Текст книги "Курьёзы и юмор с физико-математическим уклоном"
Автор книги: Михаил Прохорович
Жанр:
Юмористическая проза
сообщить о нарушении
Текущая страница: 1 (всего у книги 11 страниц)
Annotation
Этот сборник научного юмора с физико-математическим уклоном можно читать с любой страницы: приведенные в нём байки, исторические анекдоты и реальные истории связаны между собой только тематически.
Курьёзы и юмор с физико-математическим уклоном
Часть 1: со ссылками на источники
Часть 2: истории мехмата
Список литературы
notes
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
Курьёзы и юмор с физико-математическим уклоном
Часть 1: со ссылками на источники
Эта часть составлена из отдельных «зарисовок» – в основном это общеизвестные истории, легенды и факты, большинство из которых можно найти в нескольких источниках. Самой известной книгой такого сорта является, конечно, неоднократно переиздававшийся сборник «Физики шутят» [18]; также следует упомянуть более современную книгу «Математики тоже шутят» [36]. Стиль изложения соответствует подборкам [24] и [25].
Если «зарисовка» приводится в нескольких источниках, то, как правило, выбирается один из вариантов изложения или цитирования. Иногда изложение бывает достаточно вольным, однако, ссылки даются на все встречавшиеся составителю упоминания и с максимально возможной строгостью (вплоть до указания страниц). Источники, на которые в тексте дается лишь одна-две ссылки, не выносятся в список литературы, а указываются в сносках.
Читателю рекомендуется самому определять степень достоверности приведенной информации – все необходимые ссылки для этого указаны (вопрос, доверять ли указанному в ссылке печатному изданию остается за читателем – можно, например, самостоятельно просмотреть указанные в списке литературы книги и библиографию к ним).
Приведенные в этой части «зарисовки» отсортированы в порядке появления ссылок. Материалы из одного и того же источника отсортированы в порядке возрастания номера цитируемых страниц.
В конце приводится некоторое количество историй и баек без ссылок – они являются достаточно известными, однако, по разным данным они происходили с разными людьми, равно как одно и то же изречение нередко приписывается разным авторам. Несмотря на непроверенность информации, байки кажутся интересными и были включены в сборник.
Буду рад сотрудничеству, а также любой помощи по сбору материалов. Если у Вас есть замечания, дополнения или комментарии к нижеизложенному, а также какие-либо вопросы, касающиеся данного сборника – пишите на адрес prohorovich@mail.ru.
Аксиома выбора
Аксиома Цермело (или аксиома выбора) была встречена бурной полемикой. Рассел высказывался о ней так: «Сначала она кажется очевидной; но чем больше вдумываешься, тем более странными кажутся выводы из этой аксиомы; под конец же перестаешь понимать, что же она означает». [1, стр. 6]
Задача о брахистохроне
В 1696-м году И.Бернули и Лейбниц бросили две дьявольские загадки[1] – это был вызов математикам Европы. Задачи в течении шести месяцев не давали покоя европейским математикам, а 29 января 1696 года о них услышал Ньютон. Он пошел домой и, пообедав, решил эти задачи, а на следующий день анонимно передал решение в Королевское общество. Анонимность сохранить не удалось – увидев решение, Бернулли воскликнул: «Tanquam ex ungue leonem!» («Льва узнают по когтям!») [1, стр. 14] [3, стр. 99].
Как отпугнуть читателя
Максвелл обозначал векторы готическими буквами, и Хэвисайд сетовал на этот «несчастливый выбор», так как «одного этого достаточно, чтобы вызвать предубеждение читателя против векторного анализа». [1, стр. 16]
Геометрия Лобачевского
В период с 1823 по 1826 г. Лобачевский создал свою неевклидову геометрию, а в 1829 г. опубликовал «Рассуждение о принципах геометрии». Началась травля. В 1841 г. с его книгой «Геометрические исследования по теории параллельных линий» (изданной на немецком языке) познакомился Гаусс и высоко оценил ее… в дружеской переписке.
