355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Ник Лейн » Энергия, секс, самоубийство » Текст книги (страница 24)
Энергия, секс, самоубийство
  • Текст добавлен: 12 апреля 2017, 06:00

Текст книги "Энергия, секс, самоубийство"


Автор книги: Ник Лейн


Жанр:

   

Биология


сообщить о нарушении

Текущая страница: 24 (всего у книги 34 страниц)

Первые шаги к индивидууму

Эта точка зрения полностью совместима с водородной гипотезой, так как предполагает, что участники эукариотического симбиоза мирно уживались, но не забывали о собственных интересах. Митохондрии могли манипулировать клеткой, вызывая половой процесс, но не прибегали к бессмысленному убийству. Более того, такое мягкое манипулирование, при котором интересы обоих участников, как правило, совпадают, объясняет, почему машина смерти сохранялась в одиночных клетках сотни миллионов лет. Половой процесс выгоден как поврежденной клетке, так и митохондрии, и естественный отбор не уничтожает его.

Остается один вопрос: как половой процесс превратился в смерть? Мы знаем, что митохондрии принесли с собой большую часть машины смерти, и, по крайней мере, сегодня они используют ее для убийства клеток путем апоптоза. Если изначальной функцией машины смерти был половой процесс, что же привело к столь радикальному изменению ее функции? Когда стремление к сексу стало наказуемо смертью и почему?

Секс и смерть тесно сплелись. В некотором смысле они служат одной цели. Подумайте, почему дрожжи и Volvox рекомбинируют гены при повреждении ДНК. При рекомбинации поврежденная копия гена, возможно, будет заменена неповрежденной, или, по крайней мере, будет смягчен ущерб от повреждения. Сходным образом, свободные радикалы способствуют горизонтальному переносу генов у бактерий. И в этом случае происходит замена или маскировка поврежденных генов. А как насчет программируемой клеточной смерти? У многоклеточных организмов апоптоз тоже служит способом устранения повреждений. Вместо того чтобы тратить ресурсы на починку поломанной клетки, ее просто выбрасывают и заменяют на новую – дешево и сердито. Может быть, это был первый шаг к нашей современной культуре «одноразовых вещей»? Итак, половой процесс помогает удалять поврежденные гены, а апоптоз – поврежденные клетки. С точки зрения «высшего» организма половой процесс чинит поврежденные клетки, а апоптоз – поврежденные тела.

Блэкстоун считает, что машина апоптоза изначально подавала клеткам знак к слиянию, вызывая рекомбинацию и починку повреждений. Позже, у многоклеточных организмов, эта машина поменяла функциональную нагрузку – она стала вызывать смерть. В принципе для этого нужно было добавить только один шаг – каспазный каскад. Мы уже говорили, что каспазы были унаследованы от α-протеобактерий, но там они только режут на части некоторые белки, а не вызывают смерть клетки. В этом отношении интересно, что разные группы эукариот, по-видимому, вполне независимо включили каспазы в программируемую клеточную смерть. У растений, например, клеточная смерть осуществляется за счет группы родственных белков (метакаспаз), а млекопитающие используют знакомый нам каспазный каскад. Однако в обоих случаях клеточную смерть запускает высвобождение цитохрома с и другие белки из митохондрий. Это может означать, что машина апоптоза независимо возникала у эукариот несколько раз в ответ на один и тот же сигнал (свободные радикалы и высвобождение белков из подвергнутых стрессу митохондрий) и общее давление отбора – необходимость удаления поврежденных клеток из многоклеточного организма.

Если апоптоз связан с полицейским патрулированием многоклеточного государства, а не с «войнами паразитов», а многоклеточные организмы независимо возникали несколько раз (это так), то неудивительно, что детали этого процесса отличаются в разных группах. Если уж на то пошло, поразительно, что у независимо возникших процессов апоптоза столько общего. Откуда взялись эти общие черты?

Блэкстоун и здесь предлагает ответ. Он много лет изучал примитивных животных, таких как морские гидроидные полипы (колонии которых могут размножаться половым путем, а могут и бесполым, за счет почкования). Он утверждает, что, хотя многоклеточная колония и имеет целый ряд преимуществ перед отдельными клетками, с началом клеточной дифференцировки между клетками колонии возникает напряжение. Одни клетки должны выполнять черную работу, например перемещение колонии, а другие образуют плодовые тела – структуры для передачи генов потомкам. Что же мешает клеткам-разнорабочим взбунтоваться?

