355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Морис Клайн » Математика. Поиск истины. » Текст книги (страница 16)
Математика. Поиск истины.
  • Текст добавлен: 26 сентября 2016, 21:48

Текст книги "Математика. Поиск истины."


Автор книги: Морис Клайн


Жанр:

   

Математика


сообщить о нарушении

Текущая страница: 16 (всего у книги 25 страниц)

Известно, что при измерении пространственных и временной компонентов пространственно-временного интервала между двумя событиями различные наблюдатели могут получать разные результаты, но это не удивительно, если рассматривать трехмерное пространство само по себе. Два наблюдателя в различных точках земного шара видят одно и то же трехмерное пространство, но, основываясь на собственном опыте, каждый из них выделяет вертикальное и горизонтальное направления, отличные от вертикального и горизонтального направлений другого наблюдателя. Тем не менее мы продолжаем считать пространство трехмерным, а не рассматривать его как некую искусственную комбинацию протяженности по вертикали и горизонтали. Аналогичным образом различные наблюдатели могут по-разному разлагать пространство-время на пространственную и временную составляющие. Такое разложение столь же реально и необходимо для того, кто его производит, как и различие между горизонтальным и вертикальным направлениями для спускающегося по лестнице. Различие между тем и другим привносим мы, люди, – природа же предъявляет нам пространство и время не порознь, а вместе. В действительности в повседневной жизни мы иногда смешиваем пространство и время. Мы говорим, что звезда находится от нас на расстоянии стольких-то световых лет. Это означает, что звезда находится от нас на расстоянии, которое свет проходит за указанное время. Железнодорожное расписание также представляет собой комбинацию положения в пространстве и времени.

Эйнштейн развил идею Минковского о том, что Вселенную следует рассматривать как четырехмерный пространственно-временной мир, но эти поистине поразительные новшества специальной теории относительности Эйнштейна не позволили разрешить все трудности, перечисленные нами в предыдущей главе. По-прежнему не было никакой ясности относительно того, каким образом гравитация удерживает различные тела на поверхности Земли и планеты на их орбитах или почему в данной точке земного шара отношение массы и веса всегда должно быть постоянно.

Эйнштейн предпринял также попытку распространить специальную теорию относительности на такие системы отсчета, которые движутся относительно друг друга ускоренно.Путеводная нить к более общему варианту теории относительности была найдена в 1907 г., когда Эйнштейн, размышляя над проблемами гравитации, осознал, что так называемая гравитационная масса неотличима от массы инерциальной. Что заставило ученых ввести различие между гравитационной и инерциальной массами? Согласно первому закону Ньютона, изменить состояние движения тела можно, приложив к нему силу. Если масса тела равна  m, то, чтобы сообщить ему ускорение a, нужно приложить (по второму закону Ньютона) силу F = ma.Здесь  m– инерциальная масса. Если мы стукнем кием по бильярдному шару на столе, приведя шар в движение, то ускоряемая масса есть масса инерциальная. Но если мы возьмем бильярдный шар в руку и выпустим его, то он упадет, поскольку масса Земли притягивает массу шара. В этом падении участвует уже гравитационная масса (вес). Совпадают ли инерциальная и гравитационная массы? Этот вопрос не беспокоил последователей Ньютона, но в связи с совершенно новыми проблемами, касающимися массы даже в специальной теории относительности, не мог не занимать Эйнштейна. И он пришел к следующему выводу: гравитационная масса эквивалентна инерциальной и гравитационная масса есть не что иное, как инерциальная масса в пространстве-времени совершенно нового типа.

Чтобы лучше понять ход рассуждений Эйнштейна, рассмотрим пример: пассажир свободно падающей (например, из-за обрыва троса) кабины лифта. В таком случае пассажир не испытывает действия силы тяжести. Действительно, он не давит на пол кабины и не имеет веса. Если, находясь внутри падающей кабины лифта, пассажир уронит носовой платок или наручные часы, то эти предметы будут падать. Но кабина также падает, поэтому и платок, и часы останутся (относительно кабины) в той точке пространства, где их выпустили. Внутрикабины лифта важна только инерциальная масса. Но для внешнего наблюдателя существует сила тяжести, действующая на кабину и находящиеся внутри нее предметы.

