355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Морис Клайн » Математика. Поиск истины. » Текст книги (страница 13)
Математика. Поиск истины.
  • Текст добавлен: 26 сентября 2016, 21:48

Текст книги "Математика. Поиск истины."


Автор книги: Морис Клайн


Жанр:

   

Математика


сообщить о нарушении

Текущая страница: 13 (всего у книги 25 страниц)

Основной проблемой в конце прошлого века было распространение электромагнитных волн. Хотя сам Максвелл выражал в 1856 г. уверенность, что «зрелая теория, в которой физические факты получат физическое объяснение, будет построена теми, кто, вопрошая Природу, умеет получать только истинные решения проблем, подсказываемых математической теорией», не было ни малейшего представления о том, что именно распространяется от передатчика к приемнику. Титанические усилия, которые предпринимали ученые в надежде установить, что же представляют собой электрическое и магнитное поля, не увенчались успехом.

Доказав, что электромагнитные волны распространяются со скоростью света, Максвелл заключил, что они распространяются в эфире, так как со времен Ньютона эфир считали средой, в которой распространяется свет. Поскольку скорость распространения электромагнитных волн, очень велика, эфир, вероятно, должен быть очень твердым: ведь чем тверже тело, тем быстрее распространяются в нем волны. С другой стороны, если эфир заполняет все пространство, то он должен быть абсолютно прозрачным и планеты должны двигаться сквозь него без трения. Нетрудно видеть, что свойства, которыми награждали эфир, взаимно исключали друг друга. Кроме того, эфир должен быть неосязаемым, не имеющим запаха и неотделимым от других субстанций. Существование такой среды физически невероятно. Отсюда следует, что такая среда – фикция, ничего не значащее слово, способное удовлетворить лишь те умы, которые не привыкли доискиваться до сути. Более того, необходимо со всей отчетливостью понимать, что и понятие поля – не более чем «подпорки», позволяющие человеческому разуму продвинуться вперед на пути к знанию, но понимать его буквально, разумеется, не следует.

Итак, мы можем утверждать, что не располагаем никаким физическим объяснением действия электрического и магнитного полей, равно как и физическим знанием электромагнитных волн как волн. Только вводя в электромагнитные поля проводники, например приемные радиоантенны, мы убеждаемся, что эти волны действительно существуют. Тем не менее с помощью радиоволн мы передаем на гигантские расстояния сложные сообщения. Но какая именно субстанция распространяется в пространстве, нам так и не известно.

Не успокаивает и сознание того, что радиоволны окружают нас повсюду. Стоит лишь включить радиоприемник или телевизор, как мы тотчас обретаем способность воспринимать радиоволны, посылаемые десятком радио– и телестанций. Тем не менее наши органы чувств никак не реагируют на обилие радиоволн, пронизывающих пространство.

Непонимание физической природы электромагнитных волн беспокоило и многих творцов электромагнитной теории. У. Томсон в одном из выступлений в 1884 г. выразил неудовлетворенность теорией Максвелла, заявив: «Я никогда не испытываю удовлетворения до тех пор, пока мне не удается построить механическую модель явления. Если я могу построить механическую модель явления, значит, я понимаю его. Но коль скоро мне не удается построить механическую модель, значит, я чего-то не понимаю. Именно поэтому я не могу до конца понять электромагнитную теорию». Недоставало механической модели эфира. Гельмгольц и Кельвин отвергли предложенный Максвеллом ток смещения как фикцию.

Хотя Максвелл тщетно пытался построить механическую теорию электромагнитных явлений – свести их к давлению и напряжениям в упругой среде – и более поздние усилия Г. Герца, У. Томсона, К.А. Бьеркнеса и А. Пуанкаре также не увенчались успехом, экспериментальное подтверждение теории Максвелла положило конец всем возражениям. Признание теории Максвелла означало вместе с тем и признание чисто математического подхода, ибо предположение о том, что электромагнитное излучение представляет собой электрическое и магнитное поля, особым образом связанные между собой и распространяющиеся в пространстве, вряд ли объясняет физическую природу электромагнитного поля. Охватывая с единой точки зрения свет, рентгеновское излучение и многие другие явления, теория Максвелла лишь уменьшает число естественнонаучных загадок, сводя многие загадки в одну.