Признание пришло только в 1868 г. – «Чем Коперник был для Птолемея, тем был Лобачевский для Евклида…» (известные слова Клиффорда). [1, стр. 23–24]
360° или почему круг стали делить на 360 частей
Как заметили Вавилонские жрецы, солнечный диск укладывается по дневному пути Солнца 180 раз – «Солнце делает 180 шагов». Тогда путь за сутки равен «360 шагам». Латинское слово gradus как раз и означает «шаг». [1, стр. 27]
«Не по-нашему»
До распространения современного способа деления эта операция была трудной и громоздкой, и методов было почти столько же, сколько учителей арифметики. Современный способ описан впервые в рукописи неизвестного автора (1460). Последний учебник, в котором деление излагается «не по-нашему», вышел в 1800 г. [1, стр. 29]
Квадратура круга
Неразрешимость задачи о квадратуре круга[2] обусловлена трансцендентностью числа π, что было доказано в 1882-м году Линдеманом. Он считается единственным человеком, решившим задачу о квадратуре круга (несмотря на то, что его решение отрицательное). [1, стр. 54] [1, стр. 94]
Однако попытки многочисленных любителей квадрировать круг не прекращаются[3]. Французский астроном Араго писал по этому поводу: «Академии всех стран, борясь против искателей квадратуры, заметили, что болезнь эта обычно усиливается к весне». [26, стр. 205–206]
Приведем также цитату из книги [5]: «…на свете было, есть и будет несметное число всяких бездельников, которые отравляют жизнь настоящим ученым, заваливая их своими творениями по вопросу о квадратуре круга и доказательствами теоремы Ферма и требуя не только внимания и помощи, но и тысячных премий, и поднимают дикие вопли о бесчеловечности, когда их просят по-хорошему не приставать с чепухой и отвязаться». [5, стр. 96]
Бессмысленное выражение x2 + x
Выражение x2 + x Виет записывал только в виде x2 + x · 1, чтобы оно означало сумму площадей, а не представляло бы бессмысленное сложение площади и длины. [1, стр. 63] [1, стр. 86]
Перерыв в 12 веков
После гениальных результатов греческих математиков в изучении конических сечений наступил огромный перерыв – в течение 12 веков (до 1522 г.) не было сделано ни одного открытия. [1, стр. 66]
Лист Мебиуса
Несмотря на то, что сам Мебиус предложил название «односторонняя поверхность», в старой литературе двусторонние поверхности называли «простыми», а односторонние – «двойными» (потому что для их окраски «нужно краски в два раза больше»). [1, стр. 70]
Вижу, но не верю…
В 1874 г. Кантор поставил вопрос: можно ли установить взаимно однозначное соответствие между точками квадрата и точками отрезка? В Геттингене на праздновании столетия Гаусса он обратился с этим вопросом к виднейшим математикам. Никто не ответил положительно… Даже сам Кантор, имевший уже доказательство в руках, с трудом верил ему. Он писал Дедекинду: «Я это вижу, но я этому не верю» (1877). [1, стр. 81]
Оператор atled
Оператор

ввел в рассмотрение Гамильтон (1853). Он обозначил его значком ∇, не называя никак.
Позднее Хэвисайд писал об этом операторе при каждом удобном случае, сначала он называл его «гамильтонов оператор», а в 1892 г. дал ему название «набла» из-за сходства знака с остовом ассирийской арфы с таким названием.
До того, как привился этот термин, многие авторы называли оператор atled – прочитанная наоборот «дельта». [1, стр. 82]
Число Лудольфа
Профессор Лейденского университета Лудольф ван Цейлен вычислил двадцать точных десятичных знаков числа π. Свое сочинение с изложением результатов в 1596 году он завершил фразой: «у кого есть охота, пусть пойдет дальше».
Немного времени спустя Лудольф ван Цейлен опять стал вычислять очередные точные знаки числа π, доведя их количество до тридцати пяти.
π = 3.1415926535897932384626433832795028….
