355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Ник Лейн » Энергия, секс, самоубийство » Текст книги (страница 22)
Энергия, секс, самоубийство
  • Текст добавлен: 12 апреля 2017, 06:00

Текст книги "Энергия, секс, самоубийство"


Автор книги: Ник Лейн


Жанр:

   

Биология


сообщить о нарушении

Текущая страница: 22 (всего у книги 34 страниц)

Палачи

Более десяти лет «евангелисты апоптоза» – Эндрю Уайли и несколько других исследователей – пытались убедить научное сообщество в важности этого явления. Поначалу они сталкивались с непониманием и равнодушием. Уайли начал обращать других в свою веру после того, как показал, что при апоптозе хромосомы распадаются на сегменты с характерным «лестничным» паттерном, который можно выявить при биохимическом анализе. Теперь апоптоз можно было диагностировать в лабораторных условиях, и подозрения циничных биохимиков, что под видом открытия им пытаются преподнести артефакт электронной микроскопии, оказались беспочвенны. Но переломный момент наступил в середине 1980-х гг., когда Роберт Хорвитц (Массачусетский технологический институт) начал идентифицировать гены, отвечающие за апоптоз, у нематоды Caenorhabditis elegans (за это исследование он получил Нобелевскую премию 2002 г., разделив ее с Сиднеем Бреннером и Джоном Салстоном). Эта микроскопическая нематода как модельный объект имеет целый ряд крупных преимуществ. Во-первых, она прозрачная, так что судьбу отдельных клеток можно проследить под микроскопом. Во-вторых, во время эмбрионального развития путем апоптоза погибает небольшая, предсказуемая группа клеток (131 из 1090 соматических клеток, образующих организм нематоды). В-третьих, средняя продолжительность жизни С. elegans составляет всего 20 дней, и ее развитие нетрудно прослеживать в лабораторных условиях.

Хорвитц и его коллеги открыли несколько генов смерти, продукты которых провоцируют апоптоз у этой нематоды. Это было само по себе крайне интересно, но еще более неожиданным и важным оказалось другое открытие – точные эквиваленты генов смерти есть у мух, млекопитающих и даже растений. К тому времени исследователи рака уже выявили ряд этих генов, но какое отношение они имели к раку, было непонятно. Исследования, выполненные на нематодах, не только помогли прояснить их функцию, но и в очередной раз продемонстрировали фундаментальное единство жизни. Гены смерти человека оказались родственными соответствующим генам нематод, но это далеко не все. Оказалось, что, используя методы генетической инженерии, эти гены человека можно перенести в геном нематоды (заменив ее собственные гены), и они будут там прекрасно работать! Мутации, «выключающие» гены смерти, приводят к тому, что нематоды не теряют 131 клетку за счет апоптоза. Следствия данного открытия для изучения рака были очевидны: если у людей мутации этих генов приводят к тому же результату, то зарождающиеся раковые клетки вместо того, чтобы совершить самоубийство, будут размножаться с образованием опухоли.

К началу 1990-х гг. исследователи поняли, что некоторые онкогены и гены-супрессоры опухолей действительно контролируют судьбу клетки, влияя на апоптоз. Иными словами, рак возникает из-за клеток, потерявших способность к апоптозу, а они теряют эту способность после мутаций, затрагивающих гены смерти. К генам смерти относятся любые гены, который подталкивают клетку к апоптозу, и к ним могут относиться как онкогены, так и гены-супрессоры опухолей, потому что и те и другие могут отменить приказ совершить самоубийство. Как сказал в свое время Уайли, «билет до апоптоза прилагается к билету до рака, и чтобы добраться до рака, нужно сначала аннулировать билет до апоптоза».

За исполнение программы клеточной смерти отвечают особые палачи – белки каспазы. (Раньше эти белки назывались «цистеин-зависимые аспартат-специфические протеазы», но, по-моему, их современное название несколько более выразительно.) У животных описано больше десятка различных каспаз, и 11 из них есть у людей. Все они работают примерно одинаково: режут белки на кусочки. Некоторые из обрезков, в свою очередь, активируются и приступают к разрушению других компонентов клетки, например ДНК. Интересно, что каспазы не производятся на заказ по мере необходимости, а образуются постоянно, а потом ждут мобилизации в неактивном состоянии. Каспазы – это дамоклов меч, подвешенный над клеткой на тонкой нити. Бросает в дрожь от мысли, что эта тихая машина смерти затаилась практически во всех эукариотических клетках.

