Текст книги ""Теорія та методика навчання математики, фізики, інформатики. Том-1""
Автор книги: Автор Неизвестен
Жанры:
Математика
,сообщить о нарушении
Текущая страница: 7 (всего у книги 11 страниц)
По аналогічній динаміці ускладнення вивчається і протилежна дія – віднімання, а потім і дії другого ступеня – множення та ділення.
Практика роботи показує, що вивчення чисел і дій над ними в інших позиційних системах числення, відмінних від десяткової, викликає в учнів не тільки інтерес до вивчення математики, а й сприяє більш свідомому засвоєнню особливостей десяткової системи числення, алгоритмів дій (усних та письмових) в десятковій системі числення, що є основною вимогою, яка пред’являється до знань, умінь та навичок учнів, передбачених програмою навчання математики в початкових класах.
МАТЕМАТИЧНИЙ БІЛЬЯРД
ЯК ГЕНЕРАТОР ВИПАДКОВИХ ЧИСЕЛ
В.М. Євсіков 1, М.О. Рашевський 2
1м. Дніпропетровськ, Дніпропетровський національний університет
2м. Кривий Ріг, Криворізький технічний університет
Математичним більярдом [1, 2] (МБ) називатимемо рух без опору точкової частинки в області із пружним відбиванням від стінок. МБ є моделлю багатьох фізичних процесів. Ряд питань у теорії МБ є не розв’язаними, хоча й елементарними. Таким є питання про існування періодичних траєкторій у довільних областях (навіть у многокутниках).
При розв’язуванні задач методом Монте-Карло виникає проблема одержання послідовності випадкових чисел (точок), рівномірно розподілених на проміжку (в області простору). Розв’язування задач на геометричні ймовірності методом Монте-Карло продемонструвало “нерівномірність” звичайного генератора, що було підтверджено перевіркою гіпотези про рівномірний розподіл. Рівномірно розподілену послідовність можна отримати розігруванням руху більярдної частинки з відбиванням від нерухомого круга у центрі одиничного квадрата [1].
Авторами досліджувався МБ в опуклих областях вигляду x= i t, y= i t, t i , i , i=1, 2, …, n.Для одержання рівномірно розподіленої на відрізку [0, 2 ] послідовності використано МБ в еліпсі з ексцентриситетом =0,5. Відхилення розподілу від рівномірного з певною мірою вірогідності дозволяє стверджувати про існування періодичних траєкторій (наприклад, в еліпсі при . Крім перевірки гіпотези про рівномірний розподіл, побудований генератор використано для комп’ютерного розв’язування задач на геометричні ймовірності.
Гальперин Г.А., Чернов Н.И. Биллиарды и хаос. – М.: Знание, 1991. – 48 с.
Лазуткин В.Ф. Выпуклый биллиард и собственные функции оператора Лапласа. – Л.: Изд-во ЛГУ, 1981. – 232 с.
ДО ПИТАННЯ ПРО МЕТОДИКУ ВИКЛАДАННЯ
ДЕЯКИХ РОЗДІЛІВ ТІМС В ЕКОНОМІЧНИХ ВНЗ
В.О. Єрьоменко, М.І. Шинкарик
м. Тернопіль, Тернопільська академія народного господарства
Загальновідомо, що в процесі викладання математики необхідно враховувати майбутній фах студентів, рівень їх інтелектуальної підготовки, а також зміни в навчальних планах, зумовлені вимогами часу.
Економіст в умовах ринкової економіки повинен бути в першу чергу аналітиком, тобто в повній мірі володіти методами аналізу, моделювання та синтезу. Така якість людини розвивається, тренується. Підтвердженням цієї тези є такий науковий факт, наведений відомим українським нейрофізіологом академіком Олегом Кришталем: “Той, хто навчався у вищому навчальному закладі, вже тільки тому має у своїх лобних ділянках на 17% більше зв’язків між нейронами, ніж той, хто не мучив себе науками”. Відмітимо, що характер цитованого твердження є “детерміністським” і вимагає додаткового імовірносного аналізу.
