355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Морис Клайн » Математика. Поиск истины. » Текст книги (страница 9)
Математика. Поиск истины.
  • Текст добавлен: 26 сентября 2016, 21:48

Текст книги "Математика. Поиск истины."


Автор книги: Морис Клайн


Жанр:

   

Математика


сообщить о нарушении

Текущая страница: 9 (всего у книги 25 страниц)

Следует подчеркнуть, однако, одно важное обстоятельство: эта математическая формула описывает то, что происходит, не объясняя причинной связи, т.е. ничего не говорит о том, почему мяч падает. Она лишь дает нам количественную информацию о том, как происходит падение мяча. Обычно ученый пытается установить математическую зависимость (выражаемую формулой) между переменными, которые, как он надеется, имеют причинно-следственную связь. Но для успешного решения этой задачи – установления математической зависимости между переменными – ученому вовсе не обязательно исследовать или понимать причинную зависимость. И это отчетливо понимал Галилей, отстаивая приоритет математического описания перед менее успешным качественным исследованием и поиском причинных связей в природе.

Галилей решительно отдавал предпочтение поиску математических формул, описывающих явления природы. Сама по себе эта идея, как и большинство идей, рожденных гениями, поначалу не производит особого впечатления. Много ли проку в «голых» математических формулах? Ведь они ничего не объясняют. Они просто описываютпроисходящее на точном языке, не допускающем недомолвок и иносказаний. Тем не менее именно формулы оказались наиболее ценным знанием, которое людям удалось получить о природе. Как мы увидим в дальнейшем, поразительные практические и теоретические достижения современной науки стали возможны вследствие того, что человечество накопило количественное описательное знание и научилось пользоваться им, а отнюдь не благодаря метафизическим, теологическим и даже механическим объяснениям причин наблюдаемых явлений.

В «Беседах и математических доказательствах, касающихся двух новых отраслей науки» (1638) Галилей вкладывает в уста одного из участников диалога (Сальвиати) такие слова:

Мне думается, что сейчас неподходящее время для занятий вопросом о причинах ускорения в естественном движении, по поводу которого различными философами было высказано столько различных мнений; одни приписывали его приближению к центру, другие – постепенному частичному уменьшению сопротивляющейся среды, третьи – некоторому воздействию окружающей среды, которая смыкается позади падающего тела и оказывает на него давление, как бы постоянно его подталкивая; все эти предположения и еще многие другие следовало бы рассмотреть, что, однако, принесло мало пользы. Сейчас для нашего Автора будет достаточно, если мы рассмотрим, как он исследует и излагает свойства ускоренного движения (какова бы ни была причина ускорения).

([12], т. 2, с. 243-244.)

Итак, положительное физическое знание следует отделять от вопросов о причинной зависимости, а всякого рода предположения о физических причинах оставить в стороне. Галилей настоятельно советовал естествоиспытателям: не рассуждайте о том, почему происходит какое-то явление – описывайте его количественно.

Первая реакция на эту основополагающую идею Галилея, судя по всему, была отрицательной. В описаниях явлений с помощью формул большинство ученых видели лишь первый шаг. Истинную же задачу науки, по их убеждению, точно сформулировали последователи Аристотеля: пытаться найти физические объяснения наблюдаемых явлений. Даже у Декарта решение Галилея заняться поиском описательных формул вызвало протест: «Все, что Галилей говорит о телах, свободно падающих в пустоте, лишено всякого основания; ему следовало бы сначала определить природу тяготения». По мнению Декарта, Галилею следовало бы поразмыслить о первопричинах наблюдаемых явлений. Ныне, в свете последующего развития науки, мы понимаем, что стремление Галилея сосредоточить все усилия на количественном описании явлений было весьма глубокой и плодотворной идеей научной методологии. Смысл ее, по-настоящему уясненный лишь позднее, состоял в том, чтобы науку о природе как можно теснее связать с математикой.

Поиск формул, описывающих явления, в свою очередь вызывает вопрос: какие величины должны быть связаны формулами? Формула устанавливает взаимосвязь между численными значениями переменных физических величин. Значит, эти величины должны быть измеримыми. Еще один принцип, которому столь же неукоснительно следовал Галилей, заключался в том, чтобы измерять измеримое и делать измеримым то, что не поддается непосредственному измерению. Перед Галилеем встала проблема: как распознать те аспекты явлений природы, которые наиболее важны и могут быть измерены?