Хотя все клетки колонии генетически идентичны (по крайней мере, некоторое время), они имеют неравные возможности. У них складывается «кастовая» система, при которой одни клетки пожинают плоды работы других. Блэкстоун утверждает, что в колонии складываются окислительно-восстановительные градиенты. Они зависят от поступления пищи и кислорода, которое колеблется в зависимости от токов воды, других локальных флуктуаций и положения клетки в колонии (на поверхности или в толще других клеток). Некоторые клетки имеют в своем распоряжении достаточно кислорода и пищи, а другие лишены какого-то из этих ресурсов и соответственно находятся в другом окислительно-восстановительном состоянии. Дифференцировка клеток контролируется их окислительно-восстановительным состоянием за счет сигналов от митохондрий. Например, как мы уже говорили, при голодании нехватка дыхательных электронов подает сигнал начинать сопротивляться стрессу.

Стремление к половому процессу, растущее по мере выхода свободных радикалов из митохондрий, тоже является окислительно-восстановительным сигналом. Если поврежденные клетки колонии попробуют вступить в половой процесс с другими клетками, выживание колонии в целом, скорее всего, окажется под угрозой. Ничего, кроме хаоса, из этого не выйдет. Сам сигнал к началу полового процесса служит признаком повреждения клетки. Клетка практически признается, что больше не может выполнять свою работу. Должно быть, в случае соматических клеток сильное давление отбора было направлено на преобразование окислительно-восстановительного сигнала к половому процессу в сигнал к смерти. Со временем удаление отбором поврежденных клеток проложило дорогу к возникновению особи, у которой апоптоз надзирает за стремлением к общему благу. Так отчаянные крики плененных митохондрий, некогда стимулировавшие половой процесс в отдельных клетках, в многоклеточных организмах стали караться смертью самих митохондрий и поврежденных клеток.

Этот ответ прекрасно иллюстрирует корыстные интересы разных клеток и то, как они могут меняться со временем. Окончательный результат может зависеть от окружающей среды. В случае первых эукариотических клеток и сами клетки, и их митохондрии имели собственные эгоистичные интересы. Как правило, они совпадали, но все же не всегда. В частности, если генетическое повреждение мешало клетке делиться, митохондрии оказывались в тюрьме. Они могли выбраться из заточения в результате полового слияния, потому что прямо передавались другой клетке. Сигналом к половому слиянию у простых одноклеточных организмов является выброс свободных радикалов из митохондрий. Таким образом, митохондрии действительно могут манипулировать клеткой, в которой находятся.

Однако когда клетки образовали колонии, времена изменились. Жизнь в примитивной колонии сулит много преимуществ, но ее клетки должны отказаться от возможности вернуться к независимому состоянию. Поэтому путь от колонии к настоящей многоклеточной особи чреват опасностями. Тот факт, что апоптоз есть у всех многоклеточных организмов, наводит на мысль о том, что клетки, переступившие пределы дозволенного, должны принять смертную казнь. Почему они пошли на это? Возможно, потому что поврежденные клетки были преданы собственными митохондриями. Исходящие из митохондрий сигналы в виде свободных радикалов были равнозначны признанию в том, что клетка повреждена. Будущее других клеток колонии оказывалось под угрозой. Смерть поврежденной клетки была выгодна большинству. Так поле военных действий переместилось из отдельных клеток и их митохондрий в клетки колонии, а затем в более привычную для нас обстановку, то есть в конкурирующих многоклеточных особей.

Встает вопрос: а как же размножалась колония как целое? Если любые клетки колонии, «стремящиеся» к половому размножению, элиминируются, то колония в целом должна была найти приемлемый для всех способ размножения. У современных организмов (не у всех) специализированные половые клетки образуются из клеток зародышевой линии, которая обособляется задолго до рождения[63]63
  Не все гены кодируют белки. Есть гены, конечные продукты которых – молекулы РНК. Самые распространенные из них это транспортные РНК (тРНК) и рибосомальные РНК (рРНК). Оба типа молекул задействованы в процессе белкового синтеза. тРНК доставляет аминокислоты к рибосоме. В рибосоме в этот момент уже находится информационная РНК (иРНК), последовательность каждых трех «букв» которой кодирует одну аминокислоту. Основная роль тРНК – обеспечивать соответствие между кодом иРНК и аминокислотой. Каждый тип тРНК связывается только с одной аминокислотой и распознает только один «трехбуквенный» код иРНК. Поэтому мутация в гене, кодирующем какую-либо тРНК, приведет к очень серьезному нарушению белкового синтеза в клетке или в организме в целом – в белковые цепочки будут подставляться «неправильные» аминокислоты. Не менее важна роль рРНК, которая служит структурным компонентом рибосом и состоит из двух субъединиц – большой и малой. Большая субъединица рРНК является рибозимом (РНК-энзимом). Она катализирует формирование химической связи между аминокислотами, объединяющимися в белковую молекулу. Поэтому мутация в гене, кодирующем рРНК, также приведет к тяжелым последствиям. – Примеч. науч. ред.