Одним з найпотужніших засобів підвищення рівня інтелекту майбутнього економіста є вивчення математичних дисциплін, серед яких особливе місце займає “Теорія імовірностей та математична статистика” (ТІМС). Разом з тим, глибоке засвоєння теоретичного матеріалу цієї дисципліни, пов’язане із виробленням навичок практичного оперування інформацією, є базою при вивченні цілого ряду економічних дисциплін, значна частина з яких почала викладатися в економічних ВНЗ в останнє десятиліття.
Багаторічний досвід викладання ТІМС авторів показує, що основним джерелом труднощів для студентів при вивченні цієї дисципліни і особливо при виконанні індивідуальних розрахункових робіт є слабкі навики аналізу різних ситуацій та їх найпростішого моделювання. В зв’язку із цим актуальними питаннями є алгоритмізація розв’язування задач, а також генерування ідей (в процесі розв’язування задач), які стають ключовими при доведенні більш складних тверджень. У повідомленні висвітлюються деякі із положень, реалізованих в навчальних посібниках авторів [1, 2].
Зокрема в розділі “Теорія імовірностей” викладаються [1] наступні положення.
В темі класичне означення імовірності на прикладах різнопланових конкретних задач рекомендується така послідовність аналізу умови: 1) формулювання випадкової події, імовірність якої потрібно знайти; 2) формулювання випробування; 3) розгляд прикладів наслідків випробування з тим, щоб з’ясувати, яким чином можна знайти n(загальне число наслідків випробування) і m(число наслідків випробування, в яких відбувається подія, імовірність якої треба знайти).
Правильність вибору однієї із формул (основної формули комбінаторики, числа комбінацій, числа розміщень) часто наштовхується на неврахування студентом особливостей груп елементів, для яких ці формули мають місце. Зокрема, для комбінацій та розміщень всі елементи групи повинні бути різними (відсутність повторів), для розміщень суттєвий порядок розташування елементів у групі.
При розв’язуванні конкретної задачі з використанням теорем додавання та множення імовірностей, особливо при виконанні проміжних чи підсумкових робіт, актуальним для студента є питання про вибір тієї або іншої теореми або формули. На наш погляд, корисною є така схема.
1) Вводяться в розгляд подія, імовірність якої треба знайти, а також більш простіші події, імовірності яких відомі або можуть бути знайдені за класичним означенням.
2) “Шукана” випадкова подія (імовірність якої потрібно знайти) виражається через простіші події за допомогою алгебри подій, тобто операцій суми, добутку, заперечення (протилежної події). При цьому потрібно користуватися мнемонічними правилами: «+» або, «» і.
3) В залежності від виду отриманого виразу використовуються теореми додавання імовірностей або (і) теорема множення імовірностей та їх наслідки. При реалізації цього пункту необхідно з’ясувати властивості випадкових подій (сумісність, несумісність, залежність, незалежність, протилежність або повноту пари чи групи подій).
При цьому звертається увага на те, що в багатьох задачах реалізація п. 2) неєдина. В таких випадках бажано вибрати найкомпактнішу, переконавшись у співпаданні остаточних результатів після виконання пункту 3). Якщо ж результати не співпадають, то необхідно перевірити правильність побудови в п. 2) або коректність виконання п. 3). Ще один суттєвий момент стосовно вказаної теми – це спроба знайти шукану імовірність за класичним означенням. Позитивний результат дозволить перевірити відповідь і обрати кращий шлях, а негативний – збільшить цінність (в очах студента) теорем додавання та множення імовірностей.
Незважаючи на те, що формули повної імовірностей та Байєса є наслідками теорем додавання та множення імовірностей, на нашу думку доцільним є виокремити алгоритм розв’язування задач з допомогою цих формул. При цьому рекомендується така послідовність розв’язування задач.
1) Формулюються гіпотези В 1, В 2, …, В n і подія А. При цьому слід перевірити повноту групи гіпотез, а також те, що подія Аможе відбутися тільки після появи однієї із гіпотез.