Декарт, как мы уже говорили, рассматривал материю, движущуюся в пространстве и времени, как наиболее фундаментальное явление природы. Следуя ему, Галилей попытался выделить те характеристики движущейся материи, которые можно измерить, а затем установить между ними зависимости, выражаемые математическими законами. Анализируя явления природы, Галилей пришел к необходимости сосредоточить внимание на таких понятиях, как пространство, время, тяготение, скорость, ускорение, инерция, сила и импульс. В выборе этих понятий еще раз проявился гений Галилея, ибо важность их отнюдь не была очевидной, а соответствующие физические величины не всегда доступны прямому измерению. Такие свойства материи, например инерция, были настолько «скрытыми», что возникали даже сомнения в том, обладает ли ими материя. В существовании других можно было удостовериться только косвенно, на основании наблюдений. Другие понятия, например импульс, предстояло еще придумать. Но как бы то ни-было, введенные Галилеем понятия сыграли важную роль в раскрытии многих тайн природы.

Еще один аспект подхода Галилея к естествознанию оказался впоследствии не менее важным: исследуя природу, естествоиспытатель должен следовать какой-то математической модели. Галилей и его ближайшие последователи не сомневались, что им удастся найти законы природы, истинность которых будет казаться столь же неоспоримой, как аксиома Евклида о том, что «от всякой точки до всякой точки [можно] провести прямую линию» ([17], с. 14). Открытию таких аксиом физики должно было способствовать созерцание, экспериментирование, наблюдение, но коль скоро эти аксиомы познаны, истинность их должна быть интуитивно очевидной. Из таких интуитивно постигаемых аксиом Галилей, следуя в этом Декарту, надеялся логическим путем вывести ряд других истин, подобно тому как Евклид выводил теоремы из своих аксиом.

Однако в том, что касается метода выявления первых принципов, Галилей радикально расходился с древними греками, средневековыми мыслителями и даже с Декартом. До Галилея было принято считать (и это мнение разделял Декарт), что наиболее фундаментальным принципам мы обязаны нашему разуму. Задумавшись над тем или иным классом явлений, человеческий разум непосредственно постигает фундаментальные истины, о чем со всей очевидностью свидетельствует математика. Такие аксиомы, как «если к равным прибавляются равные, то и целые будут равны» ([17], с. 15) или «от всякой точки до всякой точки можно провести прямую линию» ([17], с. 14), мысль рождает сама по себе, достаточно лишь задуматься о числах или геометрических фигурах и истинность такого рода аксиом неоспорима. Греческие мыслители придерживались и некоторых физических принципов. Например, неоспоримым фактом считалось, что у всех объектов в мире должно быть свое естественное место. Состояние покоя казалось им более естественным, чем состояние движения. Так как небесные тела считались совершенными и повторяли свои движения через определенные промежутки времени, а окружность рассматривалась как совершеннейшая из кривых и допускала периодическое повторение движений, древние греки не сомневались, что небесные тела должны двигаться по круговым орбитам или в худшем случае по орбитам, представляющим собой комбинации окружностей. Убеждение в том, что фундаментальные принципы формируются разумом, не отрицало роли наблюдений в процессе выработки этих принципов, но наблюдения должны служить как бы толчком к постижению правильных принципов, подобно тому как созерцание знакомого лица заставляет нас вспоминать различные факты из жизни этого человека.

Галилей настойчиво подчеркивал, что если мы хотим установить правильные основополагающие принципы, то необходимо прислушиваться к «голосу» природы, а не следовать тому, что кажется предпочтительным нашему разуму. Галилей открыто критиковал естествоиспытателей и философов, принимавших те или иные принципы на том лишь основании, что они согласуются с их априорными представлениями о явлениях природы. По мнению Галилея, природа не сотворила сначала человеческий мозг, а потом остальной мир, сделав его приемлемым для человеческого разума. Критикуя средневековых схоластов, повторявших изречения Аристотеля и занимавшихся их толкованием, Галилей отмечал, что знание берется из наблюдения, а не из книг. Толкование Аристотеля – занятие бесполезное. Тех же, кто с упоением предавался этому занятию, Галилей называл бумажными учеными, полагающими, будто науку можно изучать, как «Энеиду», «Одиссею» или путем надергивания цитат из различных текстов. Природа создает свои творения, как ей заблагорассудится, человеческому разуму надлежит напрягать все свои силы, чтобы понять ее. «Природу не интересует, доступны ли ее трудно постижимые причины и способы действия пониманию людей… Когда мы имеем дело с «декретами» природы, авторитет бессилен».