Герцу принадлежит высказывание: «Теория Максвелла состоит из уравнений Максвелла». Механического объяснения электромагнитных явлений не существует, как не существует и необходимости в таком объяснении. Восхищенный могуществом математики, Герц не удержался от восклицания: «Трудно отделаться от ощущения, что эти математические формулы существуют независимо от нас и обладают своим собственным разумом, что они умнее нас, умнее тех, кто открыл их, и что мы извлекаем из них больше, чем было в них первоначально заложено» ([13], с. 389).

Точное и всеобъемлющее описание электромагнетизма есть описание математическое. Следовательно, теория электромагнитного поля представляет собой чисто математическую теорию, иллюстрируемую несколькими довольно грубыми физическими картинами. Эти картины – не более чем платье, облекающее тело математики и позволяющее ей «сойти за свою» в кругу физических наук. Физика-теоретика это обстоятельство может либо встревожить, либо преисполнить гордостью в зависимости от того, кто доминирует в нем – математик или физик.

Никто в большей мере не сознавал чисто математический характер теории электромагнитного поля, чем Максвелл. Хотя он предпринимал почти отчаянные попытки дать физическое описание электромагнитных явлений, в его классическом «Трактате по электричеству и магнетизму» о них почти не упоминается, а основное место отводится изложению безукоризненно стройной и сложной математической теории. Сам Максвелл однажды посоветовал проповеднику, чьи проповеди были выше разумения аудитории: «Почему бы вам не разбавить ваши мысли поучительными примерами?» Однако все попытки самого Максвелла «разбавить» математическую теорию электромагнитного поля объяснениями, основанными на интуиции, оказались безуспешными. Радио– и световые волны распространялись в кромешной физической тьме, освещенной только для тех, кто держал в руках факел математики. Более того, если в некоторых областях физики математическую теорию удалось «подогнать» под физические факты, то в области электромагнетизма лучшее, что можно было сделать, это попытаться согласовать с математической теорией неадекватные физические картины.

Максвелл ощущал общую направленность и реалистически оценивал методы современной ему теоретической физики. По своему духу она была математической теорией. Теория электромагнитного поля Максвелла по широте охвата внешне, казалось бы, различных явлений в рамках единой системы математических законов превосходит даже закон всемирного тяготения Ньютона. Поведение мельчайшей песчинки и массивнейшей из звезд может быть описано и предсказано на основе законов механики Ньютона. Невидимое разнообразие электромагнитных волн, в том числе и света, может быть описано и обращено в русло практических приложений с помощью теории электромагнитного поля Максвелла. Электрические токи, магнитные эффекты, радиоволны, инфракрасное излучение, видимый свет, ультрафиолетовое, рентгеновское и гамма-излучение, гармонические колебания с частотами от шестидесяти до числа с двадцатью четырьмя нулями герц – все это не более чем проявления одной и той же фундаментальной математической схемы. Теория Максвелла, столь глубокая и всеобъемлющая, что наше воображение бессильно представить себе ее подлинное величие, открыла в природе план и порядок, говорящие человеку о природе более красноречиво и проникновенно, чем сама природа.

Теория электромагнитного поля может служить еще одним примером мощи математических методов в раскрытии тайн природы. Человек постиг принцип действия и смог представить, как может выглядеть подводная лодка и самолет, задолго до того, как инженерам удалось построить их действующие модели. Но даже самый отчаянный фантазер вряд ли мог вообразить радио, а если кому-нибудь такая мысль и пришла бы в голову, ее немедленно отбросили бы как несбыточную.

Даже человек, с таким блеском нарисовавший физическую картину явления электромагнитной индукции, которая вдохновила Максвелла на создание теории электромагнитного поля, вынужден был признаться в полной несостоятельности своих попыток физически осмыслить электромагнетизм в целом. В письме к Максвеллу, написанном в 1857 г., Фарадей спрашивает, не может ли тот изложить основные положения своей математической теории

…на обычном языке столь же полно, ясно и определенно, как и на языке формул? Если такое возможно, то не был бы их перевод с иероглифики поистине благодеянием для таких, как я, чтобы мы могли проверить их в эксперименте?.. Если такое возможно, то разве было бы плохо, чтобы математики, работающие над этими предметами, излагали свои результаты в популярном, полезном и рабочем виде, так же, как они излагают их в наиболее удобном и полезном для себя виде?

К сожалению, призыв Фарадея и поныне остается безответным.