Обобщая, можно сказать, что все наблюдения, производимые локально над системой, на которую действует однородная статическая сила тяжести, будут такими, как если бы система двигалась равноускоренно. Ускорение и сила тяжести эквивалентны. В этом и состоит смысл сформулированного Эйнштейном принципа эквивалентности. Иначе говоря, этот принцип означает, что наблюдатель, падающий в гравитационном поле, будет испытывать то же, что и наблюдатель, находящийся в области пространства, полностью экранированной от гравитационного поля, если он движется с ускорением, равным ускорению свободного падения.

Под влиянием идей Минковского о пространстве-времени, своих собственных размышлений относительно инерциальной и гравитационной масс и побуждаемый желанием распространить специальную теорию относительности на системы отсчета, движущиеся ускоренно, Эйнштейн пришел к идее искривленного пространства-времени. Неоднородность реального гравитационного поля не позволяет заменить его единой ускоренной системой отсчета в большой области пространства. Поэтому Эйнштейн воспользовался идеями Римана и Клиффорда (хотя о последнем он, возможно, не знал), которые полагали, что распределение материи в пространстве-времени может быть учтено в геометрической структуре последнего.

«Увидеть», как выглядит эйнштейновское четырехмерное искривленное пространство-время, мы не в силах, но, воспользовавшись аналогией, все же можем в какой-то степени интуитивно представить его. Рассмотрим форму Земли. Хотя для многих целей вполне достаточно считать, что Земля имеет форму шара, в действительности это не так. На поверхности Земли есть горы, долины, ущелья. Какую форму имеют геодезические, или кратчайшие пути, на такой поверхности, заполненной материей? Ясно, что они изменяются в зависимости от формы поверхности и при переходе от одной области к другой.

В свою общую теорию относительности Эйнштейн включил принцип эквивалентности. В ее математическом пространстве-времени любая масса «искажает», или «деформирует», вокруг себя область пространства-времени так, что все движущиеся в этой области объекты следуют по одним и тем же искривленным траекториям, или геодезическим. На языке классической физики можно сказать, что эти объекты движутся ускоренно, так как на них действует некоторая сила – тяготение. Но в общей теории относительности ускорение обусловлено самими свойствами пространства-времени. Следовательно, оно одинаковым образом действует на все инерциальные массы, и принцип эквивалентности выполняется автоматически.

Однако основная идея общей теории относительности Эйнштейна состоит в том, что геометрия пространства-времени учитывает распределение материи, а гравитация в ней исключается. (Строго говоря, геометрия пространства-времени должна отражать распределение всего вещества, в том числе и вещества, содержащегося в движущихся телах. Однако если количество вещества в движущемся теле мало, то им можно пренебречь. Это в полной мере относится и к планетам.) Планеты и свет, распространяющийся от Солнца к Земле, следуют по траекториям, форма которых определяется структурой четырехмерного пространства-времени. И планеты и свет в свободном движении (т.е. в отсутствие каких бы то ни было сил) следуют по траекториям, которые являются геодезическими, или кратчайшими путями, подобно тому как свет следует по кратчайшему пути в ньютоновской механике (кратчайшие пути избирают все тела, на которые не действует гравитация). Локально пространство-время общей теории относительности совпадает с пространством-временем специальной теории относительности, и все выводы последней переносятся на общую теорию относительности.

