Текст книги ""Теорія та методика навчання математики, фізики, інформатики. Том-1""
Автор книги: Автор Неизвестен
Жанры:
Математика
,сообщить о нарушении
Текущая страница: 11 (всего у книги 11 страниц)
Мошковська Г.К. Головна теорема геометрії // Нова педагогічна думка. – 1999. – №4. – С. 121–125.
Розв’язування задач з параметрами
з Використанням програми gran1
Т.Г. Крамаренко
м. Кривий Ріг, Жовтневий ліцей
Математика є унікальним засобом формування не тільки освітнього, а й розвиваючого та інтелектуального потенціалу особистості. Використання комп’ютера, зокрема програми GRAN1, на уроках алгебри допомагає у вирішенні дидактичних завдань та активізує дію мотиваційних чинників у створенні позитивного ставлення до навчання [1].
Розглянемо приклади застосування GRAN1 при вивченні теми “Розв’язування задач з параметрами”.
Параметр має двоїсту природу – з одного боку це фіксоване, але невідоме число, а з другого боку – змінна, оскільки розглядаємо задачу для всіх можливих значень параметра. Це і обумовлює два основні методи розв’язання – аналітичний та графічний, з побудовою графічного образу на координатній площині ( x; y) чи на площині ( x; а). Графічний метод перетворює процес розв’язування з формально-арифметичного в наочно-геометричний.
Щоб знайти при яких значеннях арівняння х 2–2 ах+а+1=0 і х 2 +ах–а–1=0 мають хоча б один спільний корінь, користуються, як правило, аналітичним методом. З використанням GRAN1 задачу нескладно розв’язати графічно. Для цього будуємо в одній системі координат графічні образи рівнянь, відкладаючи по осі абсцис значення змінної, по осі ординат – значення параметра. Скориставшись послугою “Координати точки”, знаходимо ординати точок перетину: –1; 2; –0,67. При таких значеннях параметра рівняння мають спільний корінь.
Передбачимо, використовуючи GRAN1, кількість розгалужень в процесі розв’язання рівняння х 4–2 ах 2– х+а 2– а=0 та число розв’язків для кожного значення параметра а. Аналізуючи графічний образ можна встановити, що для а<–0,25 коренів нема; для –0,25< а<0,75 коренів два, для а>0,75 коренів чотири, для а=–0,25 – один, для а=0,75 – три. Самі ж корені можна знайти лише наближено. Аналітичним методом рівняння розв’язують через параметр.
Для розв’язування нерівності х 2( х 2–2 а)+4 а< х 2(4– а) традиційно використовують аналітичний метод. Спробуємо здійснити передбачення розв’язків з використанням GRAN1. Перетворюємо нерівність до виду G( x, y)>0, будуємо графічний образ рівняння G( x, y)=0 і використовуємо послугу “Розв’язати нерівність G( x, y)>0”.
По осі абсцис відкладаємо значення параметра а, по осі ординат – змінної х. Щоб переконатися, яку саме криву побудовано, додатково будуємо в цій же системі координат графік функції . Криві співпадають (рис. 1). Проводимо прямі, перпендикулярні параметричній осі, записуємо розв’язки нерівності. Якщо а<0, x(–2; 2); 0≤ а<4, то х(–2; –√ а)U(√ а; 2); якщо а=4, то нема розв’язків; якщо а>4, то х(–√ а; –2)U(2; √ а).
Ще одна нерівність. При яких значеннях параметра анерівність a·4 x –4·2 x +3 a+1≥0 виконується для всіх х? Будуємо з використанням GRAN1 геометричне місце точок (рис. 2), що задовольняють нерівність. По осі ординат відкладаємо параметр а, знаходимо максимум а=1. При a≥1 нерівність виконується для всіх х.
Щоб розв’язати без використання GRAN1, перетворюють нерівність. Задача знову звелась до знаходження найбільшого значення функції. Для отримання розв’язків використовують похідну.
Користуючись графічним образом рівняння чи нерівності варто запропонувати дітям самостійно скласти і розв’язати нові задачі. Збільшуючи відрізок, на якому задано функцію, учні можуть відповісти на питання, при яких значеннях параметра остання нерівність не має розв’язків, розв’язки записуються у вигляді одного, двох інтервалів.