Невозможность качественно, или материально, объяснить электромагнитные явления резко контрастирует с точными количественными описаниями тех же явлений, предложенными Максвеллом и его последователями. Подобно тому как законы Ньютона дают ученым средство, позволяющее работать с веществом и силой, не вдаваясь в объяснение ни того ни другого, уравнения Максвелла позволили ученым творить чудеса с электромагнитными явлениями, несмотря на отсутствие понимания физической природы последних. Количественные законы – это все, чем мы располагаем, пытаясь дать единое рациональное объяснение. Математические формулы точны и всеобъемлющи, качественная интерпретация расплывчата и неполна. Электроны, электрическое и магнитное поля, эфирные волны – не более чем имена переменных, входящих в формулы; как заметил по этому поводу Гельмгольц, в теории Максвелла электрический заряд является лишь носителем символа.

Но если физическое понимание электромагнитных явлений отсутствует, а наша способность рассуждать о них, пользуясь физическими понятиями, весьма ограниченна, то какова в этом случае природа нашего понимания электромагнитных реалий? На чем мы основываемся, утверждая, что нам удалось овладеть электромагнитными явлениями? Математические законы – всего лишь средства для нащупывания, открытия и использования этой обширной области реального мира; математические законы – единственное знание, которым человеческий разум располагает о загадочных явлениях электромагнетизма. И хотя такой ответ вряд ли удовлетворит человека, не посвященного в эти «дельфийские» таинства наших дней, современные ученые приемлют его. Столкнувшись с многочисленными загадками природы, современный ученый не может не испытывать чувства радости, если их удается «похоронить» под грузом математических символов, причем совершить погребение столь тщательно, что многие последующие поколения ученых не в состоянии обнаружить вход в «гробницу».

На примере теории электромагнитного поля Максвелла мы сталкиваемся с поразительным фактом: одно из величайших достижений физической теории оказывается почти целиком математическим. Некоторые формальные выводы этой теории, такие, как индуцирование тока в проводниках или прием сигнала за тысячи километров от источника, подтверждаются нашим чувственным опытом, но суть теории сама по себе остается чисто математической.

В какой-то мере мы уже были подготовлены к столь необычному повороту событий. Ознакомившись с работами Ньютона по тяготению, мы задались вопросом: что такое тяготение и как оно действует? Обнаружилось, что у нас нет физического понимания действия гравитации. Мы располагаем только математическим законом, дающим количественное описание силы тяготения, и, используя этот закон и законы движения, можем предсказывать явления, поддающиеся экспериментальной проверке. Но сущность понятия гравитации скрыта от нас.

Мы видим также, что центральным стержнем наиболее совершенных физических теорий является математика, точнее несколько формул и следствий из них. В основе каждой физической теории лежат прочные и четкие математические принципы. Наши теоретические умозрительные построения выходят за рамки интуитивных и чувственных восприятий. Пользуясь и теорией гравитации Ньютона, и теорией электромагнитного поля Максвелла, мы вынуждены признаться в незнании основных механизмов и возложить на математику описание того, что нам известно. Такое признание, возможно, наносит удар по нашему самолюбию, но вместе с тем способствует пониманию истинного положения вещей. Именно теперь мы можем по достоинству оценить мысль, высказанную Уайтхедом: «Несомненный парадокс состоит в том, что именно предельные абстракции [математики] служат теми истинными орудиями, посредством которых мы управляем нашим пониманием конкретных фактов».

В этом парадоксе и заключается своеобразие математики, ибо она позволяет открывать явления, которые, будучи взятыми отдельно от человеческого разума, отнюдь не очевидны, хотя и вполне реальны. Уайтхед сказал как-то, что выделять математику в человеческом мышлении – все равно что вместо Гамлета выдвигать на первое место в трагедии Шекспира Офелию, а не Гамлета: «Офелия, бесспорно, очаровательна и немного безумна, но Гамлет – все же центральный персонаж».

В 1931 г. Эйнштейн, характеризуя изменение, внесенное в наше представление о физической реальности работами Максвелла, назвал его «наиболее глубоким и плодотворным из тех, которые испытала физика со времен Ньютона» ([7], с. 138).

VIII
Прелюдия к теории относительности

Здравый смысл – это толща предрассудков, успевших отложиться в нашем сознании к восемнадцати годам.

Альберт Эйнштейн


Аксиома – это предрассудок, освященный тысячелетиями.