2) Знаходяться імовірності гіпотез. Правильність розрахунків контролюється виконанням рівності . Обчислюються або з умови задачі вибираються умовні імовірності …,
3) Вибирається формула повної імовірності або формули Байєса. Останні використовуються тоді, коли є інформація про відбуття випадкової події.
Наведений вище алгоритм буде корисним тоді, коли студент (при виконанні індивідуальних завдань чи на підсумковому контролі) при аналізі задачі зробив висновок, що для розв’язування цієї задачі потрібно використати або формулу повної імовірності, або формули Байєса. Поштовхом для такого висновку повинна бути наявність в задачі припущень.
В темі “Повторні незалежні випробування (схема Бернуллі)”, як і для попередніх тем, залишається актуальним питання вибору тієї чи іншої формули при розв’язуванні конкретних задач. Це зумовлено, по-перше, тим, що у всіх трьох формулах (Бернуллі, локальній формулі Лапласа та Пуассона) ліві частини однакові. З другого боку, при знаходженні імовірності P n ( m 1 ≤m≤m 2) зовсім не обов’язково (а деколи й помилково) використовувати інтегральну формулу Лапласа. В зв’язку із цим рекомендується дотримуватися такого алгоритму.
1) Формулюються зміст випадкової події Аі випробування. За умовою задачі визначаються n– число випробувань і m– число появи події А. Аналітично записується шукана імовірність з допомогою отриманих значень. Обчислюються імовірності рта qпояви та непояви події Ав одному випробуванні.
2) Обчислення P n ( m)
а) Якщо nмале ( n≤15) то використовується формула Бернуллі для будь-яких значень рта q.
б) Якщо nвелике, а рта qнемалі, тобто при виконанні нерівності npq>9 тоді використовується локальна формула Лапласа.
в) Якщо nвелике, а рдуже мале (значно менше 0,1) і λ=np≤9 то застосовується формула Пуассона. При великому n, дуже малому q( q << 0,1) і при виконанні нерівності λ'=np≤9 слід перейти до числа невиконання події А.
3) Знаходження P n ( m 1 ≤m≤m 2)
а) Якщо nмале тоді потрібно використати спочатку теорему додавання імовірностей, а потім формулу Бернуллі.
б) Для великих nі немалих рта q, тобто при виконанні нерівності npq>9 використовується інтегральна формула Лапласа.
в) Для великих nі малих рвикористовується або теорема додавання імовірностей з наступним застосуванням формули Пуассона, або здійснюється перехід до протилежної події з наступним використанням теореми додавання імовірностей і формули Пуассона. При виборі однієї із альтернатив слід користуватися мінімізацією числа доданків в теоремі додавання імовірностей. Якщо nвелике, а qмале і λ'=nq≤9, тоді потрібно перейти до числа невиконання події А, а потім виконати рекомендації цього підпункту.
На нашу думку, доцільно запропонувати кращим студентам створити програму для персональних комп’ютерів, ідея якої полягає в поступовому домноженні співмножників на рта q.
Розв’язування задач з розділу “Математична статистика” в більшій мірі “алгоритмізованіше” в порівнянні із розділом “Теорія імовірностей”. Разом з тим актуальним стає розуміння студентами основних задач та ідей математичної статистики, з’ясування глибинних зв’язків між двома основними розділами ТІМС, вміння робити коректні висновки (зокрема, економічні) як підсумок розв’язування задач.
Саме ці проблеми трималися в полі зору при написанні посібника [2].
Література
Єрьоменко В. О., Шинкарик М. І. Теорія імовірностей. – Тернопіль: Економічна думка, 2001. – 176 с.
Єрьоменко В. О., Шинкарик М. І. Математична статистика. – Тернопіль: Економічна думка, 2001. – 247 с.