Объяснение в рамках геометрии пространства-времени эффектов, которые ранее было принято считать гравитационными, позволило решить еще одну прежде не разрешимую проблему, а именно: постоянство отношения веса к массе для всех тел на поверхности Земли и вблизи нее. При интерпретации в духе классической физики это постоянное отношение есть ускорение, с которым все тела падают на Землю. В механике Ньютона ускорение свободного падения обусловлено силой гравитационного притяжения, с которой Земля действует на все тела. Таким образом, постоянство отношения веса к массе означает, что тела любой массы в свободном падении на Землю ведут себя одинаково и в пространстве, и во времени. Но в новой формулировке явления гравитации, предложенной Эйнштейном, то, что прежде считалось силой тяжести, обусловленной притяжением Земли, стало следствием геометрии пространства-времени вблизи земной поверхности. Тогда первый закон Ньютона в его видоизмененной формулировке звучит так: все свободно подающие массы должны двигаться по геодезическим пространства-времени. Иначе говоря, пространственно-временное поведение всех масс вблизи поверхности Земли должно быть одинаковым, и оно действительно таково. Таким образом, общая теория относительности решает проблему, касающуюся постоянного отношения веса к массе, исключая вес как научное понятие и давая более удовлетворительное объяснение эффектам, которые ранее приписывались действию силы тяжести.

Эйнштейн столкнулся с еще одной проблемой. Все мы – наблюдатели в пространстве-времени, и каждый из нас формулирует законы пространства-времени в своей собственной системе координат. Необходимо было удостовериться в том, что законы остаются одинаковыми для всех наблюдателей. Для этого Эйнштейну было необходимо сформулировать эти законы так, чтобы они сохраняли свой вид при преобразовании из системы координат одного наблюдателя в систему координат другого. Перед Эйнштейном встала чисто математическая проблема. Он обсудил ее со своим коллегой Георгом Пиком, который обратил внимание Эйнштейна на тензорный анализ, развитый Бернхардом Риманом, Элвином Бруно Кристоффелем, Джорджо Риччи-Курбастро и его знаменитым учеником Туллио Леви-Чивитой. Эйнштейн обратился за помощью к другому своему коллеге в Цюрихе, специалисту по дифференциальной геометрии Марселю Гроссману (1878-1936), и тот познакомил его с тензорным анализом. В 1913-1914 гг. Гроссман и Эйнштейн выпустили три совместные работы. В последующие годы Эйнштейн настолько овладел математическим аппаратом, что мог свободно пользоваться римановой геометрией и тензорным анализом для формулировки общей теории относительности и описания того, каким образом преобразуются законы при переходе из одной системы координат в другую. Эйнштейн прекрасно понимал, сколь многим он обязан создателям тензорного анализа. В 1915 г. Эйнштейн написал четыре работы по общей теории относительности, решающая из которых датирована 25 ноября 1915 г. В ней говорится, что записанные в тензорных обозначениях законы природы сохраняют одну и ту же форму во всех математически приемлемых системах координат.

В свое время общая теория относительности казалась весьма необычной и резко отличалась от других физических теорий. Что же все-таки побудило физиков-теоретиков принять ее?

Основываясь на своей теории, Эйнштейн предсказал три природных явления. Перигелием называется точка планетной орбиты, ближайшая к Солнцу. Согласно механике Ньютона, перигелий самой внутренней (ближайшей к Солнцу) планеты, Меркурия, должен менять из года в год свое положение на величину, отличающуюся от наблюдаемой примерно на 5600'' (дуговых секунд) за столетие (одна дуговая секунда равна 1/3600 градуса). Значительная часть этого отклонения (примерно 5000'' за столетие) обусловлена тем, что мы производим свои наблюдения с движущейся Земли. В 1856 г. Леверье показал, что часть отклонения (около 531'' за столетие) обусловлена притяжением других планет. Остальную часть отклонения так и не удавалось объяснить до тех пор, пока Эйнштейн в 1915 г. не попытался сделать это, исходя из общей теории относительности. С того момента было произведено множество наблюдений, что позволило гораздо точнее измерить смещение перигелия Меркурия. Но вычисление всех поправок осложняется тем, что движущаяся планета сама создает определенные возмущения в кривизне пространства-времени.

