Текст книги "Секс и эволюция человеческой природы"
Автор книги: Мэтт Ридли
Жанры:
Биология
,сообщить о нарушении
Текущая страница: 10 (всего у книги 34 страниц)
Безопасный секс под микроскопом
Наряду с большинством животных и растений, у людей половой процесс проходит по типу клеточного слияния – и у нас два пола. Но форма нашего полового процесса очень своеобразна. Самцы не уничтожают свои органеллы – они просто оставляют их «за порогом». Обычный сперматозоид несет лишь ядро, двигатель в виде митохондрий и жгутиковый пропеллер. Производящие сперму клетки сильно вытягиваются и избавляются от всего, что плавает в цитоплазме до момента созревания сперматозоида. Однако при встрече с яйцеклеткой «за борт» идут даже пропеллер и двигатель – дальше проходит только ядро.
Херст объясняет это, снова обращаясь к инфекционным заболеваниям{141}. Органеллы – не единственные генетические мятежники внутри клетки. Там же обитают многочисленные бактерии и вирусы. К ним применима такая же логика, как и к органеллам: если клетки сливаются, то конкурирующие бактерии из каждой из них начинают бороться не на жизнь, а на смерть. Если бактерия, живущая припеваючи внутри хозяйской яйцеклетки, неожиданно обнаруживает, что ее обитель подверглась вторжению пришедших вместе со сперматозоидом конкурентов, она вынуждена перейти от латентной формы существования и в фазу манифестации[42]42
Латентной называется такая фаза существования паразита, когда болезненные симптомы не выражены. Инфекционное заболевание проявляется в фазе манифестации.
[Закрыть]. Существует масса примеров того, как заболевание пробуждается именно при заражении конкурирующими инфекциями. К примеру, если вирус ВИЧ, вызывающий СПИД, заражает клетки человеческого мозга, он может долгое время находиться там скрытно. Однако если туда же попадет цитомегаловирус – вирус совсем другого типа, – то ВИЧ «просыпается» и начинает стремительно размножаться. Это – одна из причин, по которым считается, что вероятность развития СПИДа у ВИЧ-инфицированных индивидов больше в присутствии второй, осложняющей инфекции. Еще одной особенностью этого заболевания является то, что самые разнообразные (обычно безвредные) бактерии и вирусы – такие как Pneumocystis, цитомегаловирус или герпес (живущие преспокойно внутри тела многих из нас), – по мере прогрессирования СПИДа, могут неожиданно становиться вирулентными и агрессивными. Отчасти это из-за того, что СПИД – заболевание иммунной системы, благодаря чему именно иммунное подавление вирусов оказывается ослаблено. Но в этом есть и эволюционный смысл: если ваш хозяин собрался умирать, то нужно размножаться как можно быстрее. Так называемые оппортунистические инфекции, соответственно, бьют по вам, когда вы уже и так ослаблены. Между прочим, есть предположение, что кросс-реактивность иммунной системы (когда заражение одной линией паразита вызывает иммунную устойчивость к другой линии того же паразита), возможно, является для паразита, когда он оказывается внутри хозяина, способом захлопнуть за собой дверь перед носом конкурентов одного с ним вида{142}.
Если для паразита естественно идти ва-банк при появлении соперника, то для хозяина нормально предотвращать кроссинфекцию двумя разными паразитическими линиями. И никогда вероятность заражения ею не бывает настолько же большой, как при оплодотворении. Сливающийся с яйцеклеткой сперматозоид рискует принести с собой бактерии и вирусы, появление которых пробудит собственных паразитов яйцеклетки и вызовет войну за территорию. А последняя может сильно ослабить или даже убить зародыш. Чтобы предотвратить это, сперматозоид не приносит в яйцеклетку материал, который может содержать бактерии или вирусы – он передает только ядро. Воистину, безопасный секс.