Эти знаки он завещал выбить на своем надгробном камне. [1, стр. 94] [16, стр. 30–31] [26, стр. 195]
Коварные расходящиеся ряды
В течение долгого времени ряды использовались достаточно широко, но вопрос о сходимости ряда не ставился. Тейлор, например, ни разу не задавал такого вопроса. Эйлер приводил разложение

и при x = 1 получал 1–1 + 1–1 +… = 1/2 (еще Фурье использовал этот результат без раздумий). [1, стр. 105]
Знак равенства
В 1557 г. английский врач и математик Рекорд предложил знак =, «ибо, – писал он, – нет ничего более равного, чем две параллельные прямые». Знак равенства, который он писал, по крайней мере в пять раз «длиннее» современного и действительно подобен отрезкам параллельных прямых. [1, стр. 117]
2 + 3 = 3 + 2
Французского школьника спросили, сколько будет 2 + 3. Он был отличник по математике, но считать не умел, потому что там так учат математике. Он не знал, что это будет пять, но он ответил, как отличник, так, чтобы ему поставили пятерку: «2 + 3 будет 3 + 2, потому что сложение коммутативно». [2, стр. 4]
Исторические неточности или принцип Арнольда
Майкл Берри, английский физик, в письме к академику В.И.Арнольду упомянул принцип Арнольда: если какой-нибудь предмет имеет персональное наименование (например, теорема Пифагора), то это никогда не бывает имя первооткрывателя – Америка не называется Колумбией, хотя открыл ее Колумб. [2, стр. 9-10]
Всегда ли теоремы носят имена первооткрывателей? Оказывается нет:
АКСИОМА АРХИМЕДА названа «архимедовой» чисто случайно. Сам Архимед подчеркивал, что эта аксиома играет существенную роль в работах Евдокса и что следствия из нее не менее достоверны, чем определения площадей и объемов, сделанные без ее помощи. [1, стр. 5] [11, стр. 35]
АКСИОМА КАНТОРА (об однозначном соответствии между действительными числами и точками прямой) использовалась в математике с незапамятных времен. Однако, точно сформулировал эту аксиому именно Г.Кантор. [1, стр. 5]
АКСИОМА ПАША. Самое первое замечание о том, что понятие «между» нуждается в строгой формулировке, принадлежит Гауссу[4]. [1, стр. 5]
АКСИОМА ЦЕРМЕЛО (аксиома выбора). Необходимость такого рода аксиомы отметил Б.Леви (1902). Цермело (по совету Шмидта) сформулировал аксиому в явном виде (1904) и включил ее в систему аксиом теории множеств. [1, стр. 6]
АРАБСКИЕ ЦИФРЫ придумали не арабы. Арабы лишь переняли эту форму записи чисел из Индии [29, стр. 42]
БИНОМ НЬЮТОНА. Частные случаи этой знаменитой формулы были известны задолго до Ньютона в Древнем Востоке. Вероятно также, что Омар Хайям вывел ее для натурального показателя[5]. [1, стр. 14] [32, стр. 35]
ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ НЬЮТОНА-ЛЕЙБНИЦА. Ферма уяснил и применил ведущую идею этого исчисления на 13 лет раньше рождения Ньютона и на 17 лет ранее рождения Лейбница[6][7]. [3, стр. 56]
КРИВАЯ ВИВИАНИ. Название объясняется тем, что Вивиани нашел на поверхности сферы квадрируемую часть – задача приводила к этой кривой. Однако еще ранее «кривую Вивиани» рассматривали Роберваль и Лалубер. [1, стр. 64]
КРИВАЯ ЖОРДАНА. Необходимость доказать то, что замкнутая кривая делит плоскость на две части, отметил К.Нейман. Подобие идей Жордана можно усмотреть в «Лекциях» Вейерштрасса и его статье 1884 года[8]. [1, стр. 64]
ПРАВИЛО ЛОПИТАЛЯ. Под впечатлением от лекций И.Бернулли Лопиталь написал курс «Анализ бесконечно малых для изучения кривых линий». Этот курс содержал и «правило Лопиталя», принадлежавшее, конечно, И.Бернулли[9][10]. [1, стр. 103]