[Закрыть]
. Как и почему началось такое обособление, непонятно, но если наказанием за секс, как правило, служила смерть, то, наверное, проще сделать одно исключение. Вероятно, на обособление клеток зародышевой линии было направлено сильное давление отбора. Такое решение могло привести к очень неожиданному результату. После обособления зародышевой линии многоклеточные особи могли размножаться только половым путем. Ни особь, ни ее отдельные клетки, ни даже хромосомы больше не переходили из поколения в поколение. Тела исчезали и возникали вновь, недолговечные и неповторимые, как облака. Вы уже слышали что-то похожее? Да, я повторяю то, о чем говорил в начале этой части: эти условия обусловили появление эгоистичного гена. Какая ирония, что после долгих битв между отдельными клетками, которые дали начало многоклеточным особям, лавровым венком, возможно, был увенчан самозванец, проскользнувший через черный ход, – ген.

Примитивные многоклеточные колонии стоят у ворот секса и смерти, эгоистичных клеток и эгоистичных генов. Было бы крайне любопытно больше узнать об их поведении. Еще было бы интересно понять, как именно митохондрии подают сигнал к началу полового процесса в отдельных клетках. С точки зрения митохондрий половой процесс, может, и является удачным решением, но слияние двух клеток может привести к другому конфликту, а именно конфликту между двумя популяциями митохондрий из двух слившихся клеток. Эти популяции могут соперничать, а страдать будет образовавшаяся при слиянии клетка. Современные организмы, у которых есть половой процесс, прибегают к невообразимым ухищрениям, чтобы помешать передаче митохондрий одного из родителей следующему поколению. На клеточном уровне наследование митохондрий только от одного родителя является одним из определяющих признаков пола. Митохондрии не только способствовали появлению полового процесса, но и определили разделение на женщин и мужчин.

Часть 6
Битва полов
Предыстория человека и его гендерная природа

У мужчин есть сперматозоиды, а у женщин – яйцеклетки. И сперматозоиды, и яйцеклетки передают следующему поколению гены, содержащиеся в ядре, но обычно только яйцеклетка передает следующему поколению митохондрии с их маленьким, но важным геномом. Материнское наследование митохондриальной ДНК позволяет проследить родословную всех человеческих рас до «митохондриальной Евы», которая жила в Африке 170 000 лет назад. Свежие данные подвергают сомнению эту парадигму, зато проясняют, почему обычно именно мать передает потомству митохондрии. Более того, они помогают объяснить, почему вообще возникли два пола.



Митохондриальный геном – маленькая кольцевая ДНК, которая передается ребенку от матери вместе с митохондриями

В чем заключается коренное биологическое различие между полами? Думаю, большинство людей назовут Y-хромосому, но они ошибутся. Многие слышали, что Y-хромосома играет важнейшую роль в половом развитии, но тем не менее даже у людей она не всегда однозначно определяет пол. Примерно одна женщина из 60 тысяч является носительницей Y-хромосомы и, соответственно, имеет типично мужское сочетание хромосом XY. Приведу печальный пример: в 1985 г. Марию Патиньо, испанскую чемпионку по забегу на 60 м с барьерами, подвергли публичному унижению и лишили всех медалей, после того как она не прошла обязательный «тест на пол», несмотря на то что она явно не была мужчиной и не использовала допинг. На самом деле она была «устойчива к андрогену». Ее тело не откликалось на естественное присутствие тестостерона и поэтому развивалось «по умолчанию», то есть как женское тело. Никакого «незаслуженного» гормонального или мышечного преимущества перед другими женщинами у нее не было. Почти три года спустя, после долгих юридических разбирательств, Международная любительская легкоатлетическая федерация (IAAF) восстановила Марию Патиньо в правах. В 1992 г. IAAF вообще отменила эти тесты, а в мае 2004 г., перед Олимпийскими играми в Афинах, Международный олимпийский комитет постановил, что принимать участие в играх могут даже транссексуалы, потому что у них тоже нет гормонального преимущества.