СТИМУЛЮВАННЯ ПІЗНАВАЛЬНОЇ АКТИВНОСТІ
УЧНІВ В ПРОЦЕСІ РОЗВ’ЯЗУВАННЯ
НЕСТАНДАРТНИХ ЗАДАЧ
Л.М. Жарікова
м. Кривий Ріг, Середня загальноосвітня школа №111
Зростання долі інтелектуальної праці у всіх світових сферах виробництва викликає загальну потребу в людях, які володіють не тільки новітніми технологіями, а й прийомами швидкого перенавчання. У зв’язку з цим відбуваються зміни в практиці завдань і цінностей освіти. Найважливіша серед них – переорієнтація з предметного навчання на процесуальні та мотиваційні аспекти освіти, спрямовані на формування особистості.
Цей підхід, з однієї сторони, передбачає не лише засвоєння учнем готових знань, а й способів його операціоналізації, способів міркувань, що застосовуються в математиці, оволодіння цими способами організації навчальної діяльності, доведення математичних тверджень, розв’язувань задач, з іншої – розвиток в учнів культури логічного мислення, інтуїції, вміння створити математичні моделі, образи.
З урахування цього навчальний матеріал повинен містити загальні схеми розв’язувань задач, загальні підходи до моделювання прикладних ситуацій, відомості про суть задач, їх склад і структуру.
В шкільному курсі математики для більшості стандартних задач існують певні алгоритми, але для розвитку творчого мислення і пізнавальної активності учнів розв’язування тільки стандартних задач виявляється недостатньо. Саме тому вчитель має сприяти формуванню в учнів навичок і прийомів продуктивного опрацювання нестандартних задач.
Своєрідність і специфіка нестандартних задач полягає в тому, що майже кожна з них пов’язана з аналізом проблемних ситуацій. Розв’язування цих нестандартних ситуацій спирається як на спеціальні знання, так і на кмітливість та винахідливість учнів, сприяє формуванню в них творчого, гнучкого мислення.
Можливо і необхідно навчити учнів деяким типовим прийомам розв’язування нестандартних задач з метою накопичення таких прийомів і подальшого їх використання в навчальній діяльності. Стимулювати розумову діяльність учнів можна, наприклад, за допомогою допоміжних, попереджувальних, споряджених задач, математичних ребусів.
Використовуючи в навчальній діяльності нестандартні задачі, вчителю необхідно спиратись на такі особистісні фактори:
пізнавальний інтерес до задач, наявність внутрішньої мотивації в учнів;
потребу знайти оптимальний шлях до правильного розв’язання;
впевненість у власних розумових здібностях, в тому що задачу можливо розв’язати.
Досвід практичної роботи дозволяє запропонувати таку схему розв’язування нестандартних задач на уроці:
З’ясування в умовах спільної розумової діяльності вчителя і учнів умови нестандартної задачі, виявлення її пізнавально-смислової суперечності.
Проблемно-самостійний (або проблемно-діалогічний пошук розв’язування – висунення альтернативних гіпотез і продуктивних ідей.
Спільне обговорення цих ідей і вибір найбільш оптимального шляху їх реалізації.
Оформлення розв’язку задачі.
Дослідження і перевірка отриманих результатів.
Важливу роль у формуванні в учнів навичок і прийомів розв’язування нестандартних задач відіграють допоміжні задачі. Якщо, наприклад, учням шостого класу запропонувати знайти суму: , то більшість з них почнуть власну пошукову пізнавальну діяльність з того, що будуть намагатись знайти найменший спільний знаменник, або ж додавати до першого дробу другий і так далі. Але якщо на попередніх уроках запропонувати учням вигадати задачу, в якій добуток дробів дорівнював би різниці, то вони після деяких спроб такі дроби знайдуть:, . Досвід доводить, що математичні відомості стануть у пригоді учням при розв’язувані вправ на знаходження сум.
Використання вчителем нестандартних задач – це складний процес організації розумового розвитку учнів. Навіть цілий спектр методичних нарад не може вичерпати всі можливі варіанти підходів до цієї важливої і складної роботи з учнями.