ПРИНЦИП ДИРИХЛЕ. Аналогичные методы доказательства встречались уже у Гаусса и В.Томсона, но Риман узнал об этом методе на лекциях Дирихле и назвал его так, не заботясь об исторической истине. [1, стр. 106]
РЕЗОЛЬВЕНТА ГАЛУА. Абель впервые ввел выражение, называемое теперь «резольвентой Галуа». И сам Галуа приписывал идею резольвенты Абелю. Название введено Бетти, который был первым комментатором знаменитой статьи Галуа. [1, стр. 119]
РЯД МАКЛОРЕНА встречается впервые у Стирлинга, а затем опубликован Маклореном с указанием, что это частный случай разложения Тейлора. [1, стр. 122]
РЯДЫ ФУРЬЕ. Название «ряды Фурье», предложенное Риманом, стало общепринятым как знак признания трудов великого математика, хотя «ряды Фурье» и были довольно хорошо известны ко времени Фурье. [1, стр. 124]
СУММЫ ДАРБУ. В 1875 г. несколько математиков в Англии, Франции, Германии и Италии приходят к одинаковой новой формулировке условия интегрируемости функции. Дарбу, Томе, Смит, Асколи и Дюбуа Раймон с разной степенью подробности и точности ввели верхние и нижние интегральные суммы (а также верхний и нижний интегралы). Термин «суммы Дарбу» ввел, по-видимому, Жордан[11]. [1, стр. 134–135]
ТЕОРЕМА ПИФАГОРА была опубликована за две тысячи лет до него в Вавилоне, клинописью, а пифагоровы числа следовало бы называть вавилонскими числами – вавилоняне знали их раньше греков. [2, стр. 9] [5, стр. 76] [12, стр. 246] Некоторые историки также полагают, что теорема Пифагора принадлежит не легендарному Пифагору, а другому человеку с тем же именем. [14, стр. 124]
ТЕОРЕМА РОЛЛЯ также Роллю не принадлежит – Ролль, современник Ньютона и Лейбница, считал дифференциальное исчисление логически противоречивым и поэтому понятно, не мог высказать «теорему Ролля». [39, стр. 232]
ТРЕУГОЛЬНИК ПАСКАЛЯ, позволяющий находить биномиальные коэффициенты, был известен еще до Паскаля – он обычно называется так ввиду искусного его применения Паскалем к вычислению вероятностей (1653). Таблица биномиальных коэффициентов встречается значительно раньше, например в трактате китайского математика Чжу Ши-чжи (1303). [3, стр. 79] [5, стр. 125] [39, стр. 47]
ФОРМУЛА ГЕРОНА. Архимед еще до Герона знал формулу, по которой вычисляется площадь треугольника по трем сторонам. [32, стр. 23]
ФОРМУЛА МУАВРА (cos φ + i sin φ)n = cos nφ + i sin ηφ в явном виде впервые встречается у Эйлера (1748). [39, стр. 61]
ФОРМУЛА ЭЙЛЕРА. Соотношение eix = cos x + i sin x (в виде xi = loge(cos x + i sin x)) было опубликовано в посмертной работе Коутса на 20 лет раньше Эйлера. Эйлер сначала сообщил эту формулу И.Бернулли, затем опубликовал. Первое время он рассматривал свое открытие как парадокс. [1, стр. 151]
ФУНКЦИИ БЕССЕЛЯ. Функции нулевого порядка встречались в статьях Д.Бернулли, который установил многие их свойства. Бесселевы функции с любым целым индексом введены впервые Эйлером. Наконец, такие функции есть у Лагранжа. Бессель ввел этот класс трансцендентных функций в статье 1824 года. Название «функции Бесселя» дал Шлемильх, который сделал первую попытку построения более или менее самостоятельной теории бесселевых функций. [1, стр. 151–152]
ФУНКЦИЯ ВЕЙЕРШТРАССА. В 1930 г. была опубликована найденная рукопись Больцано, написанная примерно в 1830 г. Оказалось, что уже в это время Больцано построил пример непрерывной функции, не являющейся монотонной в любом интервале области определения и не дифференцируемой на всюду плотном множестве точек. Доказательства Больцано не строги по современным требованиям, но своих современников он обогнал на несколько десятилетий.
