355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Автор Неизвестен » "Теорія та методика навчання математики, фізики, інформатики. Том-1" » Текст книги (страница 6)
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
  • Текст добавлен: 4 октября 2016, 01:47

Текст книги ""Теорія та методика навчання математики, фізики, інформатики. Том-1""


Автор книги: Автор Неизвестен


Жанры:

   

Математика

,

сообщить о нарушении

Текущая страница: 6 (всего у книги 11 страниц)

ДЕЯКІ ПИТАННЯ МЕТОДИКИ ВИКЛАДАННЯ

РОЗДІЛУ “РЯДИ” КУРСУ ВИЩОЇ МАТЕМАТИКИ

В.М. Дрибан, Г.Г. Пеніна

м. Донецьк, Донецький державний університет економіки і торгівлі ім. М. Туган-Барановського

Після визначення ряду ми розглядаємо ряд

1–1+1–1+... (1)

З одного боку,

1–1+1–1+...=(1–1)+(1–1)+...=0.

З іншого боку,

1–1+1–1+...=1–(1–1)–(1–1)–...=1.

Можна запропонувати і такий варіант:

1–1+1–1+...= S,

1–(1–1+1–1+...)= S.

1– S=S,

S=1/2.

Створюється проблемна ситуація, і лектор пропонує знайти помилку в обчисленнях. Як правило, студенти знайти помилку не можуть. Лектор інформує студентів про дискусію з приводу цього ряду, що була на початку XVII – середині XVIII в. в. У той час виниклу суперечність не могли розв’язати навіть такі великі математики, як Лейбніц, Ейлер та інші. Італійський математик Гранді трактував виниклу рівність

0+0+0+…=1/2

як створення світу з нічого.

Лейбніц брав перший член, суму двох, трьох і т.д. членів і одержував суми 1, 0, 1, 0,… Отже, говорив він, найбільш ймовірне значення суми – середнє арифметичне 1/2. При цьому він посилався на “закон справедливості”, що нібито існує у світі. Правильне розуміння (визначення) суми ряду прийшло значно пізніше.

Практика показує, що такий вступ забезпечує інтерес студентів до вивчення рядів і має велике значення в педагогічному відношенні.

Лектор констатує, що говорити про суму ряду в звичайному розумінні суми не можна, тому що процес додавання ніколи не може бути закінчений. Можна запропонувати студентам згадати, чи не зустрічалися вони з рядами у шкільному курсі математики. Часто студенти згадують нескінченно спадаючу геометричну прогресію, але визначення її суми, як правило, не пам’ятають. Лектор нагадує це визначення і говорить, що воно береться як визначення суми ряду в загальному випадку. Важливо показати студентам, що це визначення є природним узагальненням звичайної суми на нескінченну множину доданків. У той же час з цього визначення випливає, що будь-яка сума скінченого числа членів є частковим випадком суми ряду. Дійсно, якщо приписати до суми

S k =U 1 +U 2 +...+U k

нескінченну множину нулів, одержимо ряд

U 1 +U 2 +...+U k +0+0+...+0+...,

який збігається і має суму, що дорівнює S k :

.

Це важливе зауваження не робиться в підручниках.

Після цього слід повернутися до ряду (1), показати, що він розбігається, і проаналізувати різні способи “знаходження його суми”. Так як ряд – це не “звичайна сума”, то не можна вважати, що він має властивості скінченої суми, зокрема, асоціативну властивість. Студенти з самого початку повинні засвоїти, що

U 1 +U 2 +U 3 +U 4 +...

та

( U 1 +U 2) +( U 3 +U 4) +...

це, взагалі кажучи, два різних ряди.

Бажано, щоб студенти самі знайшли помилку у випадку, коли було “доведено”, що сума ряду (1) дорівнює 1/2.