Нерівність найкраще розв’язувати графічно з побудовою образу в площині ( х, а). Тому картинка, яку виконаємо від руки, буде такою ж, як і з використанням GRAN1.
Досить часто при розв’язуванні методом перерізів для побудови графіків учням доводиться застосовувати похідну. Труднощі в таких задачах можуть виникнути і при обчисленні границь функції. Саме тоді в нагоді стає комп’ютер, який вчить учня правильно використовувати властивості функцій.
Застосування програми GRAN1 розширює клас функцій, графіки яких учні можуть побудувати. Варто звернути увагу на особливості побудови графіків цілої частини функції y=[ f( x)] та дробової y={ f( x)} в програмі GRAN1. За цілу частину числа хберуть найбільше ціле число, що не перевищує дане. Дробовою частиною числа називається різниця між числом і цілою частиною. В програмі GRAN1 закладено означення з якого слідує, що цілою частиною від’ємного числа є число, яке може бути більшим заданого числа: в програмі [–1,3]=–1 а правильно –2. Тому графіки вказаних функцій до розв’язування задач з параметрами потрібно використовувати обережно.
Таким чином, застосування програми GRAN1 для розв’язування задач з параметрами сприяє передбаченню розв’язків задач, висуванню гіпотез, дає можливість в багатьох випадках отримати кількість розгалужень, сприяє розвитку логічного мислення, пошуку нестандартних підходів при розв’язування задач. Програму можна застосувати до багатьох задач, що традиційно розв’язуються аналітичним методом.
З іншого боку, застосування програми GRAN1 допомагає вирішувати проблему гуманізації освіти: робить задачі з параметрами більш доступними кожному, хто має хоча б елементарні навички у роботі з комп’ютером, дозволяє дитині досягти успіху, навіть якщо вона й не знає деяких теоретичних положень.
Література:
Жалдак М.І. Комп’ютер на уроках математики: Посібник для вчителів. – К.: Техніка, 1997. – 303 с.
СКІНЧЕННО-РІЗНИЦЕВЕ РОЗВ’ЯЗАННЯ ДВОМІРНОГО
РІВНЯННЯ ШРЕДІНГЕРА Й ФЕНОМЕН КВАНТОВОГО
ХАОСУ: НАУКОВІ ТА МЕТОДИЧНІ АСПЕКТИ
І.В. Кукліна
м. Одеса, Одеський державний екологічний університет
Значна частина задач математичної фізики та обчислю-вальної математики пов’язана з чисельним розв’язанням рівнянь в частинних похідних, які описують різноманітні процеси (класичний та квантовий хаос, дифузійні тощо). При чисельному розв’язанні шуканих рівнянь часто використовуються різницеві схеми [1]. До числа досить складних відноситьтся класс задач, пов’язання з рішенням рівняння Шредінгеру для багаточастин-кових систем з різним птенціалами. Дана робота присвячена розробці нових чисельних моделей в теорії квантово-хаотичних систем у магнітному полі. Вперше розроблено новий квантовий підхід до розрахунку енергій й ширин зеєманівських резонансів у спектрі атому водню й воднєподібних систем у статичному магнітному полі та їх статистичних характеристик у режимі хаосу. Метод базується на скінченно-різницевому розв’язанні двомірного рівняння Шредінгера для атому водню у магнітному полі та операторній теорії збурень. Гамільтоніан системи у магнітному полі з магнітною індуцією Вмає стандартний вигляд:
(1)
Завдяки інваріантності відносно обертання навколо восі, яка проходить через ядро й паралельна полю В, z-компонента орбітального моменту L z =hМє величиною, що зберігається. У циліндричній системі координат (Oz|| В) з врахуванням залежності хвильової функції від куту повороту φнавколо восі z(), рівняння Шредінгеру має вигляд (в атомних одиницях):
(2)
Двомірне рівняння (2) не розв’язується аналітично (член кулонівської взаємодії з не дозволяє розділити змінні), тому в роботі розвинуто нову скінченно-різницеву схему його розв’язання. При різницевому розв’язанні нескінчена область замінювалася прямокутною областю: 0 <
Для розрахунку ширин резонансів у магнітному полі узагальнено метод операторної теорії збурень ОТВ (Glushkov-Ivanov, 1992 [5]). Ширина Г резонанса:
Г/2(3)