Эрик Т. Белл

Как и «чистые» математики, физики-теоретики на рубеже XX в. были преисполнены гордости за достигнутые успехи, и состояние физических теорий не вызывало у них беспокойства. Разве не они открыли совершенно новый мир – мир электромагнитных явлений, сулящий ускорить и расширить культурный и технический прогресс человечества, существенно усовершенствовать средства связи? Возможно, что такому безмятежному, не омрачаемому критикой состоянию теоретической физики в какой-то мере способствовала гипотеза эфира, который на протяжении двух веков считался средой, где якобы распространяется свет и электромагнитное излучение других видов.

Но безмятежное спокойствие, царившее в физике на рубеже нашего века, было затишьем перед бурей. Когда восторги, вызванные замечательными достижениями, начали утихать, физики-теоретики поняли, что далеко не все фундаментальные проблемы решены. Одно из решений таких проблем – создание теории относительности – ознаменовало подлинный переворот в научной концепции реального физического мира. И хотя этот переворот не оказал столь сильного влияния на нашу повседневную жизнь, как радио и телевидение, ставшие со временем достоянием миллионов, для нашего понимания природы физического мира его последствия были необычайно важны.

Какие проблемы заставляли математиков и физиков в конце XIX в. углубленно размышлять и искать принципиально новые подходы к объяснению фундаментальных явлений окружающего мира? Первая из таких проблем – геометрия физического пространства. Чтобы понять суть этой проблемы, нам придется вернуться к прошлому.

На протяжении двух тысячелетий не один математик высказывал сомнение в физической истинности аксиомы Евклида о параллельных, которая гласит:

И если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то продолженные эти две прямые неограниченно встречаются с той стороны, где углы меньше двух прямых.

([17], с. 15.)

Это означает (рис. 32), что если углы 1 и 2 в сумме меньше 180°, то прямые  aи b, будучи продолженными достаточно далеко, пересекутся (на рисунке – справа).

Рис. 32.

Евклид имел достаточно веские основания, чтобы сформулировать свою аксиому именно так. Он мог бы утверждать, что если сумма углов 1 и 2 равна 180°, то прямые  aи  bникогда не пересекутся, сколько бы их ни продолжали, т.е. что прямые  aи  bв этом случае параллельны. Однако Евклид явно опасался предположить, что могут существовать две бесконечныепрямые, которые никогда не пересекаются. Существование таких прямых не подкреплялось опытом и отнюдь не было самоочевидным. Но на основе аксиомы о параллельных и других аксиом своей геометрии Евклид доказал существование бесконечно протяженных параллельных прямых.

Считалось, что аксиома о параллельных в том виде, в каком ее сформулировал Евклид, излишне сложна и ей недостает простоты других аксиом. Самого Евклида придуманный им вариант аксиомы о параллельных также не устраивал: недаром он обращался к этой аксиоме, лишь доказав все теоремы, какие только можно было доказать без нее.

Даже в античную эпоху математики неоднократно пытались решить проблему, связанную с аксиомой о параллельных Евклида. Эти попытки были двух типов. Одни пробовали заменить аксиому о параллельных какой-нибудь другой аксиомой, казавшейся им более очевидной. Другие старались, вывести аксиому Евклида из девяти других аксиом его геометрии. Если бы это удалось, то аксиома о параллельных превратилась бы в одну из теорем и всякие сомнения в ее истинности разом отпали бы. На протяжении двух тысячелетий не один десяток самых выдающихся математиков, не говоря уже о менее известных, пытались и заменить аксиому о параллельных и вывести ее из других аксиом. История аксиомы Евклида о параллельных длительна, изобилует техническими деталями, и мы не будем пересказывать ее здесь подробно, тем более что она не имеет прямого отношения к главной теме нашего повествования и неоднократно излагалась в других работах. {10}10
   См., например, книгу автора: Клайн М. Математика. Утрата определенности. – М.: Мир, 1984.


[Закрыть]

Из аксиом, предлагавшихся взамен аксиомы Евклида о параллельных, нельзя не упомянуть по крайней мере одну. Мы остановили свой выбор на ней потому, что именно с такой редакцией аксиомы о параллельных мы обычно знакомимся в школьном курсе геометрии. Автором этого варианта аксиомы принято считать Джона Плейфера (1748-1819), который предложил его в 1795 г. Аксиома Плейфера гласит:

Существует одна и только одна прямая, проходящая через данную точку P, лежащую вне прямой  l(рис.  33), в плоскости, задаваемой точкой  Pи прямой l, которая не пересекается с прямой l.

