединицы, кодируемые митохондриальными генами (показано серым цветом), надежно встроены в мембрану, и вокруг них происходит сборка субъединиц, кодируемых ядерными генами (показано черным цветом). Комплекс II здесь не показан. Он не закачивает протоны, и никакие его субъединицы не кодируются митохондриальными генами

Это справедливо и для хлоропластов, которые, как мы видели, находятся в сходном положении. Конечно, в митохондриях могут сохраниться и еще какие-то гены (случайно или по каким-то другим причинам), но и гены в митохондриях, и гены в хлоропластах всегда и у всех видов кодируют важнейшие электрон-транспортные белки, а также весь аппарат, необходимый для физического производства белков в митохондриях (например, перенос молекул РНК). В тех случаях, когда утрата генов выражена в крайней степени, всегда сохраняется только этот набор генов, ответственных за дыхание. Например, митохондрии Plasmodium, возбудителя малярии, сохранили только три кодирующих белки гена, и в результате им пришлось сохранить весь сложный аппарат, необходимый для производства этих белков в каждой отдельной митохондрии. Все три гена кодируют цитохромы – базовые электрон-транспортные белки дыхательной цепи, – как и предсказывала теория.

Еще одно предсказание теории Аллена тоже в общем и целом соответствует фактам. Оно заключается в том, что органеллы, которым не нужно проводить электроны, потеряют свой геном. Хороший пример – гидрогеносома некоторых анаэробных эукариот (см. часть 1). Гидрогеносомы родственны митохондриям и несомненно происходят от бактерий. Их функция – образование водорода за счет брожения. Они не переносят электроны, и им не нужно поддерживать окислительно-восстановительное равновесие. Согласно теории Аллена, геном им не нужен, и практически во всех случаях они действительно утратили его.

Преграды на пути к сложности у бактерий

Итак, митохондриям нужен базовый набор генов для контроля скорости дыхания. Объясняет ли этот факт, почему бактерии не могут стать эукариотами за счет одного только естественного отбора? Я думаю, да, хотя должен подчеркнуть, что это только мое личное мнение. Бактерии примерно такого же размера, что и митохондрии, поэтому ясно, что один набор генов может контролировать дыхание на определенном участке энергетических мембран. Надо полагать, то же самое относится к бактериям, которые обзавелись обширными внутренними мембранными системами, такими как Nitrosomonas и Nitrosococcus. Они обходятся одним набором генов, так что, судя по всему, этого должно быть достаточно. Но давайте увеличим нашу бактерию и удвоим площадь внутренних мембран. Скорее всего, контроль над некоторым участком мембраны будет утрачен. Нет? Тогда удвойте площадь еще раз. И еще… Нам пришлось бы удваивать площадь внутренней мембраны Nitrosomonas шесть или семь раз, прежде чем он сравнился бы в этом отношении с эукариотами, и я очень сомневаюсь, что после этого он сохранял бы контроль над скоростью дыхания. Итак, контроль утрачен. Как бы нам его вернуть?

Можно было бы копировать часть генов и поручить им регуляцию дополнительных мембран – но как выбрать правильные гены? По-моему, это невозможно без доли предвидения (понимания того, какие гены надо выбрать), а эволюция даром предвидения не обладает. Чтобы дать такое поручение, пришлось бы создать копию всего генома, а потом постепенно «отпиливать» от одного из двух геномов лишние гены (что, собственно, и произошло в митохондриях). Но как узнать, от какого генома нужно отпилить лишнее? Для осуществления генетического контроля должны быть активны оба. Тем временем, однако, мы имеем бактерию с двумя активными геномами, каждый из которых находится под сильным давлением отбора, направленным на утрату лишних генов. Скорее всего, оба генома потеряют некоторое количество генов, но затем эти два непохожих генома начнут конкурировать между собой, что может привести к разрушению клетки (подробнее об этом в шестой части), а вовсе не к повышению ее устойчивости.