Далі корисно запропонувати студентам знайти, наприклад, суму ряду

Студенти переконуються, що відшукання суми ряду – дуже непроста задача. Після цього лектор інформує студентів, що збіжні ряди дуже часто зустрічаються при вирішенні практичних задач і значення їх засноване саме на тій обставині, що вони мають суму. Крім того, виявляється, що для рядів, що збігаються, справедливий асоціативний закон, так що з ними зручно оперувати. От чому важливо вміти визначати, чи даний ряд збігається, чи ні (навіть якщо не вдається знайти його суму).

Так виникає проблема відшукання ознак, що дозволяли б вирішувати питання про збіжність або розбіжність конкретного ряду обхідним шляхом, не заснованим на визначенні суми ряду. Але перш ніж звернутися до розгляду таких ознак, треба, на наш погляд, попередити студентів про одну поширену помилку, а саме: ряд, члени якого спадають, збігається. Студентам буде цікаво почути, що такої думки додержувалися у свій час Ейлер і Даламбер, але не слід забувати, що тоді не існувало поняття границі, тобто і сучасне поняття суми ряду. Ці поняття були введені значно пізніше.

Після введення понять збіжності та розбіжності рядів наступним важливим етапом в історичному розвитку теорії рядів було визначення понять абсолютної та умовної збіжності (Коші, Абель, Діріхле, Ріман). Завдяки цим вченим була переборена схильність до аналогій між властивостями скінчених сум та рядів, яка ще тяжіла у свідомості математиків ХІХ в.

Схильність до таких аналогій є й у студентів. Це зобов’язує лектора акцентувати увагу студентів на різниці в природі абсолютно й умовно збіжних рядів. На відміну від умовно збіжних рядів, для яких справедливий лише асоціативний закон, для абсолютно збіжних рядів справедливий і комутативний закон, що дозволяє обходитися з абсолютно збіжними рядами як із сумами скінченого числа доданків. Це дуже зручно для практичного використання рядів. В зв’язку з цим зробимо два зауваження.

Тому що, за визначенням, поняття абсолютної й умовної збіжностей відносяться лише до знакозмінних рядів, варто привернути увагу студентів, що для збіжних рядів з додатними членами також справедливі комутативний та асоціативний закони. При цьому сума ряду не змінюється. Цей момент не підкреслюється в підручниках. У переважній більшості підручників не підкреслюється також і той факт, що для абсолютно збіжних рядів справедливий асоціативний закон.

При формулюванні теореми Рімана в підручниках не підкреслюється той важливий момент, що перестановка членів умовно збіжного ряду повинна охоплювати нескінченнумножину його членів. Будь-які перестановки скінченогочисла членів допускаються в будь-яких рядах; вони не позначаються ні на збіжності рядів, ні на величині їх суми (у випадку збіжних рядів).

При розгляді степеневих рядів треба звернути увагу на вираз для радіуса збіжності степеневого ряду у вигляді:

.

Ця формула має місце лише для рядів “без пропусків”. Наприклад, для рядів, що містять лише послідовні парні або непарні степені x, справедлива формула

.

Це випливає з доведення формули для R. На жаль, цього застереження немає у підручниках.

Якщо програмою передбачено вивчення рядів з комплексними членами і формул Ейлера, то треба, на наш погляд, зупинитися на одному з наслідків формули

e iz =cos z+isin z.

При z=πмаємо:

e +1=0.

Треба звернути увагу студентів на унікальність та красоту цього співвідношення, яке поєднує всі п’ять основних величин: 1, 0, π, eта i.

Теорія рядів та її становлення містять у собі значний світоглядний потенціал, який, на наш погляд, треба розкрити перед студентами. Становлення теорія рядів – яскравий приклад того, що суперечності (про деякі з них ми згадували) є джерелом розвитку процесу пізнання. Спроби розв’язати суперечності привели кінець кінцем до створення строгої теорії рядів, яка суттєво збагатила математику та практику. Д. Гільберт у знаменитій доповіді на другому Всесвітньому конгресі математиків відмітив, що “всяка наукова галузь життєздатна, доки в неї надмір нових проблем. Недостача нових проблем означає відмирання або припинення самостійного розвитку…”. Важливо підкреслити, що суперечність є джерелом не тільки розвитку процесу пізнання, але й об’єктивного світу. Всякий розвиток – це виникнення тих чи інших суперечностей, їх розв’язання та виникнення нових суперечностей (закон єдності та боротьби протилежностей).