([13], с. 95.)

Все остальные аксиомы, предлагавшиеся взамен аксиомы Евклида о параллельных и казавшиеся на первый взгляд более простыми, чем первоначальный вариант, при более тщательном рассмотрении признавались менее удовлетворительными. Нельзя не заметить, что аксиома Плейфера утверждает именно то, чего стремился избежать Евклид: существование двух бесконечных прямых, которые никогда не пересекаются.

Среди попыток второго типа, которые выражались в намерении вывести аксиому о параллельных из девяти других аксиом Евклида, наиболее преуспел член ордена иезуитов, профессор университета в Павии Джероламо Саккери (1667-1733). Он рассуждал так. Если принять аксиому, существенно отличающуюся от аксиомы Евклида о параллельных, то можно было бы прийти к какой-нибудь теореме, которая противоречила бы другой теореме. Такое противоречие означало бы, что аксиома, отрицающая аксиому Евклида о параллельных – единственную сомнительную аксиому евклидовой геометрии, – ложна. Но тогда аксиома Евклида о параллельных должна была бы быть истинной, т.е. следствием, вытекающим из девяти других аксиом.

Как впоследствии Плейфер, предложивший аксиому, эквивалентную аксиоме Евклида, Саккери сначала предположил, что не существует прямых, параллельных прямой l, которые проходили бы через точку P, лежащую вне прямой  l(рис.  33). Из этой аксиомы и девяти других аксиом Евклида Саккери действительно удалось вывести противоречие. Тогда Саккери испробовал вторую единственно возможную альтернативу, предположив, что существуют по крайней мере две прямые  pи q, проходящие через точку  Pи не пересекающиеся с прямой l, сколько бы их ни продолжали.

Рис. 33.

Саккери доказал довольно много интересных теорем прежде, чем ему удалось обнаружить теорему, столь необычную и так резко выпадавшую из всего ранее известного, что он усмотрел было в ней противоречие с ранее доказанными утверждениями. Исходя из этого, Саккери счел доказанным, что аксиома Евклида о параллельных следует из девяти остальных аксиом евклидовой геометрии, и в 1773 г. опубликовал книгу под названием «Евклид, избавленный от всяких пятен» (Euclides ab omnia naevo vindicatus). Но как позднее установили математики, Саккери во втором случае не удалось прийти к противоречию, поэтому проблема, связанная с аксиомой о параллельных, по-прежнему оставалась открытой.

Попытки найти приемлемую замену евклидовой аксиомы о параллельных или доказать, что она должна следовать из девяти остальных аксиом Евклида, были столь многочисленны и столь безуспешны, что в 1759 г. выдающийся математик Жан Лерон Д'Аламбер (1717-1783) назвал проблему, связанную с аксиомой о параллельных, «скандалом оснований геометрии».

Постепенно у математиков начало складываться правильное понимание истинного статуса аксиомы Евклида о параллельных. В своей докторской диссертации (1763) Георг С. Клюгель (1739-1812), впоследствии профессор университета в Хальмстаде, высказал весьма глубокое замечание о том, что восприятие аксиомы Евклида о параллельных как чего-то достоверного основано на человеческом опыте. В этом замечании Клюгеля впервые прозвучала мысль о том, что аксиомы опираются не столько на очевидность, сколько на опыт. Клюгель выразил сомнение в том, что аксиома Евклида о параллельных доказуема, и понял, что Саккери пришел не к противоречию, а всего лишь к необычному результату.

Диссертация Клюгеля привлекла внимание Иогана Генриха Ламберта (1728-1777), побудив его также заняться аксиомой о параллельных. В своей книге «Теория параллельных прямых», написанной в 1766 г., а изданной в 1786 г., Ламберт, в какой-то мере следуя Саккери, рассмотрел две альтернативные возможности. Предположив, что через точку P, расположенную вне прямой  l(см. рис.  33), не проходит ни одной прямой, параллельной l, он также пришел к противоречию. Но в отличие от Саккери Ламберт не считал, что предположение о существовании по крайней мере двух параллельных, проходящих через точку P, приводит к противоречию. Кроме того, Ламберт понял, что любая система аксиом, которая не приводит к противоречию, порождает свою геометрию. Любая такая геометрия логически ничему не противоречит, хотя и имеет весьма косвенное отношение к реальным физическим фигурам!