Конкуренцию геномов можно было бы смягчить, разграничив их сферы влияния. Эукариоты решили эту проблему, запечатав митохондриальные геномы двойной мембраной. Однако у бактерий это невозможно. Если запечатать запасной набор генов, будет невозможно транспортировать пищу внутрь и АТФ наружу. Заметим, что у бактерий нет экспортеров АТФ. Экспорт энергии конкурентам во внешнюю среду был бы самоубийственной поведенческой чертой. Экспортеры АТФ, как и все семейство из 150 митохондриальных транспортных белков, к которому они относятся, – изобретение эукариот. Мы знаем это, потому что генные последовательности экспортеров АТФ бесспорно родственны у растений, животных и грибов, но подобных бактериальных генов нет. Это означает, что экспортеры АТФ возникли у последнего общего предка всех эукариот – до расхождения основных групп, но после образования химерной предковой эукариотической клетки.

У эукариот было время выработать такие тонкости, потому что отношения между двумя партнерами были стабильны в эволюционном масштабе. Они сосуществовали в мире и гармонии, ни в чем не нуждаясь. И было достаточно времени и возможностей для эволюционных изменений. Такая устойчивость возможна только потому, что у этой ассоциации нашлись и другие преимущества. Если водородная гипотеза верна, изначальным преимуществом была взаимная химическая зависимость двух радикально отличающихся клеток, за долгое время существования которой успели возникнуть экспортеры АТФ. В случае бактерий такой стабильности не было. Удвоение набора генов и запечатывание одной из копий в ограниченном мембраной пространстве не сулило никаких промежуточных преимуществ, наоборот, это только выкачивало бы энергию. Несомненно, естественный отбор быстро элиминировал бы эту особенность. С какой стороны ни посмотри, отбор почти всегда выбрасывает за борт громоздкие дополнительные гены, ответственные за контроль над дыханием на большой площади бактериальных мембран. Самое стабильное состояние – это маленькая клетка, которая дышит через наружную клеточную мембрану. Такая клетка почти наверняка будет в выигрыше по сравнению с большими и неэффективными клетками, к тому же склонными к образованию свободных радикалов.

Итак, мы наконец-то можем в полной мере осознать, как много преград стоит на пути к усложнению и увеличению размера бактерий. Бактерии должны размножаться как можно быстрее, а скорость размножения ограничена, по крайней мере отчасти, скоростью производства АТФ, которое происходит путем закачки протонов через внешнюю мембрану. С увеличением размера энергетическая эффективность бактерий падает. Один этот факт не дает бактериям стать хищниками, ведь для фагоцитоза нужно сочетание большого размера с большими энергетическими возможностями. У некоторых бактерий появились сложные внутренние мембранные системы, но они все равно менее обширны, чем митохондриальные мембраны эукариотической клетки, ведь бактерии, не имеющие дополнительных генетических станций, не могут контролировать скорость дыхания на большой площади. Учитывая сильное давление отбора, направленного на быстрое размножение и эффективное производство энергии, любые промежуточные этапы на пути к появлению таких генетических станций тут же элиминировались бы отбором. Долгосрочные условия, необходимые для масштабного контроля за дыханием, могли возникнуть только на основе устойчивого эндосимбиоза.

Могло ли все случиться иначе где-нибудь в бесконечной Вселенной? Может быть, и да, но я думаю, нет. Естественный отбор – вероятностный процесс, и давление сходных факторов, скорее всего, приведет к сходным результатам. Именно поэтому так часты случаи конвергенции, например появление глаз или крыльев у неродственных групп. За 4000 миллионов лет эволюции ни одна бактерия не смогла стать эукариотом за счет одного лишь естественного отбора и ни одна митохондрия не смогла утратить все свои гены, оставшись при этом митохондрией. Сомневаюсь, что это могло бы случиться и где бы то ни было за пределами Земли.