Против засилья схоластики возвышали свой голос и многие предшественники Галилея. Леонардо да Винчи утверждал, что науки, которые берут начало и обретают конец в человеческом разуме, не рождают истин, ибо в умопостроение не входит опыт, а без него не может быть уверенности в истинности того или иного умозаключения: «Если не опираться на прочный фундамент природы, то труд принесет мало чести и еще меньше пользы». Современник Галилея Фрэнсис Бэкон обрушился с резкой критикой на различного рода идолов, заполнивших человеческий разум и мешавших людям видеть истину. Но до Галилея экспериментирование в поисках основополагающих принципов велось наощупь и не имело четкой направленности.

Однако современник Галилея Декарт не видел мудрости в том, чтобы прибегать к экспериментированию в поиске истины. По мнению Декарта, чувственный опыт способен лишь вводить в заблуждение. Разум же развеивает подобные заблуждения. Исходя из общих принципов, от рождения присущих нашему разуму, мы можем вывести логическим путем те или иные частные явления природы и понять их. И хотя во многих естественнонаучных работах Декарт экспериментировал и неукоснительно следил за тем, чтобы теория соответствовала фактам, но в философии настойчиво отстаивал мысль, что истины рождаются лишь разумом.

Хотя Галилей производил эксперименты вполне обдуманно и планомерно, не следует думать, что экспериментирование тогда велось в широких масштабах и стало новой решающей силой в науке. Перелом в пользу экспериментального подхода наступил лишь в XIX в. Разумеется, и в XVII в. были выдающиеся экспериментаторы: физик Роберт Гук, химик Роберт Бойль, математик и физик Христиан Гюйгенс, не говоря уже о самом Галилее или Исааке Ньютоне. Что касается Галилея, то он отнюдь не был чистым экспериментатором, как его нередко пытаются представить. И Галилей, и даже Ньютон полагали, что небольшого числа решающих экспериментов и тонких наблюдений вполне достаточно для нащупывания правильных основополагающих принципов. Ньютон всячески подчеркивал свою приверженность математике, признаваясь, что прибегать к эксперименту его вынуждает лишь необходимость придать физический смысл своим результатами убедить в их правильности «простолюдина». Многие из так называемых экспериментов Галилея в действительности есть не что иное, как мысленные опыты, иначе говоря, Галилей прибегал к эксперименту лишь мысленно, пытаясь представить, каким мог бы быть исход опыта, если бы тот был поставлен, и на основании своих умозаключений делал вывод с такой уверенностью, словно эксперимент действительно произведен. В своих сочинениях он зачастую описывал эксперименты, которые никогда не проводил. Галилей отстаивал гелиоцентрическую теорию, хотя в том виде, как ее разработал Коперник, она отнюдь не давала хорошего согласия с наблюдениями. Описывая некоторые свои опыты, связанные с изучением движения по наклонной плоскости, Галилей не приводит фактических данных, а утверждает лишь, будто полученные им результаты дают великолепное согласие с теорией: это весьма сомнительно, если принять во внимание несовершенство часовых механизмов того времени. Основу метода Галилея составляли небольшое число фундаментальных принципов, почерпнутых из наблюдения природы, и широкое использование математических рассуждений. В своем «Диалоге о двух главнейших системах мира» Галилей описывает опыт с бросанием свинцового шара с вершины мачты движущегося корабля. На вопрос одного из участников диалога Симпличио: «Как же это, не проделав ни ста испытаний, ни даже одного, вы выступаете столь решительным образом?», другой собеседник, Сальвиати, выражая взгляды самого Галилея, отвечает: «Я и без опыта уверен, что результат будет такой, какой я вам говорю, так как необходимо, чтобы он последовал; более того, я скажу, что вы и сами также знаете, что не может быть иначе, хотя притворяетесь или делает вид, будто не знаете этого» ([12], т. 1, с. 243). Далее Сальвиати признается, что прибегает к эксперименту лишь изредка и главным образом для того, чтобы опровергнуть мнения тех, кто не желает следовать математическому методу.