Работы Ламберта и других математиков, в частности Абрахама Г. Кестнера (1719-1800), профессора Гёттингенского университета, у которого учился Гаусс, заслуживают того, чтобы упомянуть о них особо. Эти ученые были убеждены, что аксиому Евклида о параллельных нельзя доказать на основе девяти остальных аксиом евклидовой геометрии, т.е. что она независима от остальных аксиом Евклида. Все трое названных нами математиков признавали возможность неевклидовой геометрии, т.е. геометрии, в которой аксиома о параллельных существенно отличается от евклидовой.

Наиболее выдающимся среди математиков, работавших над проблемой аксиомы Евклида о параллельных, был Карл Фридрих Гаусс (1777-1855). Гаусс прекрасно знал о тщетных попытках вывести аксиому о параллельных из остальных аксиом евклидовой геометрии, ибо в Гёттингене об этом были наслышаны все. Но до 1799 г. Гаусс все же не прекращал попытки вывести аксиому Евклида о параллельных из других, более правдоподобных предположений; он был убежден, что евклидова геометрия отражает геометрию физического пространства, хотя допускал возможность существования логически непротиворечивых неевклидовых геометрий. Но в письме своему другу и собрату по математике Фаркашу Бойаи (Больяй) от 16 декабря 1799 г. Гаусс сообщал:

Я лично далеко продвинулся в моих работах (хотя другие, совершенно не связанные с этим занятия оставляют мне для этого мало времени); однако дорога, которую я выбрал, ведет скорее не к желательной цели, а к тому, чтобы сделать сомнительной истинность геометрии. Правда, я достиг многого, что для большинства могло бы сойти за доказательство, но это не доказывает в моих глазах ровно ничего.

([23], с. 101.)

Начиная с 1813 г. Гаусс разрабатывал свой вариант неевклидовой геометрии, которую он назвал сначала антиевклидовой, затем астральной и наконец неевклидовой геометрией. Убедившись в ее логической непротиворечивости, Гаусс не сомневался в ее применимости к реальному миру.

В письме к своему другу Францу Адольфу Тауринусу (1794-1874) от 8 декабря 1824 г. Гаусс писал:

Допущение, что сумма углов треугольника меньше 180°, приводит к своеобразной, совершенно отличной от нашей [евклидовой] геометрии; эта геометрия совершенно последовательна, и я развил ее для себя совершенно удовлетворительно… Предложения этой геометрии отчасти кажутся парадоксальными и непривычному человеку, даже несуразными; но при строгом и спокойном размышлении они не содержат ничего невозможного.

([23], с. 105-106.)

Мы не будем вдаваться в подробности того варианта неевклидовой геометрии, который был создан Гауссом. Он начал даже, хотя не довел до конца, полное дедуктивное изложение своей геометрии. Доказанные им теоремы во многом напоминают теоремы, с которыми нам еще предстоит встретиться в неевклидовой геометрии Лобачевского – Бойаи. В письме к математику и астроному Фридриху Вильгельму Бесселю (1784-1846) от 27 января 1829 г. Гаусс признавался, что вряд ли когда-нибудь опубликует свои открытия в области неевклидовой геометрии из опасения насмешек, или, как выразился Гаусс, криков беотийцев (в переносном смысле – невежд). Опасения Гаусса были не лишены оснований: не следует забывать о том, что, хотя небольшую группу математиков, упорно работавших над созданием неевклидовой геометрии, отделял от их цели всего лишь шаг, интеллектуальный мир в целом по-прежнему был убежден, что евклидова геометрия единственно возможная. Поэтому все, что мы знаем о работе Гаусса по неевклидовой геометрии, почерпнуто из его писем к друзьям, двух коротких сообщений, опубликованных в 1816 и 1822 гг. в журнале Göttingenische gelehrte Anzeigen, и нескольких заметок, датированных 1831 г., которые были обнаружены среди его бумаг после смерти.