Эту теорию довольно трудно доказать, но в ее пользу говорят некоторые факты. Они связаны с инфузориями-туфельками – протистами, осуществляющими половой процесс путем конъюгации (а именно, передают друг другу копии своих ядер по узкой трубке). Процедура крайне гигиенична – по трубке передаются только ядра, ничего лишнего. Две инфузории-туфельки сцепляются всего на пару минут. Еще немного, и по трубке начала бы передаваться и цитоплазма. Проход узковат даже для ядра – оно туда еле протискивается. И вряд ли случайно единственные существа, использующие для хранения генов отдельные маленькие ядра, из которых для каждодневного использования делаются большие рабочие копии, – это инфузории-туфельки и их родственники[43]43
L. Hurst, интервью; см. также Parker, Baker and Smith 1972 and Hoekstra 1987 для дополнительной информации об особенностях эволюции анизогамии и о двуполости. – Примеч. авт.
[Закрыть].
Пора решать
Итак, двуполость возникла как способ разрешить конфликт между цитоплазматическими генами двух родителей. Чтобы он не мог принести вреда потомству, было достигнуто благоразумное соглашение: все цитоплазматические гены должны приходить только от матери. Поскольку это сделало отцовские гаметы меньшими, те могли специализироваться на повышении многочисленности, мобильности и лучшем нахождении яйцеклетки. Двуполость – это ответ клеточной бюрократии на асоциальное поведение генов органелл.
Это ответ на вопрос о том, почему полов два: один – с маленькими гаметами, другой – с большими. Но это не объясняет, почему не двупола каждая конкретная особь. Почему люди не гермафродиты? Если бы я был растением, вопрос бы не возник: большинство растений гермафродитно. Общее правило таково: подвижные формы раздельнополы, сидячие (например, растения или балянусы[44]44
Балянусы – сидячие усоногие ракообразные.
[Закрыть]) – гермафродитны. С экологической точки зрения, это звучит более или менее осмысленно: поскольку пыльца легче семязачатка, потомки цветка, производящего одни лишь семязачатки, будут жить только рядом с родительским растением. Если же цветок производит еще и пыльцу, его потомки могут распространяться очень широко.
Но почему животные пошли по другому пути? Ответ связан все с теми же несчастными органеллами, остающимися «за порогом» при проникновении сперматозоида в яйцеклетку. Любой ген, находящийся в органеллах самца, «идет на убой». Все органеллы вашего тела и все их гены вы получили от вашей мамы. С точки зрения генов органелл вашего папы, все это очень печально, поскольку, как мы помним, их жизненная задача – передаваться в следующее поколение. Для них каждый мужчина – это эволюционный тупик. Неудивительно, что цитоплазматические гены пытаются выкрутиться из этой затруднительной ситуации – и те, кому это удается, распространяются в популяции за счет остальных. Самое привлекательное решение для гена органеллы у гермафродита – направить все ресурсы хозяина на производство женских половых клеток и «перекрыть кислород» образованию мужских гамет.
Это не глупые фантазии. Организм гермафродита является полем сражения повстанческих генов органелл, пытающихся подавить его самцовую часть. Такие гены обнаружены у более чем 140 видов растений: у них пыльники либо плохо развиваются, либо вообще атрофируются, и организм производит только семязачатки. Такого типа стерильность всегда вызывается геном, лежащим в органелле, а не в ядре. Подавляя развитие пыльников, восставший ген направляет больше ресурсов организма на женские семязачатки, через которые он будет передаваться в последующие поколения. Однако если «повстанцы» достигнут своей цели слишком во многих организмах, то ядерные гены, умеющие заставлять особь производить пыльцу, получат огромное преимущество: мужские гаметы в этот момент становятся большой редкостью. Стоит только появиться генам самцовой стерильности, как вскоре возникают ядерные, блокирующие их деятельность и восстанавливающие фертильность[45]45
Фертильность – способность организма приносить потомство.