У Галилея было несколько априорных представлений о природе, которые вселяли в него уверенность, что и небольшого числа экспериментов достаточно для выявления первых принципов. Например, когда Галилей занялся исследованием ускоренного движения, т.е. движения с переменной скоростью, он исходил из простейшего принципа, согласно которому приращения скорости за одинаковые интервалы времени равны. Такое движение Галилей назвал равномерно ускоренным. Дедуктивная математическая часть естественнонаучного исследования имела для Галилея несравненно большее значение, чем экспериментальная. Обилием теорем, выведенных логическим путем из одного-единственного принципа, Галилей гордился больше, чем открытием самого принципа. Перед нами со всей отчетливостью проступает общая закономерность: мыслители, стоящие у истоков современной науки, к числу которых мы можем причислить Декарта, Галилея, Гюйгенса, Ньютона, а также Коперника и Кеплера, подходили к исследованию природы как математики, будь то избранный ими общий метод или конкретные исследования. Будучи мыслителями абстрактно-теоретического толка, они надеялись постичь широкие, глубокие, но вместе с тем простые, ясные и незыблемые математические принципы либо с помощью интуитивных прозрений, либо путем решающих наблюдений и экспериментов, а затем вывести из этих фундаментальных истин новые законы точно таким же образом, каким в самой математике строится геометрия. Научная деятельность, по их мнению, должна в основном сводиться к дедуктивным рассуждениям, и именно дедуктивным путем надлежит строить все системы умозаключений.

Галилей надеялся, что с помощью немногочисленных решающих экспериментов удастся открыть первые принципы, и это вполне понятно. Все названные ученые, глубоко убежденные в том, что план, лежащий в основе природы, построен на математических началах, не видели причины, почему бы им при изучении природы не следовать математике. Подобную мысль мы находим в книге Джона Германа Рэндалла «Становление современного разума»:

Наука родилась из веры в математическую интерпретацию природы… Современная наука возникла и была известна как натуральная философия, и слово философия здесь отнюдь не случайно – оно точно передает особенности выбранного подхода. Это подход мыслителей, опирающихся главным образом на разум, а в данном случае – на математические принципы и методы как на основное орудие разума.

Тем не менее мысль Галилея о том, что физические принципы должны опираться на практический опыт и эксперименты, была революционной по своей сути и имела решающее значение. Сам Галилей не сомневался в возможности доискаться до истинных первооснов природы (тех принципов, на которых Бог сотворил мир), но, подчеркивая роль опыта, он незаметно для самого себя посеял и зерно сомнения. Ибо если основные принципы физики должны выводиться из повседневного опыта, то почему то же самое нельзя сказать и об аксиомах математики? Этот вопрос не беспокоил ни самого Галилея, ни его последователей до начала XIX в. И вплоть до этого времени математика вкушала все радости привилегированного положения.

Пытаясь проникнуть в самую суть явлений, Галилей выковал и неоднократно использовал еще один принцип – идеализацию. Под идеализацией Галилей понимал необходимость игнорирования тривиальных и второстепенных деталей. Например, шар, падающий на землю, встречает сопротивление воздуха, но при падении с высоты 10-20 м сопротивление воздуха невелико, и в большинстве случаев им можно пренебречь. Еще один пример идеализации. Всякий достаточно компактный предмет обладает определенными размерами и формой, однако по существу вполне допустимо рассматривать его как материальную точку, т.е. считать, что вся масса тела сосредоточена в одной точке. Галилей также исключал из рассмотрения такие вторичные качества, как вкус, цвет и запах, в отличие от размеров, формы, количества и движения. Иначе говоря, Галилей разделял философское учение, проводившее различие между первичными и вторичными свойствами материи. В своем сочинении «Пробирных дел мастер» Галилей высказал это явно:

Белое или красное, горькое или сладкое, звучащее или безмолвное, приятно или дурно пахнущее – все это лишь названия для различных воздействий на наши органы чувств. Никогда не стану я от внешних тел требовать чего-либо иного, чем величина, фигура, количество и более или менее быстрые движения, для того чтобы объяснить возникновение ощущений вкуса, запаха и звука; я думаю, что если бы мы устранили уши, языки, носы, то остались бы только фигуры, числа, движения, но не запахи, вкусы и звуки, которые, по моему мнению, вне живого существа являются не чем иным, как только пустыми именами.