Слава создателей неевклидовой геометрии по праву принадлежит двум другим математикам: Лобачевскому и Бойаи. В действительности их труды явились своего рода эпилогом в развитии идей, высказанных ранее другими учеными, но поскольку они опубликовали первые систематические изложения неевклидовой геометрии, именно они и признаны ее создателями. Русский математик Николай Иванович Лобачевский (1793-1856) закончил Казанский университет, профессором и ректором которого стал впоследствии (1827-1846). Начиная с 1825 г. он представил свои соображения по основаниям геометрии в многочисленных статьях и двух книгах. Янош Бойаи (1802-1860), сын известного венгерского математика Фаркаша Бойаи, был офицером австро-венгерской армии. Свою работу (объемом в 26 страниц) по неевклидовой геометрии под названием «Приложение, содержащее науку о пространстве, абсолютно истинную, не зависящую от истинности или ложности XI аксиомы Евклида, что a prioriникогда решено быть не может, с прибавлением к случаю ложности геометрической квадратуры круга» Бойаи опубликовал в качестве приложения к первому тому сочинения своего отца «Опыт введения учащегося юношества в начала чистой математики» (Tentamen juventutem studiosam in elementa Matheoseos).Хотя эта книга вышла в 1832-1833 гг., т.е. после первых публикаций Лобачевского, Бойаи, по-видимому, разработал свои идеи по неевклидовой геометрии еще в 1825 г. и убедился в ее непротиворечивости.

Гаусс, Лобачевский и Бойаи поняли, что аксиома Евклида о параллельных не может быть доказана на основе девяти остальных аксиом евклидовой геометрии и что для обоснования последней необходима какая-то дополнительная аксиома. Так как аксиома о параллельных независима от остальных аксиом, представляется возможным (по крайней мере чисто логически) заменить ее противоположной аксиомой и попытаться вывести следствия из новой системы аксиом.

С чисто математической точки зрения содержание работ Гаусса, Лобачевского и Бойаи очень просто. Суть дела удобнее всего пояснить на примере геометрии Лобачевского, ибо все трое по существу сделали одно и то же. Отвергнув аксиому Евклида о параллельных, Лобачевский фактически принял такое же допущение, каким некогда воспользовался Саккери. Если дана прямая  ABи точка  Pвне ее (рис. 34), то все прямые, проходящие через точку P, распадаются относительно прямой  ABна два класса, а именно на класс прямых, пересекающихся с прямой  ABи класс прямых, не пересекающихся с прямой AB. Точнее если точка  Pлежит на перпендикуляре к прямой  ABна расстоянии  aот нее, то существует острый угол A , такой, что все прямые, образующие с перпендикуляром PDугол меньше A,пересекаются с прямой AB, а прямые, образующие с PDугол больше A,не пересекаются с прямой AB.Две прямые  pи q, образующие с перпендикуляром PDугол A , называются параллельными, а сам угол A называется углом параллельности. Прямые, проходящие через точку  Pи не пересекающиеся с прямой AB, но отличные от параллельных  pи q, называются расходящимися с прямой  ABили сверхпараллельными ей (с точки зрения Евклида это прямые, параллельные прямой AB). В этом смысле в геометрии Лобачевского существует бесконечно много параллельных, проходящих через точку P.

Рис. 34.

Далее Лобачевский доказывает несколько ключевых теорем. Если A= π/2,  то получается аксиома Евклида о параллельных. Если угол  A  – острый, то при a, стремящемся к нулю,   Aвозрастает до π/2, а при неограниченном возрастании  aубывает до нуля. Сумма углов треугольника в геометрии Лобачевского всегда меньше 180° и стремится к 180° с уменьшением площади треугольника. Два подобных треугольника в геометрии Лобачевского непременно конгруэнтны.

Но, пожалуй, самое главное состоит в том, что неевклидова геометрия пригодна для описания свойств физического пространства ничуть не в меньшей мере, чем евклидова геометрия.Необходимость евклидовой геометрии как геометрии физического пространства ниоткуда не следует, ее физическая истинность не может быть гарантирована на основе априорных соображений. К пониманию этого немаловажного обстоятельства, не требующему никаких чисто математических доказательств, ибо все уже было сделано раньше, первым пришел Гаусс.

Но не так-то легко расстаться с накопленным ранее богатством. По-новому взглянув на природу истинного в математике, Гаусс увидел ту опору, за которую можно ухватиться. В письме Генриху В.М. Ольберсу (1758-1840) от 28 апреля 1817 г. Гаусс сообщал:


    Ваша оценка произведения:

Популярные книги за неделю