А как насчет первого эукариота – плода союза двух разных клеток? В первой части мы видели, что эукариотическая клетка возникла лишь однажды в результате крайне маловероятной последовательности шагов. Может быть, она могла бы повториться, но, на мой взгляд, из законов физики совершенно не вытекает неизбежность усложнения. На пути физики стоит, преграждая путь, история. Самое мягкое, что мы можем сказать о возникновении многоклеточной сложности, – это то, что оно было маловероятным событием, а без некоторого уровня сложности невозможен интеллект. Тем не менее, как только были сброшены оковы, державшие бактерии в простоте, рождение большой сложной клетки – первого эукариота – ознаменовало начало дороги, которая почти неизбежно привела эукариот к высочайшим достижениям биоинженерии, которые мы видим вокруг себя и включающих нас самих. Эта дорога была завязана на митохондрии не меньше, чем само возникновение эукариотической клетки, потому что именно они сделали увеличение размеров и усложнение организации не только возможными, но и вероятными.

Часть 4
Сила степенной зависимости
Размеры тела и лестница восходящей сложности

Заложено ли в природе жизни ее усложнение? Может быть, гены и не подталкивают жизнь вверх по лестнице восходящей сложности, но есть одна сила за пределами возможностей генов. Размер и сложность обычно связаны, так как увеличение размеров тела требует большей генетической и анатомической сложности. Ноу большего размера есть одно непосредственное преимущество: чем больше у организма митохондрий, тем больше у него энергии и выше метаболическая эффективность. Возможно, на митохондриях лежит ответственность за две революции: увеличение количества ДНК и генов в эукариотических клетках, подтолкнувшее их к усложнению, и возникновение теплокровных животных.



В тесноте, да не в обиде: число митохондрий диктует эволюцию размера и сложности

Размер оказывает доминирующее влияние на наше восприятие биологических объектов. Нас в основном привлекают крупные формы жизни – растения, животные и грибы, которые можно разглядеть невооруженным взглядом. Интерес к бактериям или вирусам, как правило, связан с их значением для человека и нередко проистекает из нездорового любопытства, желания пощекотать себе нервы. Понятно, что бактерии, вызывающие некроз, от которого человек за считаные дни может остаться без руки или ноги, привлекают больше внимания, чем микроскопический планктон, оказывающий такое серьезное влияние на климат и атмосферу нашей планеты. Учебники по микробиологии уделяют патогенам непропорционально много страниц, притом что патогенна лишь небольшая часть микробов. Прочесывая космос в поисках жизни, мы на самом деле хотим найти внеземной разум и надеемся встретить настоящих пришельцев с извивающимися щупальцами, а не какие-то там микроскопические бактерии. В предыдущих главах мы рассмотрели происхождение биологической сложности, а именно попытались понять, как бактерии дали начало нашим отдаленным предкам, первым эукариотам, морфологически сложным клеткам с ядром и органеллами. Я утверждал, что механизм производства клетками энергии обусловил необходимость симбиоза для эволюции сложности: скорее всего, эукариотические клетки не могли бы возникнуть за счет одного только естественного отбора. Этот скачок стал возможен за счет переноса производства энергии во внутриклеточные органеллы – митохондрии. Симбиоз – обычное явление среди эукариотических клеток, а эндосимбиоз у бактерий встречается редко. Такое впечатление, что бактериальный эндосимбиоз породил сложную эукариотическую клетку только один раз, и, возможно, для этого понадобилась почти невероятная последовательность событий, описанная в части 1.