Вейерштрасс сообщал, что Риман приводил в своих курсах пример функции, непрерывной, но не дифференцируемой. При этом
Вейерштрассу не было известно, утверждал ли Риман, что функция не дифференцируема ни в одной точке или не дифференцируема в некоторых точках.
Утверждение, что в 1861 г. Вейерштрасс первый построил пример функции непрерывной, но не дифференцируемой ни в одной точке, основано на статье Шварца (1873). Бесспорно, что Вейерштрасс представил свой знаменитый пример Академии Наук в 1872 г. [1, стр. 111–112]
ЧИСЛО ЭЙЛЕРА. Существование предела limn→∞(1 + 1/n)n впервые установил Д.Бернулли. Обозначение e введено Эйлером. [1, стр. 37]
ЯВЛЕНИЕ ГИББСА. Особенность поведения частичных сумм ряда Фурье вблизи точек разрыва была отмечена самим Фурье, а затем Ньюменом и Вильбрагамом. Самое детальное описание явления дал Вильбрагам. После изобретения гармонического анализатора, Майкельсон затронул в печати вопрос, относящийся к одному ряду Фурье. Его статья явилась началом острой дискуссии, в ходе которой Гиббс вновь открыл «явление Гиббса», объяснил его сущность и установил, что это действительно математический факт, а не дефект анализатора. Название установилось после работы Бохера, который, видимо, не знал истории вопроса. [1, стр. 167]
Паскаль и Декарт
Когда Паскаль сообщил Декарту о своих работах по гидростатике и о барометрических измерениях, основанных на экспериментах с торричеллиевой пустотой, Декарт презрительно выгнал молодого экспериментатора за незнание аксиомы Аристотеля – «природа не терпит пустоты» – и написал по этому поводу президенту Академии наук Гюйгенсу: «лично я нигде в природе пустоты не вижу, разве в голове у Паскаля». Через полгода теория Паскаля стала общепринятой, и Декарт уже говорил, что Паскаль приходил в нему рассказывать ее, но сам ничего тогда не понимал; а теперь, когда он, Декарт, все ему объяснил, Паскаль рассказывает его (Декартову) теорию как свою. [2, стр. 20]
Понимание по Лагранжу
Лагранж считал, что математик до тех пор не поймет полностью свою собственную работу, пока не сделает ее настолько ясной, чтобы выйти на улицу и с эффектом объяснить ее первому встречному. [3, стр. 16]
Надпись над входом
Платон, как говорят, написал над входом в свою академию: «Да не войдет сюда не знающий геометрии!!!» [3, стр. 16] [20, стр. 175]
Определение числа «два»
Бертран Рассел сказал: «Потребовалось множество веков для открытия того, что пара фазанов и пара дней, то и другое, являются примерами числа два». Понадобилось примерно двадцать пять столетий цивилизации, чтобы сформулировать расселовское логическое определение числа «два». [3, стр. 24]
Смерть Архимеда
Первым знаком того, что город Сиракузы пал, была для Архимеда тень римского солдата, упавшая на чертеж, сделанный им на пыльной земле. По одной версии солдат наступил на чертеж, и рассердившийся Архимед крикнул «Не порти мои окружности!» По другой версии, принадлежащей древнему историку Плутарху (Ι-II в. н. э.), Архимед отказался идти к римскому военноначальнику Марцеллу, захватившему город, пожелав закончить решение задачи. Византийский историк Зонарас утверждал, что Архимед сказал солдату «Бей по голове, но не по чертежу!»