Эйнштейн высказал также предположение, что свет далекой звезды, проходя вблизи Солнца, должен отклоняться, и оценил величину отклонения. До Эйнштейна было известно, что свет (который, как предполагалось, обладает массой) отклоняется гравитационным полем (в данном случае полем Солнца). По оценкам отклонение луча, проходящего у края солнечного диска, должно было составлять 0,87''. Эйнштейн получил величину отклонения 1,75''. Наблюдения, произведенные во время солнечного затмения в 1919 г., подтвердили предсказание Эйнштейна. Сравнивая положения звезд на фотографиях, сделанных за пять месяцев до солнечного затмения (когда звезды в ночном небе были далеко от Солнца), и фотографиях, заснятых в момент солнечного затмения, Артур Стенли Эддингтон показал, что величина наблюдаемого отклонения согласуется с оценкой Эйнштейна (рис. 37). Этот результат, полученный вскоре после опубликования общей теории относительности, возможно, в большей мере, чем что-либо иное способствовал признанию идей Эйнштейна.

Рис. 37.

Эйнштейн предсказал еще одно явление. Атомы, в особенности атомы газов, при нагревании обычно испускают световое излучение нескольких частот (иногда в широком интервале частот). Эйнштейн высказал соображение, что частоты излучения атомов, находящихся в различных областях гравитационного поля Солнца, должны отличаться (как в сторону уменьшения, так и в сторону увеличения) от частот, на которых излучают те же атомы на Земле. Изменения в частоте колебаний атомов газа физически проявляются в смещении цветов (спектра) солнечного излучения, приходящего на Землю. С Земли излучение атомов, находящихся вблизи Солнца, будет казаться краснее, т.е. все длины волн сдвинутся к красному концу спектра. Предсказанное Эйнштейном красное смещение было обнаружено экспериментально. {12}12
  В частности, для белого карлика Сириус В. – Ред.


[Закрыть]

Получив несомненные экспериментальные подтверждения, общая теория относительности, казалось бы, значительно укрепила свои позиции. Кроме того, теория Эйнштейна в качестве первого приближения включала и теорию Ньютона, что могло служить еще одним подтверждением ее справедливости. Но, говоря об успехах общей теории относительности, не следует забывать об одной на первый взгляд несущественной детали: во всех описанных нами экспериментах измерению подлежали очень слабо выраженные эффекты. Но Эйнштейн был уверен в правильности специальной и общей теорий относительности еще до того, как они прошли экспериментальную проверку.

Ныне специальная и общая теории относительности не просто составляют неотъемлемую часть нашего научного знания – в том, что касается широты охватываемых ими явлений, они дают нам наиболее точное представление об окружающем нас физическом мире. Означает ли это, что мы должны безоговорочно принять их? В частности, должны ли мы согласиться с тем, что одновременность событий, длины отрезков и продолжительность промежутков времени зависят от наблюдателя? От этих вопросов можно было отмахнуться в прошлом, поскольку значительные расхождения в результатах, полученных различными наблюдателями, обнаруживаются только при очень больших скоростях движения одного наблюдателя относительно другого. Но теперь, когда люди побывали на Луне и направили космические аппараты к Сатурну и далее к Нептуну, когда космические полеты, несомненно, будут совершаться на все более далекие расстояния, нам приходится иметь дело отнюдь не с малыми скоростями.

Несмотря на поразительные и впечатляющие экспериментальные подтверждения теории относительности, многим людям трудно воспринимать ее четырехмерный неевклидов мир. Представить себе наглядно такой четырехмерный мир действительно невозможно, но тот, кто требует наглядности от понятий современной физики и математики, находится в своем научном развитии на уровне средневековья. С давних времен, когда математики только начинали оперировать числами, они упорно развивали алгебраический подход, не зависящий от чувственного опыта. Ныне математики вполне сознательно строят и применяют геометрии, которые существуют только в человеческом разуме и никогда не предназначались для наглядной интерпретации. Не следует думать, однако, будто современные математики отвергают всякую связь с чувственным восприятием. Представления о физическом мире, сформированные на основе геометрических и алгебраических соображений, должны соответствовать наблюдениям и экспериментам, если мы хотим, чтобы логическая структура наших умозрительных построений была полезна для физики. Но настаивать на том, чтобы каждый шаг в цепи геометрического рассуждения непременно чему-нибудь соответствовал в нашем чувственном опыте, – это значит лишать математику и естествознание двух тысячелетий истории их развития.