Наведемо деякі конкретні приклади, які дозволяють продемонструвати перед студентами відображення в теорії рядів діалектичного закону переходу кількісних змін в якісні.

Ряд як “сума нескінченного числа доданків” є якісно нове поняття, властивості якого відрізняються від властивостей “звичайної суми”.

Відкидання скінченого числа членів ряду не змінює його природи (його збіжність або розбіжність), відкидання нескінченної множини доданків може перетворити збіжний ряд у розбіжний і навпаки.

Не змінює природи ряду перестановка скінченого числа членів ряду, але перестановка нескінченної множини членів умовно збіжного ряду може змінити його природу (теорема Рімана).

Сума скінченого числа неперервних функцій неперервна, але сума нескінченної множини неперервних функцій (функціональний ряд) може дати якісно іншу, розривну функцію (нерівномірно збіжний ряд, ряд Фур’є).

Розкладання функцій в ряд Тейлора: сума нескінченної множини степеневих функцій може дати якісно більш складну функцію.

Сума нескінченної множини тригонометричних функцій може дати якісно більш просту функцію (ряд Фур’є).

Не викликає сумніву, що методика формування світогляду студентів у процесі викладання вищої математики повинна стати невід’ємною частиною методики викладання вищої математики.


К методике изложения темы “Кривые второго

порядка” курса высшей математики

В.М. Дрибан, Г.Г. Пенина

г. Донецк, Донецкий государственный университет экономики и торговли им. М. Туган-Барановского

В курсе аналитической геометрии кривые второго порядка обычно рассматриваются как множества точек на плоскости, обладающих определенными свойствами, причем эти свойства различны для различных кривых. Такой подход имеет много методических достоинств. Остановимся на проблемном введении определения эллипса, когда в условиях созданной лектором проблемной ситуации студенты вместе с преподавателем участвуют в процессе разрешения учебной проблемы.

Перед изучением темы “Эллипс” в конце предыдущей лекции рассматривается построение “некоторой” кривой “методом садовника” (нить закреплена в двух точках, а кривая очерчивается так, чтобы мел все время держал нить в натянутом состоянии). Лектор говорит, что полученная кривая имеет большое теоретическое и практическое значение, поэтому очень важно изучить свойства данной кривой (эллипса). Задается вопрос: “Можете ли вы указать какие-нибудь свойства эллипса?”. Студенты по чертежу легко определяют такие свойства, как симметрия, указывают интервалы знакопостоянства, монотонности, находят точки экстремума. Преподаватель подтверждает правильность ответов студентов, но подчёркивает, что этих свойств недостаточно, надо выявить неочевидные, “глубинные” свойства эллипса. Как это сделать? С чего начать? Создалась проблемная ситуация: студенты поставлены в состояние интеллектуального затруднения, когда предшествующих знаний недостаточно для изучения свойств кривой. Здесь студенты слабо осознают основную причину своих затруднений (учебную проблему), поэтому лектор стремится организовать мыслительную деятельность студентов на выявление и формулировку проблемы: “Что нужно прежде всего знать о кривой, чтобы иметь возможность изучить ей свойства средствами математики?”. Если нет правильной догадки, задается вопрос типа “Как изучить свойства спирали Архимеда?” Сразу раздаются возгласы: “А что это такое?” Лектор дает определение спирали Архимеда и возвращается к первоначальному вопросу. Теперь почти всегда студенты дают ответ: чтобы изучить свойства кривой, нужно, прежде всего, дать ее математическое определение. Так в результате анализа проблемной ситуации возникает конкретная проблема. После этого студенты получают задание к следующей лекции: дать определение эллипса, основываясь на способе его построения (нужно подсказать, что эллипс следует определить как множество точек, обладающих определенным свойством). На следующей лекции приведенные студентами определения анализируются.