Доцільно запропоновувати, з нашої точки зору, головні напрямки методичного пошуку, конкретизація якого – справа кожного творчо працюючого вчителя математики. Найбільш доцільною організаційною формою використання у навчальному процесі нестандартних задач є поступове впорядкування їх і зведення до певного класу вже засвоєних учнями стандартних задач. Важливим з боку вчителя є індивідуально-диференційовний підхід до учнів з різним рівнем навчальних досягнень, вплив на особистий розвиток яких є ступенем їх власної успішності у розв’язуванні нестандартних задач, оскільки він не може бути однозначним і завжди передбачуваним.
Розвиток творчого мислення і пізнавальної активності учнів буде дійсним результатом використання вчителем на уроці нестандартних задач тільки у разі поступового розширення спектру навичок і прийомів їх розв’язування.
Вважаємо, що накопичення у учнів практичного досвіду розв’язання нестандартних задач реалізує головний тезис психології творчої діяльності – «мислення починається з проблеми», передбачає пошук і відкриття ними все нових і нових проблем, питань та закономірностей не тільки математичних а і інших предметних курсів.
ДЕЯКІ ОСОБЛИВОСТІ ВИКЛАДАННЯ МАТЕМАТИКИ
В ТЕХНІЧНОМУ ВЗО
Л.П. Кагадій, А.В. Павленко, К.У. Чуднов
м. Дніпропетровськ, Національна металургійна академія України
В доповіді сформульовані деякі основні погляди на викладання математики, які формувались у авторів на протязі багатьох років роботи на кафедрі вищої математики НМетАУ (ДМетІ). Ці погляди, звичайно, можуть бути дискусійними, частково змінюватись на протязі часу, але ж на думку авторів мають право на існування, оскільки математика є однією з найважливіших фундаментальних наук, що формує науковий світогляд, уміння аналізувати природні явища (як фізичні так і суспільні), вдало абстраговуватись, робити узагальнюючі висновки, розповсюджувати узагальнені результати для вирішення конкретних задач в конкретних галузях виробництва.
В зв’язку з цим автори вважають, що при викладанні математичних дисциплін доцільно дотримуватись наступного:
1. Мотивації необхідності вивчення математичної дисципліни або їх розділів студентами даної спеціальності, з наведенням прикладів, задач, ситуацій, що виникають на виробництві, з короткою анотацією їх вирішення математичними методами, якими належить опанувати студентам, вивчаючи вказану математичну дисципліну.
2. Погодженості робочих навчальних програм математичних дисциплін з кафедрами, що на них спираються. Розробці робочих навчальних програм для різних рівнів підготовки (бакалавр, спеціаліст, магістр) та різних спеціальностей.
3. Послідовності вивчення математики, скорегованість окремих питань робочих програм відповідно до рівня підготовки студентів по програмі математики середньої школи. Є термінова необхідність корегування програм середньої і вищої школи.
4. Всі нові математичні поняття повинні вводитись обґрунтовано, мотивовано, спираючись на відповідні задачі, формулюватись на аналізі прикладів від інтуїтивних уявлень до точних визначень. На лекціях та практичних заняттях розглядати як класичні геометричні, механічні та фізичні задачі так і задачі, пов’язані з майбутньою спеціальністю, фаховою діяльністю. Підкреслювати узагальнені можливості математичних методів, можливість розв’язувань одним методом цілого класу задач різного фізичного змісту. Ні в якому разі цілком не відмовлятись від доведення теорем та виведення формул, широко використовувати приклади, малюнки, математичні аналогії, і т.п.
5. Комп’ютер та іншу обчислювальну техніку використовувати як міцний інструмент підвищення продуктивності праці та економії часу, а не як єдине джерело математичної освіти.
6. Систематичного підвищення кваліфікації викладачів як на математичних кафедрах класичних університетів так і на спеціальних кафедрах у вищих технічних навчальних закладах.
Математика і гармонія
С.І. Кашина
м. Кривий Ріг, Середня школа №99
Лев Миколайович Толстой говорив, що наука і мистецтво зв’язані між собою так само, як легені і серце людини. Наука і мистецтво збагачують один одного, маючи під собою один ґрунт – красу. Краса стимулює розумову діяльність, сприяє виникненню неповіданих і сміливих ідей, надає досконалу форму науковим відкриттям. Краса є вірною ознакою творчості. Так у процесі художньої творчості, наукового відкриття виникають гармонія форм, витонченість, які народжені грою уяви і фантазії. Завдяки їм наступають моменти прекрасних осяянь.