з повним гамільтоніаном (2), Eb -функції дискретного спектру, Ec -функції станів континуума. Далі розглянуто застосування нового підходу до розрахунку енергетичних та статистичних властивостей спектру резонансів в атомі водню у магнітному полі й з’ясування особливостей та механізму стохастизації у системі. Крім мети апробації нового методу взагалі, ми виконали розрахунки з метою відтворити та докладно пояснити результати експериментів Клеппнера та співр. (Масачусетський технологічний інститут), в яких спостерігався ефект хаосу в атомі водню у магнітному полі з індукцією 6Тл (див. [2–4]). Ми проводили розрахунок енергій та ширин резонансів в атомі водню для декількох інтервалів значень індукції магнітного поля, у тому числі, значення, яке використано в експерименті Клеппнера та співр. Аналізувалися повністю збіжні серії резонансів в інтервалах енергії: [( n–0.5) , ( n–0.3 ] для n=1, 2, 3, 4. Рідбергівські серії резонансів збігаються до границі іонізації Ландау: E ion(n )=(n +1/2) . Густина станів для кожного каналу Ландау, згідно з нашими аналізом, складала ~35 резонансів на см -1, що погоджується з експериментальними значеннями ~30 резонансов на см -1, а також даними, які отримані на підставі оцінок в межах моделі комплексних коордінат (МКК; Delande-Dupret, 1995) та адіабатичному наближенні ОТВ (АОТВ: Ambrosov-Glushkov, 1998): ~40 резонансов на см -1. Середня ширина резонансу, згідно з нашим розрахунком, складає 0.005 см -1, що також погоджується з експериментальними даними Клеппнера та співр.: 0.004–0.006 см -1й оцінками в моделях МКК й АОТВ: 0.006–0.007 см -1. З фізичної точки зору, наявність у спектрі атому водню у магнітному полі багаточислених резонансів з малими та аномально малими ширинами пояснюється в межах квантової теорії хаоса. Їх виникнення обумовлено не схованою симетрією або феноменом локалізації, а має місце внаслідок випадкових інтерференційних явищ й флуктуацій, притаманних взагалі хаотичним системам.
В роботі також вперше розроблено новий квантовий підхід до розрахунку структури й статистичних властивостей енергетичних спектрів некулонових (багатоелектронних) атомних систем у статичному магнітному полі у регулярній й хаотичній областях, який базується на скінченно-різницевому розв’язанні 2D рівняння Шредінгера з некулоновим потенціалом для багатоелектронної атомної системи і ОТВ (2D-ОТВ). Крім того, додатково вперше чисельно реалізовані адіабатичні моделі розрахунку структури рівнів Н-подібних й некулонових атомних систем у полі, які є ефективними лише у граничному випадку (в інших випадках точність не є достатньою, тому більшість розрахунків проведено методом 2D-ОТВ). У випадку багатоелектронної системи рівняння Шредінгера для одноелектронних функцій записуються (у хартрі-фоківському наближенні) у вигляді:
(4)
де V c ( r) – потенціал, який додано до кулонівського й описує самопогоджене поле, в якому рухається електрон. В якості потенціалу V свикористовувався потенціал Гріну. Для розв’язання рівняння (4) використана скінченно-різницева схема. Інтегрування по куту у виразах для кулонівського, кореляційного та обмінного потенціалів приводить до інтегралів у координатах ( , z), які містять еліптичні К и Е (розраховані шляхом чисельного інтегрування по вузлам сітки). Вперше в теорії схема розрахунку включала обмінно-кореляційні потенціали для вурахування міжелектронних кореляцій, які є важливими у випадках малих та проміжних значень магнітного поля). Слід відзначити, що до теперішнього часу надійні дані по енергетичним характеристикам атомних систем у магнітному полі практично відсутні. Отримані результати є дуже важливими, але їх точність з-за неврахування кореляцій й ряда інших факторів не може вважатися достатньо високою. На підставі нової чисельної моделі ми виконали докладні розрахунки структури енергетичних рівнів нейтральних та одноразово іонізованих атомних систем (із зарядом ядра Z=2–10) у статичному магнітному полі в интервалі змінення параметра магнітного поля: =B/Bo=0.01–10000; атомні одиниці). Розрахунки та аналіз структури енергетичних рівнів нейтральных та одноразово іонізованих атомів з Z=2–10 у магнітному полі показали, що залежність енергії рівнів від параметра магнітного поля має надто складний характер. Розраховані значення параметра магнітного поля, які відповідають багаточисельним перерізам рівнів (особливо висока їх інтенсивність у інтервалі енергій та значень поля, що відповідають порівняній величині взаємодії електрону з кулонівським та магнітним полем). Зокрема, в таблиці 1 наведені результати наших розрахунків енергій станів та значень параметра магнітного поля, яке відповідає найбільш інтенсивним перерізам енергетичних рівнів (системи: Ве-О).
