355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Мария Гессен » Совершенная строгость. Григорий Перельман: гений и задача тысячелетия » Текст книги (страница 2)
Совершенная строгость. Григорий Перельман: гений и задача тысячелетия
  • Текст добавлен: 6 октября 2016, 18:53

Текст книги "Совершенная строгость. Григорий Перельман: гений и задача тысячелетия"


Автор книги: Мария Гессен



сообщить о нарушении

Текущая страница: 2 (всего у книги 16 страниц)

К 1970-м советский математический истеблишмент вполне сложился. Это была тоталитарная система, вложенная в другую тоталитарную систему. Она обеспечивала своих обитателей не только работой и деньгами, но и жильем, пропитанием, транспортом. Она определяла, где им жить, а также когда и как им добираться на работу или курорт. Система была внимательной, строгой и заботливой матерью. Ее дети всегда были обихожены и накормлены: ученые составляли привилегированную группу в сравнении почти со всем остальным населением СССР. Когда начинался товарный дефицит, "официальные" математики и другие ученые могли отовариваться в "распределителях".

Поскольку в СССР частной собственности на недвижимость не было, обычные граждане получали жилье от государства, а члены математического истеблишмента – от своих институтов. Квартиры математиков обычно были просторнее и находились в более престижных районах, чем квартиры их непривилегированных соотечественников.

Наконец, у членов математического истеблишмента была еще одна, редчайшая для советского гражданина привилегия – поездки за границу. Однако поездка, скажем, на какую– нибудь научную конференцию зависела не столько от желания самого ученого, получившего приглашение, сколько от Академии наук, парторганизации и органов госбезопасности. Они же решали, кто составит ученому компанию, насколько долгой будет поездка и где он будет жить. Например, Сергею Новикову, первому советскому лауреату премии Филдса, власти не позволили в 1970 году поехать в Ниццу за своей наградой, и он смог получить ее только год спустя, когда в Москве собрался Международный конгресс математиков.

Математический истеблишмент был жестоким и трусливым мирком, основанным на интригах, доносах и подсиживании: даже для его членов ресурсов хватало не всегда. Приличных квартир всегда было меньше, чем людей, желающих их получить, а желающих посетить зарубежную конференцию – больше, чем тех, кому позволяли выехать за рубеж.

Барьер для вступления в этот закрытый клуб был практически непреодолимым: ученый должен был быть беззаветно верен не только идеям коммунизма и КПСС, но и действующим представителям самого математического истеблишмента. Евреям и женщинам вход туда, как правило, был заказан. Кроме того, из истеблишмента могли выгнать за плохое поведение. Это произошло, например, с учеником Колмогорова Евгением Дынкиным, организатором Вечерней математической школы при МГУ и одним из ведущих преподавателей московской матшколы, где процветало непростительное вольнодумство. Другой ученик Колмогорова, Леонид Левин, был подвергнут остракизму за связь с диссидентами: "Я стал обузой для всех, с кем был связан; мне стало нельзя работать в серьезных научных учреждениях и даже неловко ходить на семинары (участников просили сообщать о моих посещениях). Мое существование в Москве начинало выглядеть бессмысленным". Дынкину и Левину пришлось уехать из СССР. Вскоре после приезда в США Леонид Левин узнал, что проблему, о которой он рассказывал на семинарах в Москве и которая отчасти была связана с работами Колмогорова по теории множеств, независимо от него сформулировал Стивен Кук, американский теоретик вычислительных систем. Кук и Левин (теперь он преподает в Бостонском университете) считаются соавторами гипотезы о равенстве классов Р и NP, также известной как теорема Кука—Левина, – одной из семи "задач тысячелетия". Суть гипотезы такова: существует ли задача, проверка правильности решения которой займет больше времени, чем поиски решения?

В СССР были ученые, которые не могли стать частью истеблишмента – если им "не повезло" родиться евреем или женщиной, они "ошиблись" в выборе научного руководителя или не сумели заставить себя вступить в партию. "Были люди, которые понимали, что членкорами они никогда не станут и что максимум, что им светит, – это защитить докторскую диссертацию в каком-нибудь Минске, если договориться, – вспоминает Сергей Гельфанд, сын выдающегося математика, ученика Колмогорова Израиля Гельфанда. – Они ходили на семинары в университет и работали в Институте деревообрабатывающей промышленности или где-нибудь еще. В основном они занимались математикой. Уже возникали международные контакты, уже можно было – с трудом, но все-таки можно – иногда печататься на Западе. Надо было только доказать, что ты не выдаешь государственные секреты. Приезжали энтузиасты с Запада, кое-кто на сравнительно длительный срок, потому что они понимали, что здесь много талантливых людей. Это была неофициальная математика".