Все мы сидим под этим дамокловым мечом и должны радоваться, что нить, на которой он подвешен, довольно прочная. После активации каспаз назад дороги нет, но требуются многочисленные проверки и перепроверки, прежде чем древний механизм смерти придет в движение. В последние двадцать лет эта система контроля интенсивно изучается, однако разобраться в хаосе названий и сокращений может только крайне дотошный читатель. Ситуацию усложняет то, что по историческим причинам один и тот же ген называется по-разному у разных организмов. Это напоминает мне кельтскую музыку, где одна и та же мелодия часто известна под разными названиями, а одно и то же название относится к разным мелодиям. Бесконечные вариации на тему – это очень мило, но пониманию не способствует. Приведу пример: ген ced-3 нематоды называется nedd-2 у мыши, dcp-i у плодовой мушки-дрозофилы и ICE (интерлейкин-1-бета-конвертирующий фермент) у людей (так как сначала открыли, что он вовлечен в производство иммунного посредника интерлейкина-1-бета). Когда показали, что ген ced-3 важен для апоптоза у нематод, ученые присмотрелись к гену ICE и поняли, что он тоже отвечает за производство каспазы. Теперь его называют каспаза-1, хотя он, видимо, играет не столь существенную роль в апоптозе у человека, как ced-3 в апоптозе нематод. Каспазы и другие похожие ферменты (паракаспазы, метакаспазы) были найдены у грибов, растений, водорослей, простейших и даже губок. Они практически универсальны у всех эукариотических организмов, и надо полагать, что их предшественники уже были у самых ранних эукариот, то есть, возможно, 1,5–2 миллиарда лет назад.

Я не собираюсь заводить вас в болото подробностей. Скажу только, что регуляция апоптоза – это сложный, многоступенчатый процесс, когда одна каспаза активирует другую, та – следующую и т. д. Под конец каспазного каскада в действие приводится маленькая армия палачей, которая и разрубает клетку на части[60]60
  Каспазный каскад усиливает сигнал за счет действия ферментов. Фермент – это катализатор, он действует на субстрат реакции, но сам не меняется, что позволяет ему действовать на множество субстратов. Если эти субстраты сами являются ферментами, которые активировал первый фермент, то каждый шаг усиливает ответ. Если первый фермент активирует 100 вторичных ферментов, а каждый из них активирует 100 «ферментов-палачей», то мы имеем армию из 10 000 палачей. Это тоже ферменты, и каждый из них наносит больше одного удара. Добавьте еще один промежуточный шаг, и вы получите миллионную армию каспаз. – Примеч. авт.


[Закрыть]
. Этот процесс может быть обращен вспять практически на каждой ступени за счет других белков, отвечающих за то, чтобы ложная тревога не привела к оргии смерти и разрушения.

Митохондрии – ангелы смерти

Только что описанные представления сложились к середине 1990-х гг. Никакие из них не были опровергнуты. Тем не менее за последнее время интерпретация накопленных фактов настолько изменилась, что сложившаяся в 1990-е гг. парадигма подверглась революционным изменениям. С точки зрения этой парадигмы ядро клетки представляет собой ее операционный центр, и оно же контролирует ее судьбу. Во многих отношениях, конечно, так и есть, но в случае апоптоза это не так. Живительно, но клетки, лишившись ядра, сохраняют способность к апоптозу. Принципиально новым было открытие того факта, что судьбу клетки контролируют митохондрии. Именно они решают, жить ей или умереть.

Машину смерти можно привести в действие двумя способами. Раньше они казались очень разными, но последние исследования находят у них некоторые общие черты. Первый механизм называется внешним путем апоптоза, потому что сигнал к запуску машины смерти подается извне, через «рецепторы смерти» на внешней стороне клеточной мембраны. Например, активированные иммунные клетки производят химические сигналы (такие, как факторы некроза опухоли), связывающиеся с «рецепторами смерти» раковых клеток, находящихся на начальных стадиях трансформации. «Рецепторы смерти» передают в клетку сигнал, который активирует каспазы и вызывает апоптоз. Было понятно, что многие подробности нуждаются в уточнении, но казалось, что картина в общем и целом ясна. Ничего подобного!