Твори художньої літератури не тільки розширюють кругозір учнів, але й дають знання із області точних наук, наприклад математики.
Так на уроках зарубіжної літератури, вивчаючи тему: “О. Хайям – видатний поет персько-таджидської поезії”, учні дізнаються про те, що у 25 років поет Омар Хайям робить свої перші великі наукові відкриття. Поет був запрошений до царського двору султана Малік Шаха, працював у його обсерваторії. Саме там написав Хайям свої праці з алгебри. Першим з математиків створив теорію розв’язування рівнянь до третього ступеня включно і дав загальну класифікацію всіх рівнянь у трактаті “Про доведення задач з алгебри”. Він також першим поставив питання про зв’язок геометрії з алгеброю і про геометричне пояснення і розв’язання рівнянь 1-го і 2-го ступеня.
Хайям залишив величезну кількість наукових трактатів і досліджень, та все ж його знають більше як поета аніж ученого.
Його дивовижні рубаї захоплюють філософською глибиною, щирістю почуттів, лаконічністю.
Творчість О. Хайяма свідчить про те, що і добу середньовіччя, попри свавілля владарів, попри неуцтво, релігійний фанатизм, духовний розвиток людства не припинився.
Наукова і літературна спадщина східного мислителя є незрівнянною сторінкою світової цивілізації.
Гуманіст О. Хайям вірив у духовну велич людини, у високе її призначення, прославляв безсмертний розум її:
Хто землю цю створив, ким небеса підперті
Від кого душі в нас, мов жорнов сумом смерті,
О, скільки пишних уст і лиц ясних, як місяць,
У землю заховав, в тісну шкатулку смерті.
На уроках літератури можна використовувати “Математичні сюжети”. Підбір таких сюжетів важкий, так як в творах, як правило, завдання конкретно не формулюються. Такі сюжети треба уміти знайти, перекласти на математичну мову, тобто сформулювати задачу, доступну для учнів.
Так, при вивченні твору Ж. Верна “П’ятнадцятирічний капітан” учні читають, що місіс Уелдон схилилась над картою... їй здалося, що до землі рукою подати ... від місця катастрофи до Сан-Франциско по карті 67 см. Масштаб карти 1:200000. Учні визначають відстань, яку треба подолати вітрильнику під керівництвом п’ятнадцятирічного капітана, щоб дістатися борту призначення.
1см – 220
60 см – Х км 60х220 = 13200 км
Урок–подорож за романом Роберта Стівенсона “Острів скарбів”. Учні готові до подорожі із Джимом Хокінсом на шхуні “Іспанйола” у пошуках скарбів. Згадуємо, що бажають морякам перед виходом у море. “Сім футів під кілем”.
скільки це сантиметрів? Округліть відповідь до сотень:
один фут = 30,48 см
7 футів = 213,36 = 200 см = 2 м
Після розв’язання цієї задачі діти вирушають у подорож.
Але використання сюжетів художніх творів на заняттях з математики і навпаки потребує не тільки великої обережності, але й певного такту. Та для гармонійно розвиненої особистості треба враховувати як гуманітарну, так і природничо-математичну освіту.
ПОЛІВАЛЕНТНІСТЬ ТЕРМІНОЛОГІЇ ТА СИМВОЛІКИ
ПРИ ВИВЧЕННІ ЕЛЕМЕНТІВ СТОХАСТИКИ
В ШКІЛЬНОМУ КУРСІ
В.М. Кліндухова
м. Кіровоград, Кібернетико-технічний коледж наукового навчально-педагогічного комплексу
Одним із основних завоювань сучасного реформування математичної освіти є впровадження в шкільний курс математики елементів стохастики. Ця інновація є ще одним прогресивним кроком на шляху до подолання прірви, що розділяє досягнення сучасної математики та її відображення в шкільній програмці. Саме цей крок дозволить сформувати ймовірнісно-статистичний тип мислення, який невдовзі стане невід’ємною складовою загальнолюдської культури будь-якого фахівця незалежно від його спеціалізації.