Так или иначе солдат рассердился и убил безоружного семидесятилетнего ветерана геометрии[12]. [3, стр. 41] [6, стр. 80] [12, стр. 11] [14, стр. 112] [32, стр. 18–20] [35, стр. 5]
Последняя теорема Ферма
Читая труды Диофанта, Ферма записывал короткие замечания на полях книги. Комментируя задачу, состоящую в отыскании рациональных решений уравнения x2 + y2 = а2, он написал: «Наоборот, невозможно разложить ни куб на два куба, ни биквадрат на два биквадрата, и, вообще, никакую степень, большую степени квадрата, на две степени с тем же показателем[13]. Я открыл этому поистине чудесное доказательство, но эти поля для него слишком малы». Математики не могли справиться с доказательством приведенного утверждения более 300 лет. [3, стр. 69] [5, стр. 89] [6, стр. 173–174] [35, стр. 8]
В 1908 году любитель математики Вольфскель завещал 100.000 марок тому, кто докажет теорему Ферма. Это стало бедствием для математиков многих стран. Потекли сотни и тысячи писем с доказательствами теоремы Ферма. Как правило, они содержали элементарные ошибки, но на их нахождение тратились немалые силы многих математиков. [6, стр. 174] [35, стр. 9]
В 1993-м году английский математик Уайлс «залатал последнюю дыру» в своем доказательстве этой великой теоремы. Мир признал: Великая теорема Ферма доказана! [35, стр. 9]
Просто цитата
«В капиталистических странах исследования в области математики служат черному делу империалистов – делу подготовки новой войны, разработки новых, более массовых средств уничтожения людей. Это вызывает протест честных, передовых ученых. <…>
В СССР математика, как и вся наука, полностью подчинена благородной задаче строительства коммунистического общества, росту благосостояния советского народа, и этим она резко отличается от науки стран империализма». [4, стр. 4]
Пятая теорема
Роджер Бэкон считал, что только розгами и можно вогнать в мозги ученика первые четыре теоремы из одного старинного учебника геометрии, а пятая теорема уже называется Элефуга, что значит «бегство несчастного». [5, стр. 24]
Как сокращать дроби
В некоторых занимательных книгах для детей старшего школьного возраста приводится следующее упрощенное «правило» сокращения дробей [5, стр. 153] [22, стр. 45]

Большие числа
В сочинении «Счет песчинок» Архимед показывает, что можно в рассуждениях составить числа, превышающие всякий, даже самый необъятный пример. Он остановился на числе

Если это число записать на бумажной ленте, умещая по пятисот нулей на одном метре, то лента получится в четыре с лишним раза длиннее орбиты Плутона. Свет проходит такое расстояние за шесть суток. [5, стр. 175]
В старинных русских рукописях тоже есть рассуждения о больших числах. В одной рукописи приводится число, о котором говорится «больше сего числа несть человеческому разуму разумети». Число именуется «колодой[14]» и равняется 108. В другой рукописи есть указание, что кроме системы, которая заканчивается колодой, есть еще другая система[15], называемая «числом великим словенским» – там «последнее» число равняется 1048. [4, стр. 15–16] [5, стр. 172–173]
Ниже приведены древнеславянские цифры [4, стр. 15–16] [5, стр. 172–173] [6, стр. 269–270]
Тысящя = 103 Тьма = 104 Легеон = 105
Леодр = 106 Ворон = 107 Колода = 108
Плутарх об Архимеде
Плутарх пишет, что Архимед забывал об обеде и совершенно пренебрегал заботой о своем теле, подолгу не бывал в бане. Он чертил везде: в пыли, пепле, на песке. Часто его заставляли принимать ванну, натираться благовонной мазью, но и в это время он пальцем чертил на своем намазанном теле геометрические фигуры. [6, стр. 77] [12, стр. 9]
Задача о волке, козе и капусте
Эту задачу знают практически все, но не многие знают кто был ее автором. А автором был англосаксонский математик Алкуин (ок. 735–804), который составил задачник, считающийся родоначальником развлекательных книг по математике. В задачнике встречались остроумные задачи, некоторые из них дошли до нашего времени. Со времен Алкуина в задачниках появляются задачи про бассейны и трубы с втекающей и вытекающей водой. [6, стр. 102–103]
Математики – самоубийцы
Существует легенда, что предсказав свою смерть на определенный день, Кардано совершил самоубийство, чтобы поддержать свою славу астролога. [6, стр. 149] [11, стр. 19] [11, стр. 37] [32, стр. 44]
В конце жизни Харди сознательно попытался покончить с собой. Суицид у него не получился. [38, предисловие Ч.П.Сноу, стр. 38–40]
В 1952 году Тьюрингу предъявили обвинения в гомосексуализме. Через год после приговора ученый умер, отравившись цианидом, содержащимся в яблоке, которое он съел. Смерть была признана самоубийством[16].