Конечно, проблемное изложение рассмотренного вопроса можно провести и на одной лекции, все зависит от наличия учебного времени. В любом случае проблемное изложение требует больше времени, чем объяснительно-иллюстративное, но, на наш взгляд, экономить время на таких моментах нельзя.

Подчеркнем, что проблемная ситуация в данном случае создалась лишь потому, что речь шла о кривой, знакомой в общих чертах студентам из школы и жизненной практики, т.е. благодаря наличию противоречия между житейскими и научными знаниями. Отметим также, что первая проблема (изучение “неочевидных” свойств эллипса) непосильна для студентов и была поставлена лишь для того, чтобы студенты с первых же занятий уяснили необходимость математических определений объектов как первого этапа их изучения средствами математики. Поэтому лектор эвристическими подсказками сразу же сводит эту проблему к другой (дать определение эллипса), которая по отношению к первой является промежуточной проблемой, но дидактически является основной. Эта проблема уже вполне посильна для студентов.

Обратим внимание на неточности в определениях эллипса и гиперболы, часто встречающиеся в учебниках. Эти неточности состоят в том, что зачастую не оговаривается, что сумма расстояний от точки эллипса до фокусов должны быть больше расстояния между фокусами, а разность расстояний от точки гиперболы до фокусов по абсолютной величине должна быть положительной и меньшей расстояния между фокусами.

Полезно предложить студентам на лекции найти множества точек на плоскости, не лежащих на кривых, для которых:

сумма расстояний каждой точки до фокусов равна расстоянию между фокусами;

разность расстояний каждой точки до фокусов равна нулю;

разность расстояний каждой точки до фокусов равна расстоянию между фокусами.

Неточности (причем принципиального характера) встречаются в учебниках также при выводе уравнений кривых второго порядка. Действительно, при выводе уравнений кривых второго порядка приходится возводить в квадрат иррациональные выражения, что может, вообще говоря, привести к появлению “лишних” точек, не лежащих на этих кривых. Лектор должен обратить на это внимание студентов и сказать, что можно доказать эквивалентность приведенных преобразований, сообщив при этом план доказательства (само доказательство из-за громоздкости выкладок проводить, на наш взгляд, нецелесообразно).

Следует отметить, что указание на неточности в учебниках всегда производит большой эмоциональный эффект.

На наш взгляд, лектор должен показать студентам общие подходы к кривым второго порядка. После того как становится известным, что эллипс, гипербола, парабола и их вырождения исчерпывают класс кривых второго порядка, студенты (с помощью преподавателя) должны “заподозрить” общее геометрическое свойство. После этого лектор рассказывает о том, что кривые второго порядка и их вырождения имеют одинаковое “происхождение”: они являются сечениями плоскостью поверхности конуса, если этот конус мыслить неограниченно продолженным в обе стороны от вершины. Этот факт (известный ещё древним грекам) чрезвычайно поучителен в познавательном и методологическом аспектах, а его демонстрация на доске или на модели производит большое эмоциональное воздействие.

В учебниках по высшей математике кривые второго порядка как конические сечения или вообще не рассматриваются, или рассматриваются как бы статично, независимо друг от друга: при определённых положениях секущей плоскости получается та или иная кривая. На наш взгляд, студентам гораздо интереснее и поучительнее будет увидеть образование кривых второго порядка в процессе динамики,то есть в процессе непрерывного изменения положения секущей плоскости. Если плоскость пересекает конус параллельно его основанию, то в сечении получается окружность (в частности, точка как окружность нулевого радиуса). Если плоскость наклонять, то сечение становится эллиптическим. Чем сильнее наклоняется плоскость, тем больше вытягивается эллипс, оставаясь эллипсом до тех пор, пока плоскость не станет параллельной образующей конуса. Как только это произойдёт, кривая перестаёт быть замкнутой, и две её ветви устремляются в бесконечность, образуя параболу. Дальнейший наклон плоскости приведёт к тому, что она пересечёт вторую половину конуса. В этом случае конические сечение есть гипербола (распространена ошибка, будто для образования гиперболы секущая плоскость обязательно должна быть параллельна оси конуса). Форма ветвей гиперболы меняется с изменением наклона плоскости до тех пор, пока они не выродятся в две пересекающиеся прямые.