Проблема, яку б хотілося розглянути в цій статті, не є новою. Вона підіймалася ще на Міжнародному симпозіумі по викладанню математики в школі, що проходив у Будапешті в 1962 році. Так, у висновках та рекомендаціях до цього симпозіуму, які були опубліковані в журналі “Математика в школе” (1963 р., №3, стор. 70) відмічається: “Возможность различных интерпретаций математических положений (поливалентность математики) должна быть полностью выяснена посредством многообразных конкретных применений”. Дійсно, ця теза із рекомендацій вище згаданого форуму залишається актуальною і на сьогоднішній день. Причому особливого значення вона набуває при розгляданні її через призму сучасної профільної диференціації шкільної математичної освіти. Але ж в цій статті хотілося б розглянути дещо інший аспект полівалентності математики, пов’язаний з більш вузькими практичними проблемами.
Імовірнісно статистична теорія, як і будь-яка інша теорія при виведенні своїх теорем, властивостей тощо оперує певними математичними поняттями. Формування цих базових понять є дуже відповідальним етапом навчального процесу, формальне ставлення до якого може призвести до формування в учнів різноманітних хибних умовиводів, або взагалі нерозуміння подальших викладок. Далеко не останню роль при формуванні понять відіграє їх мовне та символічне відображення, іншими словами відповідні терміни та символи.
Як відомо, між поняттями та їх відображеннями теоретично повинна існувати взаємооднозначна відповідність, але ж практично це не так, про що неодноразово згадується в посібниках з методики навчання математики. При цьому можуть виникати наступні зв’язки:
1
2
термін 1
поняття 1
поняття
термін 2
термін
поняття 2
...
…
термін n
поняття 3
В першому випадки терміни називають синонімами, а в другому – омонімами.
До аналізу цієї ситуації нас підштовхнула реальна проблема. Так, при викладанні курсу “Теорія ймовірностей та математична статистика” в двох паралельних групах було проведено мініексперимент. В одній з груп до кожного поняття ми наводили усі можливі терміни-синоніми, які тільки можливо було знайти в літературі. В іншій же – лише один з них, як правило, найпоширеніший. Не дивлячись на полярність ситуацій, нами було отримано безліч нарікань зі сторони студентів. Так перші з них скаржилися на великий об’єм інформації, а також деяку плутанину, яка виникає в результаті використання то одного, то іншого терміну. Друга ж група скаржилася на велику кількість незнайомих термінів, з якими їм доводиться зустрічатись при самостійному опрацюванні матеріалу навчальних посібників. Звичайно, здоровий глузд підказує, що обидві ситуації є певними “перегинами”, тобто необхідно шукати певну “золоту середину”. Але яку саме?
В даній статті ми не будемо намагатися дати відповідь на це запитання, так як воно вважається примітивним лише на перший погляд. Насправді ж для обґрунтованих висновків з цього приводу необхідна серйозна як теоретична, так і експериментальна робота, яка повинна починатись, на наш погляд, з аналізу навчальних посібників. З цією метою нами було проаналізовано близько півсотні навчальних посібників найвідоміших авторів. При підборі цих посібників ми керувались наступними принципами:
наявність в бібліотеках(нема сенсу аналізувати бібліографічні раритети, якими не мають можливості користуватися ні учні, ні самі вчителі);
різні роки видання;
рівень викладання матеріалу(1) для середніх навчальних закладів; 2) для вищих навчальних закладів нематематичного профілю; 3) для вищих навчальних закладів математичного профілю; 4) науково-популярна література).