Однако с появлением первых эукариот мы уже можем совершенно оправданно говорить о лестнице восходящей сложности. Эволюционное восхождение от одноклеточных к людям головокружительно (даже если мы склонны переоценивать сложность нашей собственной организации). Но возникает глобальный вопрос: а что привело к увеличению размеров и усложнению эукариот? Во времена Дарвина был популярен ответ, позволявший многим биологам примирить эволюцию и религию. Он гласил, что усложнение внутренне присуще жизни. Утверждали, что эволюция приводит к усложнению так же, как эмбрион развивается во взрослый организм, а именно следуя предписанным Богом правилам, с каждым шагом приближающим его к небесам. К этой философии восходят многие наши слова и выражения, такие как «высшие организмы» и «возвышение человека», и они все еще в ходу, несмотря на предостережения эволюционистов, начиная с самого Дарвина. Среди них есть сильные поэтические метафоры, но именно они могут очень сильно ввести в заблуждение. Вспомним, что другая яркая метафора – электроны, вращающиеся вокруг атомного ядра, как планеты вокруг Солнца, – долгое время отвлекала от поразительных загадок квантовой механики. Уподобление эволюции эмбриональному развитию затемняет тот факт, что эволюция не обладает даром предвидения. Она в принципе не может действовать по программе, а развитие эмбриона обязательно программируется генами. Сложность не могла возникнуть с целью приближения к Богу, она возникала как непосредственная реакция на непосредственное преимущество.

Если возникновение сложности не было запрограммировано, значит ли это, что она возникла случайно? Или же это было неизбежным следствием действия естественного отбора? Именно то, что бактерии не выказывают ни малейшей склонности к (морфологическому) усложнению, свидетельствует о том, что естественный отбор не всегда способствует усложнению. Если уж на то пошло, он нередко способствует упрощению. С другой стороны, мы видели, что усложнению бактерий мешают проблемы с дыханием, а у эукариот этих проблем нет. Так может быть, эукариоты усложнились просто потому, что имели такую возможность? Стивен Джей Гулд однажды сравнил усложнение с блужданиями пьяницы (возможно, желая отмежеваться от высоких религиозных коннотаций). Если с одной стороны тротуара ему преграждает путь стена, то, скорее всего, он в конце концов окажется в канаве, ведь больше идти некуда. Когда речь идет о сложности, метафорической стеной является базовый уровень жизни. Нельзя быть проще бактерий (по крайней мере, независимому организму), поэтому блуждания жизни могут вести только к ее усложнению. Согласно еще одной схожей гипотезе, усложнение жизни было связано с тем, что эволюционный успех в основном поджидал организмы в новых экологических нишах (так называемая теория видов-пионеров). А если принять во внимание, что самые простые ниши были уже заняты бактериями, жизнь могла эволюционировать только в направлении большей сложности.

Эти две теории предполагают, что у сложности нет никаких внутренне присущих преимуществ. Иными словами, никакие определенные признаки эукариот не способствовали ее возникновению. Усложнение было просто реакцией на открывавшиеся возможности окружающей среды. Я ни секунды не сомневаюсь в том, что эти теорий хорошо объясняют определенные эволюционные тенденции, но мне трудно поверить, что величественное здание сложной жизни на Земле было построено за счет, по сути дела, эволюционного дрейфа. У дрейфа нет направления, а я не могу избавиться от ощущения, что в эволюции эукариот была заложена некая направленность. Пусть «великая цепь бытия» иллюзорна, но этой иллюзии нельзя отказать в убедительности, не зря ведь она владела умами 2000 лет (начиная с Древней Греции). Траектория в направлении усложнения очевидна, и мы не можем оставить ее без объяснения, как мы не можем и сбросить со счетов эволюцию «цели» в биологии (сердце как насос и т. д.). Неужели в процессе случайной прогулки с постоянными остановками в свободных экологических нишах могло возникнуть даже что-то похожее на лестницу восходящей сложности? Искажая аналогию Стивена Джея Гулда, спрошу: как столь многие пьяницы смогли перейти дорогу, не свалившись в канаву?