Лектор может показать ещё один общий подход к кривым второго порядка: эллипс (кроме окружности), гипербола и парабола являются множествами точек, отношение расстояния которых до данной точки (фокуса) к расстоянию до данной прямой (директрисы) есть величина постоянная (эксцентриситет). При таком подходе определения и уравнения различных кривых второго порядка отличаются друг от друга лишь величиной эксцентриситета. Таким образом, оказывается, что эксцентриситет, который раньше был лишь показателем степени “сплюснутости” кривой, теперь становится одной из важнейших характеристик, видовым признаком, позволяющим по уравнению отличить одну кривую второго порядка от другой.

В этом плане поучительно рассмотреть (без доказательства) общее уравнение кривых второго порядка, отнесенное к вершине:

y 2 =2 px–(1– ε 2) x 2.

При ε=0 получим окружность (в частности, при ε=0 и p=0 получим точку). Если эксцентриситет εвозрастает, оставаясь меньше единицы, то 1– ε 2>0. Имеем непрерывно деформирующийся эллипс. Как только эксцентриситет становится равным единице, эллипс “превращается” в параболу. При дальнейшем увеличении эксцентриситета получим гиперболу. “Здесь можно проследить, – пишет неизвестный автор, – всю эволюцию форм кривых второго порядка. В первом акте высокой трагедии мы будем наблюдать деформирующийся эллипс, один из фокусов которого устремился в бесконечность, увлекая за собой и центр эллипса. Во втором акте меняющееся значение эксцентриситета достигает значения, равного единице, и тогда, только на одно мгновение мелькает образ параболы с тем, чтобы тотчас исчезнуть и дать место новому существованию – гиперболе. Последний акт будет длиться бесконечно долго – деформирующаяся гипербола может жить не спеша, но судьба ее выродиться в пару прямых предрешена”. Блестящее единство математики, диалектики и эстетики!

Умение видеть изменение геометрического образа при изменении параметров имеет большой познавательный смысл. Подобные примеры не только развивают воображение студентов, их эстетическое восприятие, но и делают изучение учебного материала по-настоящему интересным. Это стократ окупает некоторые дополнительные затраты времени.

Одной из важных задач обучения студентов является формирование их диалектико-материалистического мировоззрения. В этом плане высшая математика дает богатый иллюстративный материал, который должен использовать преподаватель. Формирование мировоззрения тесно связано с философскими законами и категориями, поэтому если философия изучается после высшей математики, преподаватель должен вначале в соответствующих местах курса кратко и популярно ознакомить студентов с сутью тех философских законов и категорий, которые он намерен иллюстрировать примерами из высшей математики. В частности, общие подходы к кривым второго порядка прекрасно иллюстрируют диалектический закон перехода количественных изменений в качественные: изменение количества (величины угла наклона плоскости, которая пересекает коническую поверхность, или числового значения эксцентриситета) ведет к появлению нового качества (к другой по форме и по свойствам кривой второго порядка).

С интересом воспринимают студенты сообщение о том, что теорию кривых второго порядка создали древние греки, не зная метода координат. Они рассматривали кривые второго порядка чисто геометрически, как конические сечения. Греческий математик Аполлоний Пергский (IV в. до н.э.!) настолько полно разработал теорию конических сечений, что никто из последующих математиков не сумел ни дополнить, ни исправить исследования Аполлония. Это уникальный факт в истории математики.

Уже на вводной лекции мы говорим об условном делении математики на “чистую” и прикладную и подчеркиваем важность фундаментальных теоретических исследований. Теория кривых второго порядка – блестящее тому подтверждение. Древние греки создавали геометрию конических сечений как “чистую” геометрию, она не находила своего применения почти двадцать веков, пока Кеплер не использовал ее для создания теории движения небесных тел, согласно которой планеты движутся по эллипсам, в одном из фокусов которых находится Солнце. Исходя из этой теории, Ньютон создал механику, служащую основой физики и техники. Трудно представить себе, насколько задержалось бы развитие человечества, если бы в свое время не была бы создана “неприкладная” теория конических сечений. А впоследствии оказалось, что кривые второго порядка являются траекториями и других небесных тел. Образно говоря, кривые второго порядка являются неотъемлемым элементом геометрической картины мироздания. Не сказать об этом студентам значит упустить один из важнейших моментов в формировании их мировоззрения.