Второй механизм запуска машины смерти называется внутренним путем апоптоза. Как следует из названия, толчок к самоубийству приходит изнутри и обычно связан с повреждением клетки. Например, повреждение ДНК в результате ультрафиолетового облучения активирует внутренний путь, приводя к апоптозу клетки без какого-либо внешнего сигнала. Были найдены сотни триггеров внутреннего пути апоптоза, которые не действуют через «рецепторы смерти», а непосредственно повреждают клетку. Они потрясающе разнообразны. Апоптоз вызывают многие токсины и вещества, загрязняющие окружающую среду, а также некоторые лекарства, использующиеся в химиотерапии рака. Вирусы и бактерии тоже могут вызывать апоптоз. Это особенно хорошо видно в случае СПИДа, когда погибают сами иммунные клетки. Вызывают апоптоз и многие стрессовые факторы: перегрев, переохлаждение, воспаление, оксидативный (или окислительный) стресс. Клетки могут совершать апоптоз после сердечного приступа, инсульта или трансплантации органа. Все эти разнообразные пусковые механизмы независимо приводят к одному и тому же результату – активации каскада каспаз, и поэтому характер апоптоза во всех этих случаях очень похож. Надо полагать, сигналы каким-то образом сходятся к одному и тому же «выключателю», который переводит фермент каспазу из неактивной формы в активную. Эта биохимическая задача специфична как замок и подходящий к нему ключ. Но что, спрашивается, может распознать разные сигналы, оценить их силу и направить их по единому пути одним поворотом ключа – активацией каскада каспаз?

Половину ответа дали в 1995 г. Науфал Замзами и его коллеги, работавшие в составе исследовательской команды Гвидо Кремера в Национальном центре научных исследований (Вильжюиф, Франция). Две публикации этой группы в «Журнале экспериментальной медицины» стали одними из самых цитируемых работ в области медицинских исследований. Некоторые факты тогда уже указывали на то, что митохондрии вовлечены в апоптоз, но группа Кремера доказала, что митохондрии играют в этом процессе ключевую роль. В частности, они показали, что одним из главных триггеров апоптоза является деполяризация внутренней митохондриальной мембраны (см. часть 2 книги). Если мембранный потенциал на некоторое время утрачивается, клетки всегда совершают апоптоз. Во второй статье группа Кремера показала, что этот процесс состоит из двух этапов. За деполяризацией мембраны следует резкое увеличение числа свободных радикалов, которое, по-видимому, нужно для перехода к следующей стадии апоптоза.

Такой двухтактный ход – деполяризация митохондриальной мембраны и выброс свободных радикалов – является реакцией практически на все внутренние триггеры. Иными словами, митохондрии являются и сенсорами, и передатчиками самых разнообразных сигналов при повреждении клетки. Достаточно перенести апоптотические митохондрии в нормальную клетку, и ее ядро фрагментируется, а клетка погибнет. Напротив, заблокировав «двухтактный ход», можно задержать или даже предотвратить апоптоз. Однако оставался вопрос: как апоптотические митохондрии взаимодействуют с клеткой? В частности, как они активируют каспазы?

На этот вопрос ответила группа Сяолун Ванга из Университета Эмори (Атланта, Джорджия) в 1996 г. Как выразился один специалист, ответ вызвал «всеобщее остолбенение». Он гласил: «цитохром с». Если помните, мы встречались с ним в части 2. Этот белок, открытый Дэвидом Кейлином в 1930 г., является компонентом дыхательной цепи и отвечает за перенос электронов от комплекса III к комплексу IV. В норме он связан с наружной стороной внутренней мембраны митохондрий, то есть обращен в межмембранное пространство (см. рис. 5). Группа Ванга обнаружила, что при апоптозе цитохром с высвобождается из митохондрий. Оказавшись в клетке, он связывается с несколькими другими молекулами, образуя апоптосому, которая, в свою очередь, активирует одного из последних палачей – каспазу 3. Выброс цитохрома с из митохондрий означает неизбежную смерть клетки; если ввести его в здоровую клетку, она погибнет. Иными словами, неотъемлемая часть дыхательной цепи, отвечающей за производство энергии, необходимой для жизни клетки, является также и неотъемлемой частью апоптоза, отвечающего за ее смерть. Дилемма «жизнь или смерть» зависит от локализации одной конкретной молекулы. Ничто в биологии не сравнится с этим двуликим Янусом: с одной стороны – жизнь, с другой – смерть, а между ними несколько миллионных долей миллиметра.