([18], с. 130.)

Форма (фигура), количество (размеры) и движение – первичные, или физически основополагающие, свойства материи. Они реальны и внешни по отношению к чувственному восприятию человека.

Суть идеализации, необходимость которой отстаивал Галилей, сводилась к пренебрежению случайными или второстепенными эффектами. В выделении главного он начал с наблюдений, а затем мысленно представил себе, что произошло бы, если устранить всякое сопротивление, т.е. если бы тела падали в пустоте, и пришел к заключению, в котором распознал общий принцип: в пустоте все тела падают по одному и тому же закону. Заметив, что сопротивление воздуха слабо сказывается на колебаниях маятника, Галилей провел опыты с маятниками, подтвердив установленные им принципы. Заподозрив, что трение также относится к числу вторичных эффектов, Галилей осуществил серию экспериментов с гладкими шарами, скатывающимися по гладкой наклонной плоскости, пытаясь вывести законы, в соответствии с которыми двигались бы тела в отсутствие трения. Таким образом, Галилей не просто ставил опыты и на основе полученных данных делал выводы – при интерпретации экспериментов он заранее исключал все несущественное. Величие Галилея проявилось, в частности, в том, что он ставил правильные вопросы относительно природы.

Разумеется, реальные тела падают в среде, обладающей сопротивлением. Что мог сказать Галилей о таких движениях? Его ответ гласил:

Дабы рассмотреть этот вопрос научно, следует отбросить все указанные трудности [сопротивление воздуха, трение и т.д.] и, сформулировав и доказав теоремы для случая, когда сопротивление отсутствует, применять их с теми ограничениями, какие подсказывает нам опыт.

Пренебрегая сопротивлением воздуха и трением, пытаясь найти законы движения в пустоте, Галилей вступал в противоречие с Аристотелем и даже с Декартом, мысленно представляя тела, движущиеся в пустом пространстве, а также использовал метод идеализации, или абстрагирования от второстепенных свойств. Именно так поступают математики, изучая реальные фигуры. Математик абстрагируется от молекулярной структуры, цвета и толщины линий, чтобы дойти до некоторых фундаментальных свойств, а затем сосредоточивает все внимание на изучении этих свойств. Аналогичным образом действовал и Галилей, пытаясь за внешним разнообразием явлений разглядеть физические факторы, лежащие в основе явления. Математический метод идеализации, несомненно, следует рассматривать как шаг, уводящий нас от реальности, но, как ни парадоксально, именно этот шаг позволяет нам приблизиться к реальности в гораздо большей степени, чем учет всех имеющихся на лицо факторов.

Мудрость Галилея проявилась и в еще одном тактическом ходе. Он не пытался, как это делали естествоиспытатели и философы до него, охватить все явления природы, а выбрав несколько наиболее существенных явлений, принялся упорно и последовательно их изучать. Галилей счел разумным действовать осторожно и осмотрительно, продемонстрировав сдержанность, достойную мастера.

Выношенный Галилеем план изучения природы включал четыре пункта. Во-первых, получить количественные описания физических явлений и облечь их в математические формулы. Во-вторых, выделить и измерить наиболее фундаментальные свойства явлений. Эти допускающие количественное выражение свойства надлежало принять за переменные в формулах. В-третьих, построить физику дедуктивно на основе фундаментальных физических принципов. В-четвертых, при изучении явления непременно прибегать к его идеализации.