Наш опыт работы показывает, что формирование диалектико-материалистического мировоззрения в процессе обучения сопровождается повышением интереса студентов к изучению высшей математики, к самому процессу познания.


МЕТОДИКА ОЗНАЙОМЛЕННЯ

МОЛОДШИХ ШКОЛЯРІВ З СИСТЕМАМИ ЧИСЛЕННЯ,

ВІДМІННИМИ ВІД ДЕСЯТКОВОЇ

С.І. Дятлова

м. Миколаїв, Миколаївський державний педагогічний університет

Програма розвиваючого навчання (система Д.Б. Ельконіна–В.В. Давидова), яка має широке використання в школах України, передбачає з першого класу одночасне знайомство учнів з усіма системами числення: десятковою, трійковою, шістковою і т.д. І тільки у кінці першого класу окремо “відшліфовуються” обчислювальні навички у десятковій системі. Методичні прийоми ознайомлення дітей з числами, з позиційними системами числення відбуваються на основі поняття натурального числа, як результату вимірювання величини (див. підручники математики авторів Олександрової Е.І. або авторів Захарової А.М., Фещенко Т.І.).

Розглянемо методичні прийоми, які, на наш погляд, є корисними і для використання в традиційному навчанні або на уроках, чи в позакласній роботі з математики (гуртки, факультативи).

В традиційному навчанні нумерація чисел в десятковій системі числення вивчається паралельно з величинами.

Наприклад, при вивченні нумерації трицифрових чисел учні розкладають багатоцифрові числа на розрядні доданки: 263=200+60+3; 263=21010+610+3; 263=2 сотні + 6 десятків + 3 одиниці.

Аналогічно і величина, наприклад, довжина, уявляється у виді суми трьох мірок: 263 см=2 м 6 дм 3 см.

Паралелізм у вивченні нумерації і величин пояснюється особливостями десяткової системи числення: кожні десять одиниць одного розряду утворюють одну одиницю наступного вищого розряду (10 од. складають 1 дес., 10 дес. складають 1 сотню, 10 сотень складають 1 тисячу), і навпаки.

Можна запропонувати дітям систему мірок для побудови величини, щоб при її вимірюванні отримували трицифрове число.

(Кількість цифр в числі зображено крапками, а співвідношення між двома сусідніми розрядами – стрілками і числом 10). У нас кожна наступна мірка повинна бути більшою за попередню у десять разів (тобто таке відношення між сусідніми мірками).

Наприклад, для числа 263, якщо взяти систему мірок клітину, смугу і квадрат (див. мал. 1), то все число 263 буде у вигляді площини наступної фігури (див. мал. 2) (2 квадрата, 6 смуг, 3 клітини), причому 10 е 1= е 2; 10 е 2= е 3; або е 2=; е 1=.

е 1

е 2

е 3

Мал. 1.

е 3

е 2

е 1

Мал. 2.

Можна за систему мірок брати смуги чи кружечки, але всюди співвідношення між сусідніми мірками повинно дорівнювати десяти. Якщо брати другу позиційну систему, наприклад, четвіркову, то співвідношення між сусідніми розрядами дорівнюватиме чотирьом (основі системи): кожні чотири одиниці одного розряду складають одну одиницю наступного високого розряду, і навпаки.

Наприклад, 123 4=144+24+3;

Якщо взяти за систему мірок клітку, смугу та квадрат (відповідно е 1, е 2, е 3), то зображення величини буде таким: е 2=4 е 1; е 3=4 е 2; або е 1=; е 2=.

е 3

е 2

е 1

Мал. 3.