Найпершими поняттями, з якими зустрічаються учні при вивченні початків стохастики є поняття стохастичного експериментута елементарних подій(тобто усіх можливих наслідків стохастичного експерименту). В свою чергу усі елементарні події утворюють множину елементарних подій, будь-яка підмножина якої є певною подією. Ці поняття можуть вважатися первісними або ж певним чином означуватись, але в будь-якому випадку автори при цьому використовують наступні терміни:
Поняття
Терміни
%
Поняття
Терміни
%
Стохастичний експеримент
Стохастичний експеримент
15
Елементарні події
Елементарні наслідки
33
Експеримент
83
Елементарні події
72
Випрошування
85
Наслідки
36
Дослід
74
Випадки
6
Спостереження
37
Шанси
6
Висновки щодо кількості термінів, яка використовується автором в межах одного посібника
Поняття=один термін
Поняття=два терміни
Поняття = три терміни
23,5
56,4
20,1
Поняття=один термін
Поняття=два терміни
Поняття = три терміни
Наявність символіки
84
16
0
58
Що ж стосується поняття множини (56,6%) (або простору (57,1%), або сукупності (7,4%)) елементарних подій, то окрім синонімічного аспекту проблеми (один термін – 85,3%; два терміни – 14,7%) тут є присутньою і омонімічна. Так деякі автори вважають, що до складу множини елементарних подій = 1, 2, 3, …, n можуть входити лише елементарні події (69,6%). Інші ж вважають, що вона може складатись і із складених подій (30,4%), таким чином ототожнюючи поняття множини елементарних подій та повної групи (системи) подій.
В свою чергу при розгляді поняття повна група (система) подій виникає аналогічна ситуація. Тобто також маємо як синонімічний так і омонімічний аспект проблеми. Хоча тут слід зауважити, що концепції викладання матеріалу деякими авторами взагалі не передбачають введення означеного поняття (17,6%).
Так, при введенні повної групи подій деякі автори вважають, що вона повинна складатися виключно з несумісних подій (21,4%), інші ж не роблять таких обмежень, тобто вважають, що до складу повної групи можуть входити будь-які події. При цьому автори можуть вводити одне з понять “повна група подій” (47,1%) або “повна група попарно несумісних подій” (11,7%), або ж обидва ці поняття (17,6%).
Повертаючись до поняття події, можна відмітити, що внаслідок певного тлумачення деякі автори ототожнюють його з поняттям випадкової події, а інші ні. В результаті цього виникають два типи класифікації подій:
Події (55,6 %)
Достовірні події (70,5 %)
або
вірогідні події ( 29,5%)
Випадкові події
Неможливі події
Події = випадкові події (44,4%)
Як видно зі схеми, для різновидів подій також має місце синонімічна проблема. Але якщо в термінологічному аспекті вона стосується лише достовірних подій, то в символічному не залишаються поза її увагою й неможливі події. Так ті з авторів, які є прибічниками проведення аналогій між подіями та множинами використовують символи , (27,2%), інші ж або взагалі не дають ніяких вказівок щодо символіки (42,6%), або використовують символи U,V (30,2%).
Після вивчення видів подій автори посібників, як правило, переходять до розгляду відносин, які між ними існують. Тут також існує певна синонімічна варіативність.
Поняття
Терміни
%
Поняття
Терміни
%
Еквівалентні події
А=В
Еквівалентні події
56
Подія А спричинює подію В
АВ – 66,7 %;
АВ – 16,7%
– – 16,6%
В – окремий випадок А
16,7
Рівні події
32
В – наслідок А
33,4
Рівносильні події
47
В тягне за собою А
16,7
Із А слідує В
16,7
А спричиняє В
33,4
Поняття еквівалентності подій деякими авторами взагалі не вводиться (57,7%) в своїх посібниках. В тих же посібниках, де воно вводиться можуть використовуватись або один термін (57,1%), або два терміни (28,6%), або й три терміни (14,3%) в межах одного посібника. Що ж стосується поняття “наслідок події”, то воно також може не вводитись багатьма авторами в своїх посібниках (64,8%). В тих же посібниках, де воно вводиться можуть використовуватись або один термін (61,5 %), або два терміни (39,5%).