Галуа и логарифмы
В 1829 году Галуа дважды держал экзамены в Политехническую школу в Париже и оба раза провалился. На одном из экзаменов он отказался отвечать на вопрос о логарифмах, считая его слишком простым. [6, стр. 256–257]
Царский путь
Когда царь Птолемей I потребовал, чтобы Евклид обучил его своей науке как-нибудь побыстрее, Евклид ответил: «В геометрию нет царского пути[17]!» [7, стр. 104] [20, стр. 80] [24, стр. 115] [32, стр. 16] [36, стр. 8]
Солнечные зайчики Архимеда
По легенде, когда Сиракузы осадил вражеский флот, по указанию Архимеда все женщины города вышли на крепостные стены с зеркалами в руках. Направляя солнечные зайчики в одну и ту же точку, они один за другим подожгли корабли противника[18]. [7, стр. 104] [14, стр. 111] [28, стр. 164]
Знаменитая рассеянность
Из письма Ньютона приятелю офицеру: «Здесь все говорят, что ты одержал победу в двух сражениях, а в третьем был убит. Напиши мне, правда ли это? Ведь ты знаешь, как меня огорчила бы твоя смерть». [7, стр. 104] [24, стр. 217]
Доказательство от противного
История из дневников Томаса Мора. Друг Ньютона (это был доктор Стакли), не застав хозяина дома, съел его обед. Ньютон заметил обглоданные кости и воскликнул:
– М-да, если бы не очевидное доказательство противного, я бы решил, что сегодня еще не обедал. [7, стр. 104–105] [14, стр. 69–70] [24, стр. 218] [25, стр. 37]
Как Ньютон часы варил
Однажды Ньютон решил сварить куриное яйцо. Он взял хронометр, чтобы варить яйцо в течение трех минут, а спустя некоторое время очень удивился: часы были поставлены вариться, а в руке он держал яйцо, чтобы засекать время[19]. [7, стр. 105] [14, стр. 69] [25, стр. 39]
Странное условие
Ньютон никогда не торопился печатать свои работы. Когда его попросили опубликовать в «Трудах Королевского общества» некоторые математические результаты, он дал на это согласие, но с условием, что не будет упомянуто имя автора. «Право, не знаю, зачем мне известность, – объяснил Ньютон свое странное решение, – это может только увеличить круг моих знакомых, а я, наоборот, стараюсь избежать этого». [7, стр. 105] [24, стр. 218]
Плата за перевод
Однажды к голландскому математику Бекману, читавшему объявление на улице Бреды, подошел молодой офицер и попросил перевести текст афиши на латинский язык. Объявление, как оказалось, содержало условие трудной математической задачи.
Переведя текст, голландский математик потребовал, чтобы в качестве вознаграждения за услугу незнакомец решил задачу. К изумлению Бекмана, юноша принес решение уже на следующее утро – это был Рене Декарт, полк которого в ту пору стоял в Бредах[20]. [7, стр. 105]
Метод Менделеева
Тщательно пытаясь во время вечерней работы проинтегрировать одно сложное уравнение, Анри Пуанкаре сознательно отложил новые попытки до утра и лег спать. Под утро он увидел сон, будто он читает студентам лекцию по теме своих вечерних занятий и легко интегрирует на доске то самое уравнение. Когда ученый проснулся, ему осталось лишь записать решение. [7, стр. 105–106]
Ученый совет не баня
После того, как Эмми Неттер была избрана профессором математике в Геттингене, среди ее коллег-мужчин возникли дебаты: может ли женщина присутствовать на заседаниях ученого совета университета? Спор решил Гильберт:
– Разве ученый совет – баня, что на него нельзя допустить женщину? [7, стр. 106] [24, стр. 74]
Неточность
Автор наиболее широко распространенной теории иррациональных чисел Р.Дедекинд умер 12 февраля 1916 года в возрасте 84 лет.