Смуга у чотири рази більша від клітки, квадрат у чотири рази більший від смуги. Або навпаки: клітка у чотири рази менша смуги, смуга у чотири рази менша квадрата.

При системі мірок – відрізків

число 123 4буде зображено так:

Мал. 4.

Співвідношення між мірками е 1, е 2, е 3залишається тим самим.

При системі мірок у вигляді кружечків (мал. 5) зображення числа 123 4буде таким (мал. 6):

Мал. 5.

Мал. 6.

У десятковій системі для запису чисел використовуються десять цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, тобто цифра, що відповідає найбільшому одноцифровому числу, (9) на одиницю менша основи системи.

Аналогічна закономірність виконується і в будь-якій іншій позиційній системі числення: в двійковій системі числення використовуються дві цифри: 0 та 1; в трійковій – 3 (0, 1, 2); в четвірковій – 4 (0, 1, 2, 3); в п’ятірковій – 5 (0, 1, 2, 3, 4, 5) і т.д.

У цілому основа системи вказує, скільки одиниць одного розряду складає одну одиницю наступного вищого розряду. Далі можна запропонувати учням знайти помилки у записі чисел, виправити їх. Наприклад: а) 247 7; б) 47 4; в) 49 8.

Міркування учнів: а) цифри 7 не може бути у сімковій системі числення, тому що 7 одиниць складають одну одиницю другого розряду, та у другому розряді було чотири одиниці, тобто стало 5 одиниць другого розряду, отже буде число 250 7.

б) цифри 4 немає в четвірковій системі числення, чотири одиниці другого розряду складають одну одиницю третього розряду, отже, буде число 102 4.

в) 9 одиниць запишемо у вигляді суми розрядних доданків у вісімковій системі числення 9 = 8+1, а 8 одиниць замінюємо одним десятком та отримуємо 9 = 10 +1 = 11 8, одну одиницю пишемо у розряд одиниць, а 1 десяток переносимо у другий розряд, отже у другому розряді стало 5 одиниць, тобто стало число 51 8.

Цікавими нам уявляються наступні завдання для учнів:

1. Назвіть “сусідів” числа 39 10; 50 10; 34 5; 44 5; 100 6; 56 7; 66 7; 45 6; 55 6; 100 5; 40 5.

Міркування учнів: 39 10; сусіди цього числа 38 10та 40 10, оскільки щоб назвати попереднє число, потрібно відняти одиницю, отримуємо 38 10, а щоб назвати наступне число, потрібно додати одиницю до 39 10, використавши основну властивість десяткової системи числення: 10 одиниць складають одну одиницю наступного розряду (до 39 додати одиницю), починаємо додавати одну одиницю до дев’яти одиниць, отримуємо 10 одиниць, тобто 1 десяток (одна одиниця наступного, другого розряду), та ще три одиниці другого розряду, всього отримуємо чотири одиниці другого розряду, тобто число 40.

50 10; сусіди цього числа 51 10та 49 10, оскільки щоб отримати наступне, додаємо одиницю, а щоб отримати попереднє, тобто відняти одиницю, потрібно “взяти” одну одиницю у другого розряду та роздробити її на 10 одиниць (десяткова система числення), у другому розряді залишається чотири одиниці, а у першому із 10 одиниць відняти одну одиницю, залишається 9 одиниць, тобто число 49 10.

Використовуючи той самий алгоритм, але враховуючи основну властивість будь-якої системи числення (основа системи показує, скільки одиниць одного розряду складає один десяток, тобто одну одиницю наступного розряду), знаходимо “сусідів” чисел: 34 5(попереднє 33 5, наступне 40 5), оскільки п’ять одиниць одного розряду складають одну одиницю наступного розряду.

44 5(попереднє 43 5, наступне 100 5), тут двічі здійснюється перехід через розряд.

100 6(попереднє число знаходимо так: із 100 6відняти одиницю, беремо одну одиницю третього розряду, перетворюємо її в 6 одиниць (основа системи це показує) другого розряду, із них беремо одну одиницю (в другому розряді залишилось 5 одиниць), роздрібнюємо її на 6 одиниць першого розряду та віднімаємо одиницю, залишається у першому розряді теж 5 одиниць, отримуємо число 55 6. Отже, для 100 6попереднім є 55 6, а наступним 101 6.