Чтобы претворить этот план в жизнь, Галилею было необходимо выявить фундаментальные законы. Можно, например, получить формулу, устанавливающую зависимость между числом браков в Таиланде и ценой на подковы для лошадей в Нью-Йорке, поскольку и та, и другая величина меняются из года в год. Но такая формула не имела бы научной ценности, ибо не содержала бы, ни прямо, ни косвенно, никакой полезной информации. Поиск фундаментальных законов был еще одной грандиозной задачей, поскольку и в этом Галилей резко расходился со своими предшественниками. При избранном им подходе к изучению движущейся материи нельзя было не принимать во внимание Землю, движущуюся в пространстве и одновременно вращающуюся вокруг своей оси, и уже одно это в значительной мере обесценивало ту единственную заслуживающую внимания систему механики, которой обладал мир в эпоху Возрождения, – механику Аристотеля.

Сначала Галилей был склонен принять гипотезу Аристотеля, согласно которой тяжелые тела падают на землю быстрее, чем легкие. Затем Галилей задался вопросом: «Предположим, я разделю тяжелое тело на две части. Будут ли они падать как два легких тела? А что если снова соединить или склеить их? Будут они вести себя как две части или как одно целое?» И после подобных размышлений Галилей пришел к выводу, что, если пренебречь сопротивлением воздуха, все тела падают с одинаковой скоростью.

Как утверждал Аристотель, чтобы тело двигалось, к нему должна быть приложена сила. Следовательно, чтобы автомашина или шар двигались даже по очень гладкой поверхности, необходима какая-то толкающая сила. Галилей глубже проник в суть этого явления, чем Аристотель. Катящийся шар или едущий автомобиль испытывают сопротивление воздуха и тормозятся вследствие трения между ними и поверхностью, по которой движутся. Не будь сопротивления воздуха или трения, для того чтобы шар катился, а автомобиль ехал, не нужно было бы никакой толкающей силы. Они бы двигались с постоянной скоростью неограниченно долго,причем двигались прямолинейно. Этот фундаментальный закон. движения, гласящий, что тело, свободное от действия сил, движется равномерно и прямолинейно в течение сколь угодно большого промежутка времени, был впервые замечен Галилеем (и сформулирован также Декартом); ныне он известен как первый закон Ньютона, который придал ему четкую математическую формулировку. Этот закон утверждает, что тело изменяет скорость только в том случае, если на него действует сила. Таким образом, тела обладают свойством сопротивляться изменению скорости. Это свойство тела, обусловливающее его способность сопротивляться изменению скорости, называется инерциальной массой, или просто массой.

Как видим, уже самый первый принцип физики Галилея противоречит аналогичному принципу физики Аристотеля. Означает ли это, что Аристотель допустил грубые ошибки или что его наблюдения были слишком примитивны и малочисленны, чтобы привести к открытию правильного принципа? Отнюдь. Аристотель был реалистом и учил тому, что подсказывали наблюдения. Метод Галилея был более утонченным и поэтому более успешным. Галилей подошел к решению проблемы как математик. Он идеализировал явление, игнорируя одни факты и подчеркивая другие, подобно тому как математик идеализирует натянутую струну или край линейки, сосредоточивая внимание на одних пропорциях и игнорируя другие. Пренебрегая трением и сопротивлением воздуха и предполагая, что движение происходит в абсолютно пустом евклидовом пространстве, Галилей открыл правильный фундаментальный принцип.

А что можно сказать о движении тела, на которое действует какая-нибудь сила? Пытаясь ответить на этот вопрос, Галилей совершил второе фундаментальное открытие: постоянно действующая сила вынуждает тело либо увеличивать, либо уменьшать скорость. Назовем увеличение или убыль скорости за единицу времени ускорением. Если скорость тела каждую секунду возрастает или уменьшается на 9 м/с, то мы скажем, что его ускорение составляет 9 м/с за секунду, или кратко 9 м/с 2.

Например, постоянное сопротивление воздуха вызывает непрерывное уменьшение скорости; именно этим объясняется, что скорость предмета, катящегося или скользящего по гладкому полу, постепенно убывает до нуля. И наоборот, чтобы предмет двигался с ускорением, на него должна действовать какая-то сила. Предмет, падающий с высоты на землю, движется ускоренно. Во времена Галилея мысль о том, что этой силой должно быть земное тяготение, уже начала проникать в сознание людей, и Галилей, не теряя времени на размышления о силе тяготения, исследовал свободное падение тел с количественной стороны.