[Закрыть]. У кукурузы, к примеру, есть два гена самцовой стерильности, оба лежат в органеллах, и каждый подавляется своим собственным ядерным геном. У табака имеются не менее восьми пар таких генов. Скрещивая разные линии кукурузы, селекционеры могут выпустить гены самцовой стерильности из под ядерного контроля: супрессор из одного родительского организма не будет узнавать «повстанца» из другого. Специалисты любят такие скрещивания, поскольку поле самцово-стерильной кукурузы не будет самооплодотворяться. Сажая разные самцово-фертильные линии, можно получать гибридные семена, которые, обладая различными замечательными качествами (благодаря загадочной силе, называемой гетерозисом), дают больше урожаев, чем их родители. Самцово-стерильные и самко-стерильные линии подсолнуха, сорго, капусты, помидора, кукурузы и других сельскохозяйственных культур – основа деятельности многих фермеров во всем мире{143}.
Обнаружить работу «противосамцовых» генов легко. У некоторых растений в популяции встречается лишь два типа особей: гермафродитные и женские. Говорят, у них – женская двудомность. А мужская двудомность – когда популяции состоят из самцов и гермафродитов – практически не встречается. У Тимьяна ползучего, к примеру, обычно около половины особей – самки, остальные – гермафродиты. Единственный способ объяснить, почему они остановились на полпути на трассе с односторонним движением – это предположить постоянную войну между «противосамцовыми» генами органелл и ядерными генами восстановления фертильности. При определенных условиях, сражение достигает патовой ситуации – когда любое дальнейшее продвижение любой из сторон дает другой преимущество и возможность восстановить status quo. Чем сильнее распространяются гены, подавляющие самцовость, тем большее преимущество получают гены, восстанавливающие фертильность, и наоборот{144}.
Эта логика не работает на животных, многие из которых не являются гермафродитами. Гену органеллы есть смысл убивать самцов только тогда, когда это дает энергию или какие-либо ресурсы сестрам этих самцов – поэтому сей процесс у животных происходит реже. Когда самцовая функция подавляется у гермафродитных растений, самочья получает больше ресурсов и производит больше семязачатков. Но ген, убивающий самцов, скажем, в помете мыши, не приносит никакой пользы мышкам-сестрам[46]46
Причины, по которым автор считает, что устранение из помета братьев не приносит сестрам дополнительных ресурсов, не ясны (особенно когда речь идет о питающихся молоком детенышах).
[Закрыть]. А убивать самцов просто за идею – за то, что для органелл любой самец это эволюционный тупик – гены органелл могут разве что из вредности{145}.
Поэтому конфликт у животных разрешается иначе. Вообразите себе популяцию гермафродитных мышей. И вот в органелле одной из них возникает мутация, подавляющая развитие семенников. Она распространяется, потому что самки, у которых есть такой ген, передают его каждому своему потомку (ведь те получают все органеллы от матери), а гермафродиты передают «нормальные» органеллы без этой мутации только половине своих потомков, которой они приходятся матерями (другой половине, которой они приходятся отцами, они вообще не передают органелл). Вскоре вся популяция будет состоять из гермафродитов и самок – причем, у последних поголовно будет иметься ген самцовой стерильности. В этой ситуации вид мог бы вернуться обратно к чистому гермафродитизму – путем супрессии гена самцовой стерильности, как это, очевидно, сделали многие растения. Однако еще до того, как возникнет и возымеет действие мутация, которая подавит действие «противосамцовых» генов, произойдут довольно интересные вещи.