Таблиця 1.
Енергії й параметр магнітного поля, які відповідають точкам перерізів енергетичних рівнів .
Z
Атомний стан (s)
– E( А) (ат.од.)
4
4.62
15.95827
4.576
15.95922
5
8.402
28.35029
8.345
28.34844
7
36.880
84.4892
30.563
79.41924
17.475
66.80315
17.411
66.77028
8
64.760
130.88013
55.810
124.28135
23.342
94.56914
24.521
94.50018
Особливо складна й нерегулярна структура енергетичних рівнів має місце в атомах вуглецю та неона. Для атома Ne у магнітному полі розрахунок показав, що переріз кривих енергії станів |0 N > та |2 p 0> має місце при =161.315, станів |2 p 0> й |1 s 2> при =41.980. Докладний аналіз структури рівнів атома C у залежності від параметра магнітного поля (S z=–2) показав, що із зменьшенням (із області великих значень В) конфігурація
1s 2 2p -1 3d -2 4f -3 5g -4 поступається роллю основної конфігурації 1s 2 2s2p -1 3d -2 4f -3 . Далі домінує конфігурація: 1s 2 2s2p -1 3d -1 3d -2 . В області змінювання параметра магнітного поля від ~0,4 до ~5 мають місце інтенсивні перерізи енергетичних рівнів. Структура рівнів характеризується надто виразовою нерегулярністю. Таким чином, нами розроблено новий чисельний підхід до розрахунку енергетичних спектрів атомних систем у статичному магнітному полі, їх статистичних характеристик у режимі хаосу, який базу-ється на скінченно-різницевому розв’язанні двомірного рівняння Шредінгера для атому у магнітному полі і ОТВ. Новий чисель-ний підхід є досить універсальним і може бути застосований для кількісного вивчення регулярної й стохастичної динаміки. феномену квантового хаосу у самих різних системах.
Література
Cамарский А.А., Гулин А.В. Устойчивость разностных схем. – М., 1973.
Куклина И.В. Стохастическая динамика атомных систем в магнитном поле // Науковий Вісник Ужгородського університету. – 2001. – Vol. 9, N2. – P. 171-174.
Glushkov A.V., Fedchouk A.P., Kuklina I.V. Stochastic dynamics of atomic systems in magnetic field. Zeemane effect for Wannier-Mott excitons // Photoelectronics. – 2001. – №10. – P. 100-102.
Kuklina I.V. Multielectron systems in a superstrong magnetic field: Density-functional calculations // Proc. International Conf. on Applied Density Functional Theory. – Vienna (Austria). – 2001. – P. 94.
Glushkov A.V., Ivanov L.N. DC Strong-Field Stark-Effect: consistent quantum-mechanical approach // J. Phys.B: At. Mol. Opt. Phys. – 1993. – Vol. 26, N 16. – P. L379-L386.
ДЕЛЕНИЕ ОТРЕЗКА НА ПЯТЬ РАВНЫХ ЧАСТЕЙ
А.Я. Кумченко
г. Днепропетровск, Днепропетровский государственный
аграрный университет
Деление отрезка на пять равных частей осуществляется при помощи следующей теоремы:
Если в произвольном треугольнике разделить каждую сторону на три равные части, то точки пересечения лучей, соединяющих третьи части сторон с противолежащими вершинами, окажутся, в свою очередь, вершинами треугольника подобного данному, зеркально-симметричного данному, со сторонами и периметром равными1/5 данного.