Цитохром с – не единственный белок, высвобождающийся из митохондрий. Высвобождаются и некоторые другие белки, в том числе и такие, которые вовлечены в апоптоз, и иногда даже более сильно, чем цитохром с. Некоторые из этих белков активируют каспазы, другие (например, апоптоз-индуцирующий фактор, AIF) атакуют другие молекулы (например, ДНК) без помощи каспаз. Как часто бывает в биохимии, подробности кажутся неимоверно сложными, но основополагающие принципы просты: деполяризация внутренней мембраны митохондрий и образование свободных радикалов приводят к выходу в цитозоль цитохрома с и других белков; они активируют определенные ферменты; эти ферменты уничтожают клетку.

Битва жизни и смерти

Когда выяснилось, что жизнь или смерть клетки зависит от локализации цитохрома с и других судьбоносных белков, медицинские исследования, конечно же, обратились к поиску механизма, который приводит к высвобождению этих молекул из митохондрий. Этот механизм тоже непростой, но помогает понять связь между внутренним и внешним путем апоптоза. За исключением ряда случаев (которые, скорее всего, непринципиальны), главную роль в обеих формах клеточной смерти играют митохондрии. Почти всегда именно они держат руку на выключателе машины смерти. Когда достаточное число митохондрий изливает в клетку свои смертоносные белки, клетка совершает самоубийство.

Согласно последним исследованиям Стена Оррениуса и его коллег из Каролинского института (Стокгольм, Швеция), высвобождение цитохрома с происходит в два этапа. На первом этапе белок мобилизуется из митохондриальной мембраны. Цитохром с непрочно связан с липидами мембраны (особенно с кардиолипином) и высвобождается из внутренней митохондриальной только при их окислении. Это объясняет, зачем при апоптозе нужны свободные радикалы: они окисляют липиды внутренней мембраны, что приводит к высвобождению цитохрома с. Но это еще не все. Далее цитохром с переходит в межмембранное пространство, однако не может покинуть митохондрии до тех пор, пока внешняя мембрана не станет более проницаемой. Дело в том, что цитохром с – это белок, а белковые молекулы слишком велики, чтобы просто проникнуть через мембрану. Чтобы он мог покинуть митохондрию, должна открыться какая-то мембранная пора.

Более десяти лет ученые никак не могли понять, что это за пора. Казалось, в разных ситуациях работают разные механизмы и по меньшей мере существуют два типа пор. Один механизм явно предполагает метаболический стресс самих митохондрий, приводящий к избыточному производству свободных радикалов. С повышением уровня стресса во внешней мембране открывается пора переходной проницаемости. Это приводит к набуханию и разрыву мембраны, а также высвобождению белков.

Еще одна пора, которая, скорее всего, более универсальна, связана с большим семейством белков bcl-2. Это название, по большому счету, устарело (оно связано с открытым в 1980-х гг. онкогеном и означает B-клеточная лимфома/лейкемия-2). Сейчас нам известен по крайней мере 21 ген, кодирующий белки семейства bcl-2. Их можно разделить на две большие группы, которые ведут друг с другом сложную и пока малопонятную войну. Одна группа белков защищает от апоптоза. Они находятся на внешней митохондриальной мембране и, видимо, предотвращают образование пор, не давая цитохрому с и другим белкам выходить в цитозоль. Другая группа действует противоположным образом. Они образуют поры, через которые, видимо, цитохром с и другие белки могут покинуть митохондрии. Таким образом, эта группа белков способствует апоптозу. В норме они есть во всей клетке и перемещаются в митохондрии, только получив определенный сигнал. Конечный итог, то есть то, совершает клетка апоптоз или нет, зависит от численного соотношения враждующих членов семейства в митохондриальной мембране, а также от числа митохондрий, принимающих участие в битве. Если сторонники апоптоза численно превосходят его противников, поры открываются, из митохондрий изливаются смертоносные белки и клетка совершает самоубийство.