Быть самцом (вернее, уметь производить мужские гаметы) в этот момент – довольно редкое удовольствие. Те несколько гермафродитных мышей, которые еще останутся, будут обладать огромным преимуществом, ибо только они смогут произвести сперматозоиды, все-таки нужные самкам для воспроизводства. Чем реже встречаются гермафродиты, тем они ценнее (и тем больше доля каждого из них в потомстве следующего поколения). В этот момент становится крайне невыгодно иметь мутацию, подавляющую самцовость. Даже наоборот: было бы очень к месту возникновение ядерного гена, подавляющего самковость и заставляющего гермафродита отказаться от самочьей репродуктивной функции и заниматься только «раздачей спермы». Но с возникновением такого гена оставшиеся гермафродиты уже не имеют никаких преимуществ. Они конкурируют с чистыми самцами и чистыми самками. Большая часть имеющихся в наличии сперматозоидов приходит в комплекте с «противосамковыми» генами, а большинство готовых к оплодотворению яйцеклеток – с «противосамцовыми». Поэтому каждый потомок оказывается репродуктивно специализирован. Так возникла двуполость{146}.
Ответ на вопрос «Почему бы самцам не быть гермафродитами и не избежать платы за самцовость?» прост: да, это было бы неплохо, но к гермафродитности нам уже не вернуться. Мы обречены на двуполость.
История о непорочных индейках
Разделившись на два пола, животные поставили жирный крест на первом мятеже органелл. Но победа оказалась временной. Цитоплазматические гены начали новое восстание, на сей раз – с целью извести всех самцов, оставив только самок. Это может показаться самоубийством, поскольку бессамцовые виды с облигатным скрещиванием исчезают за одно поколение. Однако гены органелл это не беспокоит по двум причинам. Во-первых, они могут превратить (и делают это) вид в партеногенетический, когда особи способны давать потомство без оплодотворения – так цитоплазматические гены избегают полового размножения. Во-вторых, они похожи на рыбака, китобоя или пастуха на общинном поле: стремятся получить краткосрочное селективное преимущество, даже если в долгосрочной перспективе оно ведет к самоубийству. Разумный китобой не уничтожает последнюю пару китов – чтобы они могли размножиться. Но когда есть угроза, что это сделает кто-то другой, он убивает их и получает прибыль. Таким же образом органелла не сохраняет последнего самца во имя выживания вида, ибо она все равно умрет, если попадет в него.
Возьмем выводок божьих коровок. Есть один специальный ген, убивающий яйца с зародышами самцов: вылупившиеся самки съедают их и имеют бесплатный обед. Неудивительно, что подобные гены у божьих коровок, мух, бабочек, ос, жуков – всего порядка 30 видов изученных насекомых – встречаются тогда и только тогда, когда потомки в выводке конкурируют между собой. В данном случае, убивающие самцов гены находятся не в органеллах, а в бактериях, живущих в цитоплазме клеток насекомых. Эти бактерии, как и органеллы, выбрасываются при оплодотворении из сперматозоида, но не из яйцеклетки{147}.
У животных такие гены называются нарушителями соотношения полов (sex-ratio distorters). По крайней мере, у 12 видов маленьких паразитических ос, называющихся Trichogramma, определенная бактериальная инфекция заставляет самку производить только самок – даже из неоплодотворенных яиц (специфическая система определения пола у всех ос заключается в том, что, в норме, из неоплодотворенного яйца развивается самец). При этом и вид не вымрет (ведь оплодотворение не требуется), и бактериям хорошо (они будут попадать в следующее поколение через цитоплазму яйцеклетки). В итоге, весь вид становится партеногенетическим за столько поколений, сколько нужно, чтобы все особи оказались заражены бактериями. Дайте осам антибиотики и – о, чудо! – у потомства восстановится двуполость. Пенициллин лечит от партеногенеза{148}.
В 1950-х годах исследователи из Сельскохозяйственного Центра в Белтсвилле (штат Мэриленд, США) обнаружили, что у некоторых индеек яйца стали развиваться без оплодотворения. Однако несмотря на героические усилия ученых, эти зачатые без оплодотворения организмы редко продвигались в развитии дальше простых эмбрионов. Но было обнаружено, что вакцинирование индеек живой вакциной птичьей оспы увеличило долю развивающихся без оплодотворения яиц с 1–2 % до 3–16 %. С помощью селективного скрещивания и использования трех живых вирусов ученые создали линию индеек, почти половина яиц которых могла развиваться без оплодотворения{149}.