Один из возможных ответов – это половой процесс. Он присущ эукариотам, но не встречается у бактерий. Связь между полом и сложностью убедительно показывает Марк Ридли в книге Mendel’s Demon («Демон Менделя»). Бесполое размножение, говорит Ридли, плохо справляется с возникающими при копировании ошибками, а также с вредными мутациями. Чем больше геном, тем выше вероятность катастрофической ошибки. Рекомбинация генов при половом размножении может снизить риск такой ошибки и таким образом повысить число генов, которые организм может накопить до наступления мутационного краха (хотя это предположение не было доказано). Понятно, однако, что чем больше генов накопил организм, тем выше его потенциальная сложность, поэтому появление полового процесса у эукариот могло также открыть ворота сложности. В этих доводах, несомненно, есть здравое зерно, однако идея о том, что ключи от ворот сложности хранятся у полового процесса, наталкивается на ряд проблем, и сам Ридли это признает. В частности, число генов у бактерий гораздо меньше теоретического «бесполого» уровня. (При этом бактерии полагаются не только на бесполое размножение; восстановить генетическую целостность помогает им, например, горизонтальный перенос генов.) Ридли признает, что имеющиеся данные можно толковать двояко и что лимит числа генов при бесполом размножении может попадать в промежуток между плодовыми мушками и людьми. Если это так, то вряд ли ворота сложности открыло появление пола. Привратником был кто-то другой.

Я тоже считаю, что у эукариот есть внутренне присущая тенденция к увеличению размеров и усложнению, но, по-моему, причина связана не с полом, а с энергией. Движущей силой стремительного роста разнообразия и сложности эукариот могла быть эффективность энергетического метаболизма. Энергетическая эффективность во всех эукариотических клетках подчиняется одним и тем же принципам, подталкивая к эволюционному увеличению размера как у одноклеточных, так и у многоклеточных организмов, будь то растения, животные или грибы. Эволюция эукариот не была ни неторопливой прогулкой по свободным нишам, ни маршем под барабанную дробь полового процесса; ее траектория объясняется внутренне присущей склонностью к увеличению размера. За полученное преимущество организмы тут уже получали бонус в виде экономии энергии. С увеличением размера животных уровень их метаболизма падает, снижая расходы на жизнь.

Я сейчас фактически объединяю два разных понятия – размер и сложность. Даже если большой размер выгоден из-за снижения затрат на жизнь, действительно ли есть связь между размером и сложностью? Дать определение сложности нелегко, а избежать при этом предвзятости еще труднее. Мы склонны думать о сложности, связанной с интеллектом, поведением, эмоциями, языком и т. д., забывая, например, о сложных жизненных циклах насекомых. Я не одинок в таком подходе. Думаю, что большинство людей скажут, что дерево сложнее травинки, хотя с точки зрения организации фотосинтеза травы, возможно, более продвинуты. Мы считаем, что многоклеточные организмы сложнее бактерий, хотя с биохимической точки зрения бактерии (как группа) гораздо сложнее эукариот. Мы склонны даже в палеонтологической летописи видеть закономерность, известную как правило Коупа, свидетельствующую о существовании эволюционной тенденции к увеличению размера (и, надо полагать, сложности). Долгое время никому и в голову не приходило оспаривать это правило, но несколько систематических исследований 1990-х гг. говорят о том, что оно, скорее всего, иллюзорно. Тенденция к уменьшению размера встречается в палеонтологической летописи ничуть не реже, просто мы, будучи сами большими, зачарованы большими созданиями и не обращаем внимания на всякую мелюзгу.

Так путаем ли мы размер со сложностью, или более крупные организмы действительно более сложны? Любое приращение размера приносит с собой новые хлопоты, и многие из них связаны с соотношением площади поверхности к объему, которое мы обсуждали в предыдущей главе. Некоторые из возникающих при этом проблем осветил великий математический генетик Джон Б. С. Холдейн в очаровательном эссе «О целесообразности размера» (1927 г.). Холдейн приводит пример – микроскопического червя с гладкими покровами, через которые проникает достаточное количество кислорода, прямым кишечником, поверхность которого достаточна для всасывания пищи, и примитивной почкой для выделения. Десятикратное увеличение этого червя во всех направлениях привело бы к увеличению массы его тела в тысячу (103) раз. Если при этом все клетки сохранят прежний уровень метаболизма, то гигантскому червю понадобится в тысячу раз больше кислорода и пищи, а выделять он будет в тысячу раз больше продуктов обмена. Проблема в том, что если форма его тела не изменится, то площадь поверхности, а его поверхности – это двухмерная плоскость, увеличится в 100 (102) раз. Чтобы удовлетворить возросшие требования, каждый квадратный миллиметр кишки или покровов должен будет ежеминутно поглощать в 10 раз больше пищи или кислорода, а почке придется выделять в 10 раз больше продуктов обмена.