Существование враждующего семейства белков bcl-2 помогает понять связь между внутренним и внешним путем апоптоза. На исход междоусобной войны влияет множество разных сигналов. Например, и «сигналы смерти» снаружи (внешний путь), и «сигналы повреждения» изнутри (внутренний путь) склоняют чашу весов в пользу апоптоза[61]61
  Надо признать, что некоторые формы внешнего пути апоптоза, опосредуемые «рецепторами смерти», идут в обход митохондрий. Тем не менее они, скорее всего, являются усовершенствованными вариантами исходного пути, который, вероятно, был связан с митохондриями, иначе было бы трудно объяснить, почему с ними связано подавляющее число форм внешнего пути.


[Закрыть]
. Таким образом, белки bcl-2 интегрируют разнообразные сигналы как снаружи, так и изнутри и оценивают их силу. Если смерть перевешивает, во внешней мембране митохондрий образуются поры, цитохром с и другие белки выходят в цитозоль и активируется каспазный каскад. Поэтому последние этапы апоптоза, как правило, одинаковы.

Центральная роль митохондрий в обоих путях апоптоза наводит на мысль, что так было всегда. Мы уже обсуждали, что бактерии и раковые клетки действуют независимо, в своих собственных интересах, и поэтому их можно считать «единицами отбора». Отбор может одновременно действовать на уровне клетки и на уровне особи. Митохондрии некогда были свободноживущими бактериями и привыкли действовать независимо. Став частью другого организма, они, надо полагать, сохранили способность к независимым действиям, по крайней мере на некоторое время, и могли взбунтоваться так, как это делают раковые клетки.

Если сегодня митохондрии убивают клетку, в которой находятся, то, может быть, они делали это и в самом начале симбиоза в своих собственных интересах? Может быть, апоптоз возник не для блага особи, а из-за эгоизма постояльца? Если так, то это скорее убийство, чем самоубийство. Зато понятно, как клетки «согласились» принять смерть – эта была диверсия изнутри. Так есть ли какие-то доказательства того, что митохондрии протащили в эукариотическую клетку машину смерти? Да, такие доказательства есть.

Войны паразитов?

Ген, кодирующий цитохром с, был принесен в эукариотическую клетку предками митохондрий, а впоследствии переместился в ядро (см. часть 3 книги). Мы знаем это потому, что практически идентичная генная последовательность есть у α-протеобактерий и она является частью дыхательной цепи, самым важным вкладом в партнерство. Менее ясно, насколько важен был цитохром с на ранних этапах эволюции апоптоза. Хотя он и играет определяющую роль в апоптозе у млекопитающих и, возможно, у растений, он не нужен для апоптоза у плодовых мушек или нематод. Ясно, что он не является универсальным игроком. Играл он главную роль в инициации апоптоза на ранних этапах эволюции и был потом отстранен от этой роли у нескольких видов, или приобрел ключевое значение относительно недавно, независимо у растений и млекопитающих? Это мы узнаем только тогда, когда будем больше знать об апоптозе у самых примитивных эукариот. Как мы видели, цитохром с – только один из многих белков, которые высвобождаются из митохондрий во время апоптоза. Эти белки имеют очень странные названия: Smac/DIABLO, Omi/HtrA2, endonuclease G, AIF (у плодовой мушки названия таких белков гораздо лучше отражают их функции – Reaper, Grim, Sickle). Некоторые из них иногда играют даже более важную роль, чем цитохром с. Большинство этих белков было открыто в нынешнем тысячелетии, но благодаря многочисленным проектам секвенирования геномов мы уже знаем кое-что об их происхождении. Оно поразительно. За единственным исключением (AIF, апоптоз – индуцирующий фактор), все известные апоптотические белки, высвобождающиеся из митохондрий, имеют бактериальное происхождение. У архей их нет. (Вспомним, о чем мы говорили в части 1: клетка-хозяин, скорее всего, была археем, а митохондрии – бактериями.) Это означает, что у клетки-хозяина практически не было машины смерти. Митохондрии принесли в эукариотический союз не все апоптотические белки, некоторые попали в эукариотические клетки позже, в результате горизонтального переноса генов от других бактерий. Однако единственный вклад архей в машину смерти эукариотической клетки – это AIF, и надо заметить, что у современных архей он не имеет никакого отношения к смерти клеток.