Если это работает у индеек, то почему бы этому не работать у людей? Лоренс Херст уцепился за смутный намек на существование паразита, меняющего пол человека. В 1946 году в маленьком французском научном издании появилась удивительная история о женщине, попавшей в поле зрения одного врача из Нанси. К тому моменту у нее уже родились двое детей. Первая девочка умерла в детстве. Женщина не выказала удивления, когда узнала, что второй ребенок – тоже девочка: мол, в ее семье никогда не рождались мальчики.
По ее словам, она была девятой дочерью шестой дочери своей бабушки. Братьев не было ни у нее, ни у ее матери. У восьмерых ее сестер родились 37 дочерей и ни одного сына. У пяти ее тетушек было 18 дочерей и ни одного сына. Короче говоря, в ее семье за два поколения родились 72 женщины и ни одного мужчины{150}.
Подобное может произойти и случайно, но это практически невероятно: меньше одного шанса на сотню миллиардов миллиардов (1:1020). Двое французских ученых, описавших этот случай – Р. Льенар (R. Lienhart) и А. Вермелен (Н. Vermelin), – исключили селективные спонтанные аборты мальчиков, поскольку этому не было никаких свидетельств. Наоборот, многие из этих женщин были необычайно плодовиты. У одной из них было 12 дочерей, у второй – 9, у третьей – 8. Вместо этого ученые предположили, что у пациентки и ее родственников имеется какой-то цитоплазматический ген, делающий женским каждый эмбрион, в котором оказывается – независимо от того, какие у него половые хромосомы. (Не было, однако, найдено ни одного свидетельства о партеногенетическом рождении. Самая старшая сестра пациентки была монашкой, давшей обет безбрачия, и у нее не было детей.)
Случай мадам Б., как его назвали авторы, чрезвычайно интересен. Действительно ли у дочерей и племянниц пациентки рождались только дочери? А у ее двоюродных сестер? Действительно ли в Нанси растет династия женщин, которая вскоре сместит соотношение полов в городе? Верно ли объяснение, предложенное французскими докторами? Если да, то что это был за ген и где он жил – в паразите или в органелле? Как он работал? Возможно, мы никогда этого не узнаем.
Лемминги и война букв
За исключением некоторых жительниц Нанси, пол у людей определяется хромосомами. Когда вас зачинали, на яйцеклетку вашей мамы охотились два типа папиных сперматозоидов: один содержал X-хромосому, другой – Y-хромосому. Тот, который оказался первым, и определил ваш пол. У млекопитающих, птиц, а также большинства других животных и многих растений это – типичный механизм. Он называется генетическим: пол определяется половыми хромосомами. Те, у которых есть и X, и Y – самцы, а у которых две X-хромосомы – самки.
Но даже возникновение половых хромосом и их успех в подавлении «восстания» цитоплазматических генов не сделали жизнь в обществе последних гармоничной, поскольку свои интересы в том, какого пола будут дети их обладателя, стали преследовать и сами половые хромосомы. У мужчин, к примеру, определяющие пол гены находятся на Y-хромосоме. Половина сперматозоидов несет X-хромосомы, половина – Y-хромосомы. Чтобы получилась дочка, мужчина должен оплодотворить свою партнершу X-сперматозоидом. При этом он не передает ей ни одного гена, находящегося на Y-хромосоме. С точки зрения последней, дочь этого мужчины не имеет к нему никакого отношения. Поэтому ген Y-хромосомы, вызывающий смерть всех X-сперматозоидов и гарантирующий ей монополию на всех детей своего обладателя, будет выигрывать за счет всех других ее вариантов. То, что все потомки окажутся мальчиками, из-за чего вид вскоре может вымереть, не имеет для Y-хромосомы никакого значения: у нее нет способности предвидеть.