Интересно, что Y-хромосома есть у каждой пятисотой олимпийской спортсменки. В человеческой популяции в целом она встречается гораздо реже. Видимо, какое-то физическое преимущество она дает (но с гормонами оно не связано). Нередко имеют Y-хромосому модели и актрисы. Как ни забавно, внешние данные ее носительниц (они часто оказываются высокими и длинноногими красавицами) привлекательны для гетеросексуальных мужчин. Напротив, некоторые мужчины лишены Y-хромосомы, а вместо нее имеют вторую X-хромосому. В этом случае одна из X-хромосом, как правило, содержит мелкий фрагмент Y-хромосомы, который содержит критический ген, определяющий развитие носителя как мужчины. Тем не менее иногда она его не содержит, а носитель все равно развивается как мужчина. Несколько чаще (примерно один раз на 500 родившихся мальчиков) встречается сочетание XXY (синдром Клайнфелтера). По результатам теста, после которого дисквалифицировали Марию Патиньо, люди с таким сочетанием могли бы войти в женскую сборную на Олимпийских играх – с гистологической точки зрения это женщины (так как у них есть вторая X-хромосома), хотя по всем остальным признакам это мужчины. Встречаются и другие необычные сочетания, в том числе такие, которые приводят к гермафродитизму, когда у одного человека есть признаки обоих полов, например и яичники, и семенники.

Маловажность Y-хромосомы становится очевидной, если рассмотреть детерминацию пола у разных видов. Почти все млекопитающие имеют знакомую нам систему X/Y-хромосом, но есть и исключения. Журналисты небезосновательно трубят тревогу, что Y-хромосома вымирает. Дело в том, что мутации, затрагивающие Y-хромосому, трудно скорректировать (в норме Y-хромосома только одна, и рекомбинация невозможна, так как нет «чистовика», который можно было взять за образец), а накопление мутаций может привести к «мутационному коллапсу». Известны случаи, когда млекопитающие действительно утратили Y-хромосому. Это произошло, например, у двух видов слепушонок (Ellobius tancrei и E. lutescens) – небольших грызунов семейства хомяковых. У E. tancrei оба пола имеют непарные X-хромосомы, а у E. lutescens и самки и самцы несут две X-хромосомы. Детерминация пола у слепушонок остается полной загадкой, но отрадно сознавать, что исчезновение Y-хромосомы не означает вымирания мужчин как класса.

Если заглянуть чуть дальше, X– и Y-хромосомы вообще начинают казаться несущественной подробностью. Половые хромосомы птиц (их обозначают как W– и Z-хромосомы) содержат другой набор генов, чем у млекопитающих, и, возможно, возникли независимо. Они наследуются не так, как у млекопитающих, а наоборот: самцы несут две Z-хромосомы (как самки млекопитающих), а самки несут по одной копии W– и Z-хромосомы. Интересно, что у рептилий, от которых произошли и птицы и млекопитающие, существуют обе хромосомные системы, а также ряд вариаций. Самое поразительное, что детерминация пола у холоднокровных рептилий часто вообще не зависит от половых хромосом, а зависит от температуры инкубации яиц. Например, у аллигаторов самцы получаются из яиц, развивающихся при температуре выше 34 °C, а самки – из яиц, развивающихся при температуре меньше 34 °C; при промежуточной температуре получаются и самцы и самки. У других рептилий все может быть наоборот. Скажем, у морских черепах самки развиваются из яиц, инкубируемых при более высокой температуре.

Разнообразие вариантов детерминации пола не исчерпывается рептилиями. У перепончатокрылых насекомых (муравьи, осы, пчелы и др.) самцы часто развиваются из неоплодотворенных яиц, а самки – из оплодотворенных. Поэтому если пчелиная матка спаривается с трутнем, ее дочери имеют три четверти общих генов, а не половину, как в случае систем X/Y или W/Z. Такие сходные генетические черты могли способствовать отбору на уровне колонии, а не на уровне особей, приводя к возникновению эусоциальности, когда размножение является уделом особой касты.