Бактериальное происхождение имеют не только белки митохондрий, но и каспазы, если верить данным, полученным при секвенировании их генов. Впрочем, бактериальные каспазы довольно смирные: они режут белки на кусочки, но не вызывают смерть клеток. Более загадочно происхождение семейства белков bcl-2. Последовательности их генов имеют мало общего как с бактериями, так и с археями. Тем не менее трехмерная структура этих белков напоминает бактериальные белки, в частности, группу токсинов некоторых патогенных бактерий, таких как дифтерийная палочка. Как и вызывающие апоптоз белки семейства bcl-2, бактериальные токсины образуют поры в мембране клетки-хозяина, а иногда даже вызывают апоптоз.

Все это наводит на мысль о том, что большая часть машины смерти была привнесена в эукариотический симбиоз предками митохондрий. Тогда это похоже не на самоубийство, а на коварное убийство, акт вопиющей неблагодарности со стороны постояльца. Эта идея легла в основу убедительной гипотезы, предложенной Хосе Фраде и Теологосом Михелидисом из Института физиологии им. Макса Планка (Мартинсрид, Германия) еще в 1997 г. Данные, накопившиеся с тех пор, по большей части подтверждают ее.

Фраде и Михелидис провели параллель между поведением современной бактерии Neisseria gonorrhoeae (возбудителя гонореи, заболевания, передающегося половым путем) и тем, как могли бы вести себя протомитохондрии. N. gonorrhoeae заражает клетки уретры и шейки матки, а также лейкоциты. Оказавшись внутри, эти бактерии проявляют дьявольскую хитрость. Они продуцируют образующий поры белок PorB (он похож на митохондриальные белки bd-2) и «вставляют» его в клеточную мембрану хозяина, а также в мембрану вакуоли, в которую «завернуты» бактерии внутри клетки. Эти поры плотно закрыты, пока взаимодействуют с АТФ клетки (опять-таки сходным образом ведут себя некоторые белки bcl), но когда запасы АТФ хозяина истощаются, поры открываются. Открытие пор запускает машину апоптоза, и клетка погибает. Сами бактерии тем не менее выживают. Они спасаются бегством, прихватив с собой в качестве провианта аккуратно упакованные погибшие клетки. Таким образом, бактерии живут в клетке, пока та здорова, контролируя ее способность поддерживать запасы АТФ, но как только запасы начинают истощаться, бактерии убивают ее и отправляются на поиски новых клеток. Вот мерзавцы!

Фраде и Михелидис отмечают, что N. gonorrhoea – не единственная бактерия, способная на такое коварство. К сходной тактике прибегает страшный бактериальный хищник Bdellovibrio, с которым мы уже встречались в части 1. Проникнув внутрь другой бактерии, он тоже некоторое время контролирует ее метаболическое здоровье, а потом поедает изнутри. Кстати, Линн Маргулис называла Bdellovibrio одним из возможных предков митохондрий. Еще один претендент – бактерия Rickettsia prowazekii, о которой мы говорили в частях 1 и 3, – тоже внутриклеточный паразит. Такая «биохимическая археология» – свидетельство того, что сначала отношения между митохондриями и содержащими их клетками были паразитическими. Попав внутрь архея, протомитохондрии некоторое время следили за его здоровьем, потом вызывали его смерть, подъедали его останки и шли искать следующего хозяина.

Происхождение апоптоза в вооруженной борьбе будущих партнеров по симбиозу означает, что эукариотический симбиоз начинался с того, что паразит убивал хозяина и шел искать нового. Это, как вы уже догадались, буквально то, о чем говорила Линн Маргулис и другие биологи. В наследство от этих отношений эукариотической клетке досталась машина смерти, которая потом нашла другое применение и стала использоваться для программируемого самоубийства клеток у многоклеточных организмов. Но вовсе не о войнах паразитов говорили мы в части 1, когда обсуждали происхождение эукариотической клетки; нет, там речь шла о сотрудничестве двух миролюбивых прокариот, живших бок о бок в метаболическом браке. В тот момент мы рассмотрели и отбросили допущение о том, что отношения между двумя клетками были паразитическими. Теперь, посмотрев на вещи под другим углом, мы вернулись к этому допущению. В этой области науки ни в чем нельзя быть уверенным: приходится постоянно взвешивать все доводы, имеющие хоть какое-то отношение к делу. Только что обсуждавшийся довод, несомненно, весом. Означает ли это крушение и без того утлой лодчонки наших построений? Неужели мне – о, ужас! – придется переписывать первую часть?


    Ваша оценка произведения:

Популярные книги за неделю