56 7(попереднє 55 7, наступне 60 7);

66 7(попереднє 65 7, наступне 100 7);

45 6(попереднє 44 6, наступне 50 6);

55 6(попереднє 54 6, наступне 100 6);

100 5(попереднє 44 5, наступне 101 5);

40 5(попереднє 34 5, наступне 41 5).

2. Назвіть найбільше і найменше одноцифрове і двоцифрове число у різних системах числення: двійковій, четвірковій, шістковій, сімковій, вісімковій, дев’ятковій, десятковій. Що ти тут побачив?

Основа системи

2

4

6

7

8

9

10

Найменше одноцифрове

0 2

0 4

0 6

0 7

0 8

0 9

0 10

Найбільше одноцифрове

1 2

3 4

5 6

6 7

7 8

8 9

9 10

Найменше двоцифрове

10 2

10 4

10 6

10 7

10 8

10 9

10 10

Найбільше двоцифрове

11 2

33 4

55 6

66 7

77 8

88 9

99 10

Помічаємо, що всі найменші числа у будь-якій системі числення складаються із нулів (найменше одноцифрове) або одиниць з нулями (найменше двоцифрове, найменше трицифрове аналогічно 100). А найбільші одноцифрові складаються із однієї цифри, що відповідає числу, на одиницю менше основи системи, а найбільше двоцифрове – із двох однакових цифр, на одиницю менше основи системи (аналогічно найбільше трицифрове – із трьох однакових цифр, на одиницю менше основи системи).

3. Вказати “таємниці” числових шкал, назвати два наступних числа:

1)

2)

3)

Міркування учнів:

1) “Таємниця” першої шкали у тому, що тут мова йде про двійкову систему числення, це видно з того, що точка, яка знаходиться від початку відліку на відстані однієї мірки •___•, позначена одиницею, а точка, яка віддалена від початку шкали на дві одиниці, замінена одним десятком, тобто мова йде про основну властивість двійкової системи числення.

Наступні числа: за числом 111 2стоїть 1000 2; 1001 2.

2) “Таємниця” цієї шкали – четвіркова система числення, оскільки точка, що віддалена від початку шкали на 4 одиниці, відмічена числом 10, а це є основна властивість четвіркової системи числення (4 од. = 1 дес.).

Наступним за 22 4стоять числа 23 4; 30 4.

3) “Таємниця” цієї шкали – шісткова система числення. Наступними за числом 15 6стоять числа 20 6; 21 6.

Цікавим для учнів на занятті математичного гуртка, або факультативу є знайомство з додаванням та відніманням багатоцифрових чисел (а потім з множенням та діленням), записаних в будь-якій позиційній системі числення. В дійсності тут відбувається розширення використання алгоритму цих дій в десятковій системі числення на будь-яку іншу позиційну систему числення з основою, що відмінна від десяткової.

В алгоритмах цих арифметичних дій тільки один крок повинен бути записаним в більш узагальненому виді: основа системи вказує співвідношення між сусідніми розрядами, тобто скільки одиниць одного розряду складає одну одиницю наступного розряду.

Наприклад:

3132 5

+

1302 5

4434 5

– самий “легкий” випадок, де немає переходу через десяток.

3122 5

+

1212 5

4340 5

– є перехід через десяток в розряді одиниць: 2 5+ 3 5= 10 5(сума одиниць складає одну одиницю наступного розряду).

3133 5

+

1303 5

4441 5

– є перехід через десяток в першому розряді, але сума одиниць тут перевищує одну одиницю наступного розряду: 3 5+ 3 5= 10 5+ 1 5= 11 5.

3132 5

+

1224 5

4411 5

– є перехід в першому і другому розрядах.

Далі можна запропонувати більш складні приклади на додавання, коли спостерігається перехід через десяток в кожному розряді І класу, в двох класах та ін.


    Ваша оценка произведения:

Популярные книги за неделю