При достижении определенного предела увеличение размера становится возможным только за счет формирования специфических адаптаций. Например, специализированные жабры или легкие увеличивают площадь поглощающей кислород поверхности (площадь поверхности легких человека составляет 100 м2), а складчатость увеличивает всасывающую поверхность кишки. Все эти усовершенствования требуют большей морфологической сложности, а также поддерживающей ее генетической сложности. Соответственно, у более крупных организмов, как правило, больше типов специализированных клеток (у людей их до 200, в зависимости от того, что мы считаем типом клеток) и больше генов. Холдейн утверждает, что высокоорганизованные животные больше низкоорганизованных не потому, что они сложнее, – они сложнее, потому что больше. Чуть ниже он пишет: «Сравнительная анатомия есть не что иное, как история борьбы за увеличение поверхности в соответствии с объемом»[46]46
  Здесь и далее цитаты из эссе Дж. С. Холдейна «О целесообразности размера» даны в переводе Г. Э. Фельдмана.


[Закрыть]
.

Большой размер имеет и другие минусы (как будто мало нам чисто геометрических проблем). Большие животные пытаются летать, рыть норы, пробираться через густые заросли и ходить по топким болотам. Если большое животное упадет, это может плохо кончиться, так как сопротивление воздуха во время падения пропорционально площади поверхности. «Можно уронить мышь в угольную шахту глубиной в 1000 ярдов: достигнув дна, мышь, отделавшись легким сотрясением, убежит, – пишет Холдейн. – Человек, упавший с такой высоты, погибнет, а лошадь превратится в лепешку». (Интересно, кстати, откуда он знал про лошадь?) У гигантов жизнь не сахар, так зачем же расти? Холдейн снова предлагает несколько вполне разумных ответов: большой размер дает силу, которая помогает в борьбе за партнера или в битве между хищником и жертвой; большой размер может оптимизировать функцию органов, например глаз, построенных из сенсорных клеток фиксированного размера (поэтому если клеток больше, то глаза тоже больше и лучше видят); большой размер смягчает трудности, связанные с преодолением поверхностного натяжения воды (затянутые силой поверхностного натяжения, насекомые погибают; чтобы избежать этого, им часто приходится пить через хоботок); большой размер лучше сохраняет тепло (кстати, и воду тоже), вот почему мелкие млекопитающие и птицы редко встречаются в полярных районах.

Эти ответы многое объясняют, но видно, что они отражают предвзятую точку зрения млекопитающего. Ни один из них даже близко не подходит к объяснению того, почему такие большие животные, как млекопитающие, вообще возникли. Меня интересует не то, адаптированы ли большие млекопитающие лучше, чем маленькие, а то, почему маленькие клетки дали начало большим клеткам, затем большим организмам и, наконец, высокодинамичным созданиям вроде нас с вами; по сути дела, меня интересует, почему возникло почти все, что мы видим. Если для увеличения размера нужна большая сложность, за которую нужно тут же расплачиваться новыми генами, улучшением организации, энергетическими затратами, то было ли какое-то непосредственное преимущество, благодаря которому расходы на новую дорогостоящую организацию окупились бы немедленно? В части 4 мы попробуем выяснить, могла ли степенная зависимость, определяющая пропорциональные изменения размера, лежать в основе тенденции к усложнению, характерной для эукариот и недоступной бактериям.


    Ваша оценка произведения:

Популярные книги за неделю