Однако еще в 1904 году в «Книжке памятных дат для математиков», был отмечен под датой 4 сентября 1899 г… день смерти Р.Дедекинда. Последний не замедлил написать письмо составителю упомянутой книжки примерно следующего содержания: «Глубокоуважаемый коллега! В Вашей содержательной «Книжке памятных дат» Вы любезно вспомнили и обо мне. Я очень благодарен Вам за это. Разрешаю себе, однако, обратить Ваше внимание на то, что в указании даты моей смерти по крайней мере год, должно быть, указан неверно[21]». [7, стр. 106] [24, стр. 93]
Доклад без слов
В октябре 1903 г. в Нью-Йорке на заседании математического общества слово было предоставлено профессору Коулу. Профессор подошел к доске и, не говоря ни слова, начал возводить 2 в степень 67. Затем он вычел из полученного числа 1, и, по-прежнему не говоря ни слова, столбиком перемножил два числа 193 707 721 и 761 838 257 287. Оба результата совпали. Впервые в истории Американского математического общества его члены бурными аплодисментами приветствовали докладчика. Профессор Коул, так и не проронив ни одного слова, сел на место. Никто не задал ему ни одного вопроса.
Так Коул доказал, что число 267 – 1 составное, а не простое, как это подозревали до него почти 200 лет[22]. [7, стр. 106]
Предположение
Среди многочисленных лекций о приложениях математики, прочитанных Чебышевым, отмечается и его доклад в Париже, посвященный математической теории в производстве одежды. Собрались лучшие закройщики и модельеры, различные эксперты элегантности. Чебышев начал свою лекцию знаменитой математической фразой: «Допустим, для простоты, что тело человека имеет сферическую форму…».
После таких слов дальнейшая речь звучала в пустом зале, поскольку шокированная публика удалилась. [7, стр. 107]
Рекурсия
Известный русский математик М.В.Остроградский долго бился над решением задачи, которая была камнем преткновения для математиков мира.
Однажды, будучи в Париже, он решил обратится за консультацией во Французскую академию наук, славившуюся своими математическими достижениями. Там долго медлили, а потом пришел ответ: «Эту задачу может решить только один человек – русский профессор Остроградский. Он живет в Петербурге. К нему вам и следует обратится». [7, стр. 107] [40, стр. 349–350]
Помогла тюрьма
Парижская академия наук объявила конкурс на тему «О распространении волн в цилиндрических бассейнах». За 10 лет не было подано ни одной работы. В то время в Париже проживал выдающийся русский математик М.В.Остроградский. Он слушал лекции у О.Коши, П.Лапласа, Ж.Фурье… Случилось так, что отец не прислал ему вовремя денег, и М.В., задолжавший хозяину гостиницы, попал в долговую тюрьму. Там он и написал ценнейший труд, в котором решил вопрос, поставленный Парижской академией. Когда его, спустя годы, спросили, чему он обязан в решении столь трудной проблемы, М.В. кратко ответил: «Тюрьме!» [7, стр. 107]
Узкие штаны
Остроградский не любил модной одежды. Прекрасно зная это, портной все же уговорил его сшить костюм по последней моде. Ученый нашел брюки слишком узкими и отказался взять костюм. Портной удивился: «Но я сделал все, как нужно, – уверял он Остроградского. – Вы не должны отставать от века». «Помилуйте, – возразил академик, – как же мне угнаться за веком в таких узких штанах». [7, стр. 107] [24, стр. 224]
Как искать закономерность
Задолго до Менделеева ученые отметили сходство химических свойств некоторых элементов. Английский химик Ньюлендс в 1804 году попытался объединить элементы в тройки, однако не рискнул предположить существование неизвестных элементов. Поэтому в его тройки попали весьма непохожие элементы, что вызвало у оппонента ехидный вопрос: «А не пытался ли почтенный автор располагать элементы по алфавиту и не была ли при этом замечена какая-нибудь закономерность?» [8, стр. 32]
Игра «пятнашки»
В 1879-м году составитель головоломок Сэмюэль Лойд свел с ума Европу и Америку следующей головоломкой. Дана коробочка из 16-ти полей и 15-ти шашек, одно поле свободно. Требуется перевести коробочку из левого положения в правое