У некоторых ракообразных пол пластичен, то есть особи могут его менять. Возможно, самый странный пример представляют собой разнообразные членистоногие, которых заражают бактерии рода Wolbachia. Они превращают самцов в самок, обеспечивая свое попадание в яйцеклетку (со спермиями эти бактерии не передаются). Иными словами, пол определяется инфекцией. Есть и примеры половой пластичности, не связанные с инфекцией. Например, пол могут менять некоторые тропические рыбы, в частности обитатели коралловых рифов. (Представляете, как это могли бы обыграть создатели мультфильма «В поисках Немо»?) На самом деле, большинство рыб, живущих в коралловых рифах, в какой-то момент жизни меняют пол; редкие оригиналы, которые этого не делают, презрительно называются раздельнополыми. Все остальные – убежденные транссексуалы: у одних самцы становятся самками, и наоборот, другие меняют пол то туда, то обратно, а третьи вообще гермафродиты, то есть самцы и самки одновременно.

Если в этой половой какофонии и просматривается какой-то порядок, то он точно не связан с Y-хромосомой. С эволюционной точки зрения пол случаен и переменчив, как картинка в калейдоскопе. Один из оплотов стабильности – это существование двух полов. За исключением некоторых грибов (о них чуть позже), существует очень мало организмов, имеющих больше двух полов. Тем не менее странно уже то, что разнополость вообще нужна. Дело в том, что существование двух полов вдвое снижает число потенциальных партнеров. Встает вопрос: а что плохого в одном поле (то есть в полном отсутствии полов)? Тогда был бы шире выбор потенциальных партнеров, стерлись бы различия между гомосексуалистами и сторонниками традиционной ориентации. Все были бы счастливы, разве нет? К сожалению, нет. В этой части книги мы увидим, что к худу или к добру, но мы обречены на два пола. Надеюсь, вы уже догадались, что виноваты в этом митохондрии.

13. Асимметрия пола

У пола есть два фундаментальных аспекта. Первый – это сама потребность в партнере, второй – потребность в специализированных типах спаривания, когда нужен не кто попало, а представитель противоположного пола.

О спаривании мы говорили в части 5 книги. Пол называют величайшей экзистенциальной нелепостью, так как он предполагает двойные затраты: при половом размножении два партнера производят одного потомка, в то время как при бесполом размножении один родитель производит две идентичные копии. Воинствующие феминистки и эволюционные биологи сходятся в том, что самцы – обуза для общества.

Большинство эволюционистов полагают, что преимущество пола связано с рекомбинацией ДНК. Это помогает удалять «неисправные» гены и повышает уровень изменчивости, позволяющей идти на шаг впереди от изобретательных паразитов или быстрых изменений условий окружающей среды (хотя все эти предположения нуждаются в экспериментальной проверке). Конечно, для рекомбинации нужны двое, отсюда необходимость по крайней мере в двух родителях. Но даже если мы согласны, что рекомбинация, а значит и спаривание, – это важно, то почему нельзя спариваться с кем попало? Почему все не могут быть одного пола? Или, учитывая чисто практические ограничения, связанные с оплодотворением, почему все не могут быть гермафродитами и объединять обе половые функции в одном теле?

На последний вопрос можно ответить после самого поверхностного обзора гермафродитизма. Он показывает, что у гермафродитов жизнь не мед. Немецкого философа Артура Шопенгауэра, известного женоненавистника, однажды спросили, почему мужчины неплохо ладят друг с другом, в то время как женщины враждебно относятся к представительницам своего пола. Он ответил, что все женщины имеют одно ремесло (надо полагать, охоту за мужчинами), а мужчины занимаются разными вещами, и потому им нет нужды столь безжалостно соперничать. Спешу решительно отмежеваться от этой точки зрения, но она помогает понять, почему в природе так мало гермафродитных видов животных (о растениях я сейчас не говорю). Все особи-гермафродиты имеют одинаковое ремесло и вынуждены конкурировать друг с другом.