CЕ = 1/3 АС; CЕ = ЕК = АК;
А 1В 1 = 1/5 АВ CD = 1/3 BС; CD = DN = NB;
В 1С 1 = 1/5 ВС BM = 1/3 AB; BM = ML = LA.
А 1С 1 = 1/5 АС
Таким образом, в любом треугольнике, кроме медиан есть еще и терцианы.
НЕКОТОРЫЕ ОСОБЕННОСТИ И ПРОБЛЕМЫ
АКТИВИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ
АБИТУРИЕНТОВ ПРИ ИЗУЧЕНИИ КУРСА
«ТРИГОНОМЕТРИЯ»
С.Н. Латынин 1, И.В. Латынина 2
1г. Донецк, Донецкий экономико-гуманитарный институт
2г. Донецк, Донецкий политехнический техникум
Содержание и методика обучения математике претерпевают закономерный процесс периодического обновления и непрерывного совершенствования. Роль фундаментальных знаний в педагогическом плане была всегда велика, но в полной мере начинает осознаваться в наше время, когда особенно быстро растет объем новых знаний о природе. Только фундаментальное образование способно выработать современное научное мышление, позволяющее успешно решать любые научные и технические проблемы, выдвигаемые практикой. В современных условиях, и в исследовательской лаборатории, и на производстве, лучше ориентируется и оказывается более эффективным работник с высоким уровнем общей подготовки.
При составлении учебного пособия «Тригонометрические неравенства. Практическое руководство для школьников и абитуриентов» авторы исходили: во-первых, из того, что «Тригонометрические неравенства» – это один из разделов тригонометрии, который меньше всего раскрыт в обучающей литературе и, во-вторых, сокращение часов выделяемых на аудиторные занятия заставляет по-новому взглянуть на проблему организации самостоятельной работы учащихся. При написании учебного пособия авторы опирались на психологические и педагогические принципы познавательной деятельности в процессе обучения. Мы исходили из того, что «слияние проблемы содержания и методов обучения с проблемой передачи и формирования способа мышления есть насущная необходимость наших дней». Обучение не должно ограничиваться передачей учащимся определенной суммы знаний, оно должно включать и передачу самого способа мышления. Педагогические и дидактические принципы, принятые за основу, призваны обеспечить реализацию процесса познавательной деятельности при максимальной активности учащихся. Так как выработка оптимального соотношения чувствительного и рационального познания представляет собой сложную задачу, то информация, извлекаемая из данного учебного пособия, переплетается с указаниями методологического характера: как следует подходить к изучению материала того или иного раздела, чтобы добиться оптимальных результатов с минимальной затратой времени. Наша цель не в том, чтобы дать им энциклопедические знания, а в том, чтобы научить учащихся разбираться в огромном потоке информации, анализировать и преломлять ее для своих практических целей.
Теоретический материал учебного пособия изложен в первых двух разделах, он не содержит ничего лишнего и ориентирован исключительно на формирование навыков быстрого решения тригонометрических неравенств. Одна из целей книги – довести последовательность основных действий учащихся при решении неравенств до автоматизма. Работа с пособием предполагает последовательный разбор решений всех неравенств, от простейших до самых сложных. Примечания по тексту должны ориентировать школьников на повторение и восстановление в памяти разобранного ранее теоретического материала (или решенных задач), на контроль правильности их рассуждений. Мы не ставим своей задачей использование творческих способностей школьников, а требуем, чтобы у них были определенные математические навыки, знания и умение их применять.
В книге обучение осуществляется в соответствии с правилами обучения: от простого к сложному; от легкого к трудному; от известного к неизвестному; от знаний к умению, а от него к навыку и т.д. Это касается как теоретического так и практического содержания учебного пособия. Мы предполагали, что учебное пособие будут читать учащиеся с различным уровнем подготовки, поэтому теоретическая часть поделена на два раздела. 1-й раздел полезен для сильных учащихся, уже преуспевших в изучении тригонометрии. Он содержит весь справочный материал, необходимый для быстрого решения тригонометрических неравенств, а также для проверки правильности полученных результатов в задачах. Там приведены общие и частные решения простейших неравенств для различных значений m(например, вида