Он обнаружил, что если пренебречь сопротивлением воздуха, то все падающие на поверхность Земли тела, имеют одинаковое ускорение g,т.е. их скорость возрастает в одном и том же темпе: на 9,8 м/с за секунду, т.е.

g= 9,8 м/с 2. (1)

Если тело падает свободно, например скатившись с ладони, то его начальная скорость равна нулю. Следовательно, к концу первой секунды оно достигнет скорости 9,8 м/с, к концу второй секунды – скорости 2×9,8 = 19,6 м/с и т.д. По истечении tсекунд скорость тела

v= 9,8 t м/с. (2)

Эта формула содержит точную информацию о том, как возрастает со временем скорость свободно падающего тела. Она сообщает нам, что чем дольше падает тело, тем больше его скорость. Это хорошо известный факт, ибо большинству из нас приходилось видеть, что тело, сброшенное с большей высоты, ударяется о землю с большей скоростью, чем тело, сброшенное с меньшей высоты.

Чтобы определить путь, пройденный за данный промежуток времени свободно падающим телом, недостаточно просто умножить скорость на время. Произведение скорости на время дало бы правильное значение пути только в том случае, если бы тело двигалось с постоянной скоростью, т.е. равномерно. Галилей доказал, что в случае свободного падения тел правильная формула, связывающая пройденный путь sс продолжительностью падения имеет вид

s= 4,9 t 2, (3)

где s– расстояние в метрах, пройденное телом при свободном падении,  t– продолжительность падения (в секундах). Например, за 3 с свободно падающее тело проходит расстояние 4,9×3 2= 44,1 м.

Если обе части формулы (3)разделить на 4,9, а затем извлечь из них квадратные корни, то окажется, что время t,за которое свободно падающее тело проходит путь s,задается формулой t = √ s/ 4,9.  Обратите внимание на то, что масса падающего тела в эту формулу не входит. Таким образом, мы видим, что все свободно падающие тела за равное время проходят одинаковое расстояние. Считается, что к такому заключению Галилей пришел, сбрасывая тела различной массы с Пизанской башни. Однако многие люди до сих пор с трудом верят в то, что кусочек свинца и легкое перышко, если их сбросить с одинаковой высоты в откачанном до глубокого вакуума баллоне, одновременно упадут на дно.

Ускорение 9,8 м/с 2, с которым на Земле движутся все свободно падающие тела, обусловлено силой земного тяготения, или гравитацией. Когда говорят о силе тяжести (точнее ее численной величине) применительно к предметам, находящимся вблизи поверхности Земли, ее обычно называют весом. Хотя сам Галилей не связывал между собой вес и массу, следует заметить, что вес Pлюбого тела на Земле пропорционален его массе m. Численное значение коэффициента пропорциональности gзависит от выбора единиц. Таким образом, вес  Pи масса  mлюбого тела на Земле связаны между собой соотношением

P = gm. (4)

Как видим, два различных свойства тела – вес и масса – связаны между собой очень просто: вес  Pв gраз больше массы m. Простота и неизменность соотношения (4)приводят к тому, что мы часто путаем эти два свойства, хотя вес и массу тела необходимо четко различать. Масса – это свойство тел сопротивляться изменению скорости как по величине, так и по направлению, вес – численное значение силы, с которой Земля притягивает данное тело. Если тело покоится на гладкой горизонтальной поверхности, то поверхность противодействует силе тяжести. Следовательно, если рассматривать движение тела по поверхности (без трения), то его вес особой роли не играет. Но масса тела весьма существенна. В следующей главе мы увидим, сколь важно проводить различие между массой и весом.

Декарту, философу глубокому и весьма авторитетному, мы обязаны тем, что начиная с XVII в. математика вышла на передний край науки, и это позволило человечеству открыть особенности многих явлений природы, которые, не будь математики, так и остались бы неизвестными.

Мы могли бы рассказать о многих конкретных математических достижениях Галилея, например о предложенном им математическом описании движения свободно падающего тела, но для нас наибольший интерес представляет его методология. Своей работой «Беседы и математические доказательства, касающиеся двух новых отраслей науки» (1638) Галилей направил физическую науку по математическому пути, заложил основы современной механики и создал прообраз современной научной мысли. Как мы далее увидим, Ньютон, восприняв методологию Галилея, дал непревзойденные доказательства ее эффективности.


    Ваша оценка произведения:

Популярные книги за неделю