Неприятности, связанные с такой конкуренцией, можно оценить на примере морского плоского червя Pseudobiceros bedfordi. При спаривании этих гермафродитных червей разыгрываются настоящие битвы. У каждого из соперников есть два пениса, и они орудуют ими как фехтовальщики, пытаясь как замазать партнера спермой, так и самому не подвергнуться оплодотворению. Эйякулят прожигает отверстие в покровах червя, так что тот иногда разрывается надвое. Проблема в том, что каждый из участников битвы хочет быть самцом. Самка почти по определению вкладывает в потомство больше ресурсов, а это означает, что особи передадут потомству больше своих генов, если смогут оплодотворить других, оставшись неоплодотворенными. Мужская часть червя стремится «гулять на стороне», а женская – «не залететь». Похоже, что зависть к пенису – явление, выходящее за рамки психологии. Согласно бельгийскому эволюционному биологу Нико Михиелсу, мужская стратегия спаривания, то есть разбрызгивание спермы, может быть присуща всему виду гермафродитных животных и приводит к формированию таких странных половых конфликтов, как фехтование пенисами у плоских червей. Два специализированных пола – путь из этой западни. Самки и самцы расходятся в представлениях о том, когда спариваться и с кем; самцы обычно более настойчивы, а самки более разборчивы. Итог – эволюционная гонка вооружений, в которой каждый пол оказывает влияние на адаптации другого, не давая осуществиться наиболее диким стратегиям спаривания. Как правило, гермафродитный образ жизни подходит виду, если шансы найти партнера невелики, например в популяциях с низкой плотностью или у неподвижных организмов (вот почему многие растения – гермафродиты), а разные полы появляются у подвижных видов и видов с высокой плотностью популяций.

Все это очень интересно, но скрывает более глубокую тайну: происхождение асимметрии мужской и женской роли. Я уже упоминал, что самки «почти по определению» вкладывают в потомство больше ресурсов. Некоторые могут усмотреть в этом замечании мужской шовинизм: дескать, самец может, сделав дело, уйти, куда ему вздумается. Имелось в виду не это. У многих организмов, размножающихся половым путем, различия во вкладе родителей минимальны. Амфибии и рыбы, например, производят яйца, которые оплодотворяются снаружи и часто развиваются без какого-либо дальнейшего родительского вклада; у некоторых ракообразных о молоди заботятся только самцы. У морских коньков отец вынашивает оплодотворенные яйца в выводковой сумке. По сути, он беременеет, а потом производит на свет до 150 мальков. Тем не менее глубинное неравенство между полами остается и в этих случаях, только оно проявляется на уровне половых клеток (гамет). Сперматозоиды мелкие и малоценные. У мужчин (и самцов вообще) их хоть пруд пруди. Напротив, женщины, и самки вообще, образуют гораздо меньше яйцеклеток значительно большего размера. Не в пример скользким различиям, основанным на половых хромосомах, это различие абсолютно. Самки образуют большие неподвижные яйцеклетки, а самцы – маленькие подвижные сперматозоиды.

На чем основана эта асимметрия? Предлагались разные объяснения. Одно из самых убедительных говорит о дестабилизирующем противостоянии качества и количества – маленького числа больших гамет и большого числа маленьких гамет. Дело в том, что оплодотворенное яйцо содержит не только гены, но и все питательные вещества и всю цитоплазму (а также все митохондрии), необходимые для роста нового организма. Между потребностями потомства и родителей неизбежно возникает напряжение. Для хорошего старта в жизни потомство «хочет» получить много питательных веществ и цитоплазмы, а родители «хотят» пожертвовать как можно меньшим, оплодотворив как можно больше. Родительская жертва обходится особенно дорого, если родители микроскопически малы, а именно так и обстояло дело на заре эволюции пола более миллиарда лет назад.

Если успех оплодотворенного яйца зависит, по крайней мере отчасти, от количества вложенных в него ресурсов, то можно наивно предположить, что естественный отбор будет способствовать одинаковому вкладу от обоих родителей. Действительно, затраты родителей при этом будут минимальны, а польза для потомства – максимальна. По этим меркам сперматозоиды не вкладывают в следующее поколение практически ничего, кроме генов, и не имеют селективного преимущества. Фактически они ведут себя как паразиты – берут, ничего не давая взамен. Паразитическое поведение – не такая уж редкость, но почему сперматозоиды паразитируют всегда? В случае амфибий и рыб, выметывающих яйца в окружающую среду, можно дать такой ответ: миллионы мелких сперматозоидов могут оплодотворить больше яиц за счет «сплошного охвата». Тем не менее странно, что сперматозоиды и яйца сохранили огромную разницу в размерах даже при внутреннем оплодотворении. В мире млекопитающих миллионы мелких сперматозоидов стремятся к одной-двум яйцеклеткам, запертым в фаллопиевой трубе, а не к тысячам рассеянных по океану яиц. Почему? Потому что уже поздно (или просто незачем) что-то менять? Или существует какая-то более фундаментальная причина огромной разницы в размерах? Есть веские доказательства в пользу того, что такая причина существует.


    Ваша оценка произведения:

Популярные книги за неделю