Этот феномен «изменяющей соотношение полов Y-хромосомы» (driving Y) впервые был предсказан в 1967 году Биллом Гамильтоном{151}. Ученый увидел в этом большую опасность, способную поставить человечество на грань исчезновения – тихо и без лишнего шума. Ему было интересно, может ли что-нибудь предотвратить это – и если да, то что. Одно из решений – низложить Y-хромосому, лишив ее всех полномочий, способностей и механизмов, кроме определения пола. Действительно, большую часть времени Y-хромосомы будто бы живут под домашним арестом: лишь некоторые из их генов работают, а большинство – вообще молчит. У многих видов пол определяется не ими, а соотношением количества X-хромосом и аутосом[47]47
У видов с хромосомным определением пола определяющие пол хромосомы называют половыми хромосомами, а все остальные – аутосомами.
[Закрыть]. Одна X-хромосома не делает птицу самцом, а две – делают. В результате, у большинства птиц Y-хромосома вообще исчезает.
Т. е. Черная Королева опять за работой. Природе никак не удается остепениться и изобрести справедливый и разумный способ определения пола, а живые организмы так и остаются полем для возникновения бесконечной череды генетических мятежей. Едва оказывается подавлен один бунт, как начинается новый. Поэтому определение пола – механизм, полный, говоря словами Космидес и Туби, «бессмысленной сложности, очевидной ненадежности, неточностей и (с точки зрения индивида) расточительства»{152}.
Но если Y-хромосома может менять соотношение полов, то это может и X-хромосома. Лемминги – толстые арктические мыши – знамениты среди шутников, благодаря расхожему мнению о том, что они, якобы, обожают целыми ордами бросаться со скалы в море. А среди биологов они известны способностью резко увеличивать, а затем сокращать численность популяции – последнее связано с уничтожением пищевых ресурсов в результате перенаселения. Но интересны они и по другой причине – из-за необычного способа определения пола. У леммингов встречаются три типа половых хромосом: W, X и Y. Организм XY – самец; XX, WX и WY – самки. YY – вообще не выживает. Штука в том, что W возникла как мутантная X-хромосома, которая может менять соотношение полов: она отменяет «самцетворную» роль Y.
В результате в популяции образуется избыток самок (какой-нибудь похожий механизм – одно из возможных объяснений истории о семье мадам Б). Поскольку такой расклад повышает ценность самцов, можно ожидать, что те должны развить способность производить больше Y-, чем X-сперматозоидов. Но они этого не делают. Почему? Сначала биологи думали, что это как-то связано со взрывом численности популяции: в это время избыток самок – хорошая стратегия выживания вида. Но недавно выяснилось, что в этом нет необходимости. Смещенный в сторону самок баланс полов может быть стабильным по генетическим, а не по экологическим причинам{153}.
Самец, производящий только Y-сперматозоиды, может спариться с самками XX, WX или WY. В первом случае он произведет только сыновей (XY), во втором – половину сыновей и половину дочерей, а в третьем у него будут только дочери (WY), поскольку сыновья (YY) не будут выживать. В сухом остатке получится: если самец производит только Y-сперматозоиды, то часть его потомства будет сыновьями, а часть – дочерьми типа WY, которые смогут родить только самок. Это означает: если все самцы популяции – только «спермопроизводящие», то в каждом поколении их будет становиться все меньше и меньше. Очевидно, выработка самцом лишь Y-сперматозоидов никак не способно восстановить равного соотношения полов. В итоге, они производят сперматозоиды обоих типов, сохраняя соотношение полов несбалансированным – с преобладанием самок. Случай с леммингами демонстрирует: даже изобретение половых хромосом не предотвратило смещения соотношения полов «мятежными» хромосомами{154}.