Вспомним, как некогда люди реагировали на то, что Земля круглая, а позднее на то, что Земля обращается вокруг Солнца. Наш чувственный опыт не согласуется ни с одним из этих фактов. Тем с большим доверием должны мы воспринимать релятивистские понятия времени, одновременности, пространства и массы. Теория относительности предостерегает нас против того, чтобы явления, наблюдаемые в некоторой выделенной системе отсчета, мы принимали за истину в абсолютном смысле. Что есть истина об окружающем нас мире и что реально объективно в других физических областях – об этом говорят нам математические законы. Природе нет дела до наших впечатлений. Она следует своим курсом независимо от того, постигаем ли мы его.

Теория относительности объединила пространство и время в четырехмерный континуум, она показала, какое влияние оказывает распределение материи на геометрию пространства-времени. Эти идеи, столь чуждые философам начала нашего столетия, ныне все шире проникают в философские концепции мира. Природа предстает перед нами как органически целое, где неразрывно слиты пространство, время и материя. В прошлом люди, анализируя природу, выделяли некоторые ее свойства, казавшиеся им особенно важными, и воспринимали их как вполне самостоятельные сущности, забывая о том, что эти свойства абстрагированы от целого. Ныне люди с удивлением узнают, что казавшиеся ранее не связанными между собой понятия необходимо вновь собрать в единое целое, чтобы достичь непротиворечивого, удовлетворительного синтеза знания.

Аристотель первым создал философское учение, провозгласившее, что пространство, время и материя суть различные компоненты опыта. Впоследствии эту точку зрения восприняли естествоиспытатели. Разделял ее и Ньютон. Следуя Аристотелю, мы настолько привыкли мыслить пространство и время как фундаментальные и различные компоненты нашего физического мира, существующие независимо и отдельно от материи, что перестали сознавать «рукотворный» характер подобного взгляда на природу и забыли, что это лишь один из возможных взглядов. Надо сказать, что современные философы и среди них Алфред Норт Уайтхед отнюдь не считали такое аналитическое расчленение природы на составные части бесполезным. Наоборот, подобный подход оказался весьма ценным и даже существенным. Однако мы должны отчетливо сознавать его искусственный характер и не смешивать вычленяемые нами компоненты природы с самой природой подобно тому, как мы не принимаем органы, наблюдаемые при вскрытии в анатомическом театре, за живое человеческое тело.

Теперь мы в состоянии оценить, сколь велика та часть нашей физической науки, которая была математизирована в форме геометрии. Со времен Евклида законы физического пространства были всего лишь теоремами евклидовой геометрии и ничем больше. Гиппарх, Птолемей, Коперник и Кеплер сформулировали основные свойства движений небесных тел в геометрических терминах. С помощью телескопа Галилей распространил применение геометрии на бесконечное пространство и многие миллионы небесных тел. Когда Лобачевский, Бойаи и Риман показали, как строить иные геометрические миры, Эйнштейн подхватил их идеи, превратив наш физический мир в четырехмерный, математический. Гравитация, время и материя наряду с пространством стали компонентами геометрической структуры четырехмерного пространства-времени. Так, уверенность древних греков в том, что реальный мир удобнее и понятнее всего выражать через его геометрические свойства, и проникнутое духом эпохи Возрождения учение Декарта о том, что феномены материи и движения легко объяснить через геометрию пространства, получили убедительнейшее подтверждение.


    Ваша оценка произведения:

Популярные книги за неделю