Одним из таких "энтузиастов" была Дуза Макдаф (Dusa McDuff) – британский алгебраист, ныне почетный профессор Университета штата Нью-Йорк в Стоуни-Брук. Она полгода проработала в СССР бок о бок с Израилем Гельфандом, и этот опыт открыл ей глаза не только на то, насколько важны для занятий математикой постоянные контакты с другими учеными, но и на то, что такое математика. "Чтение пушкинских стихов из "Моцарта и Сальери" сыграло в моем обучении не менее важную роль, чем изучение групп Ли или чтение Картана и Эйленберга. Израиль Гельфанд говорил о математике так, будто речь шла о поэзии. Однажды он так отозвался о длинной статье, пестревшей формулами: она полна туманных намеков на мысль, которую нельзя выразить четче. Я относилась к математике куда более прямолинейно: формула есть формула, алгебра есть алгебра. Гельфанд же видел ежей, рыщущих в чаще спектральных последовательностей".

Невовлеченность представителей математической контркультуры в дела социума вполне соответствовала известному принципу советской трудовой этики: "Они делают вид, что платят, мы – что работаем". Они получали скромную зарплату, которая почти не росла, но ее хватало на самое необходимое, и эти деньги позволяли математикам заниматься настоящим делом. "Не было понимания, что нужно заниматься какой-то узкой областью, поскольку не надо было писать быстрее, чтобы получить пост в университете, – вспоминает Сергей Гельфанд. – Математика была почти что хобби – зарплату почти не повышали. Ну, повышали, если защитить кандидатскую диссертацию. Поэтому можно было делать вещи, от которых не было проку в ближайшее десятилетие".

Эти ученые занимались математикой ради самой математики, сравнивая себя с художниками, которых интересовало чистое искусство. Материальных благ это не приносило – ни денег, ни постов, ни загранкомандировок, ни квартир. Единственная награда, на которую они рассчитывали, – признание коллег. Соревнование, согласно неписаным правилам, должно было быть честным, иначе математики рисковали потерять уважение окружающих. Другими словами, советская математическая контркультура была совершенно не похожа на реальный мир. Это была чистая меритократия, в которой интеллектуальное достижение само по себе было призом.

Когда научное общение в СССР возобновилось, у математиков снова возник вкус к дискуссиям, к логичности и непротиворечивости. "Математика после смерти Сталина стала одним из наиболее естественных путей самореализации для свободомыслящего человека, – рассказывает известный математик Георгий Шабат. – Если бы я мог свободно избирать профессию, то стал бы литературным критиком. Но я хотел работать, а не сражаться всю жизнь с цензурой". Математика не только позволяла заниматься интеллектуальным трудом без вмешательства государства (правда, и без его поддержки). Она обещала нечто, что нельзя было найти в позднесоветском обществе, – истину. "Математики – это люди, обладающие особой интеллектуальной честностью, – утверждает Шабат. – Если два математика приходят к взаимоисключающим результатам, один из них непременно оказывается прав, а второй – нет. И тот, кто ошибся, признает ошибку".

Поиск истины мог растянуться на долгие годы. Но в эпоху застоя у обитателей альтернативной математической вселенной было столько времени, сколько им требовалось.

Глава 2. Как воспитать математика

В середине 1960-х профессор Гаральд Натансон предложил одной из своих студенток, которую звали Люба, место в аспирантуре. Нельзя сказать, что этот шаг дался ему легко. Женщин в аспирантуру тогда принимали с большой неохотой, подозревая их в тайной склонности к деторождению и прочим несерьезным вещам, отвлекающим от науки.

К тому же Люба была еврейкой, а это означало, что профессор Натансон, приберегавший для нее место на кафедре, вынужден был интриговать, лавировать и заискивать. С точки зрения системы, евреи были еще более ненадежными, чем женщины. В послевоенном СССР изощренный антисемитизм имел силу негласного закона. Натансон, будучи евреем, преподавал в Ленинградском педагогическом институте им. А.И. Герцена – второразрядном вузе в сравнении с Ленинградским госуниверситетом – и оттого мог позволить себе покровительствовать евреям – студентам и преподавателям.

Правда, Любе было почти тридцать. Она уже была не в том возрасте, в котором женщины в СССР обычно выходили замуж и рожали детей. Натансон с удовольствием заключил, что она готова целиком посвятить себя математике. И оказался не так уж неправ: Люба и в самом деле была увлечена наукой. Тем не менее она отклонила щедрое предложение профессора, объяснив, что недавно вышла замуж и подумывает о ребенке. Люба рассказала, что уже приняла предложение стать учителем математики в ПТУ и теперь намерена оставить математическое сообщество Ленинграда лет на десять-двенадцать.

По советским меркам этот срок был ничтожным. Окраины Ленинграда только начинали застраиваться, и некоторые семьи перебрались из перенаселенного и обшарпанного центра в новые высотки в пригородах. Одежда и провиант, даже прескверного качества, по-прежнему были в дефиците, но промышленность потихоньку развивалась, и новоселы из пригородов теперь могли приобрести простейшие стиральные машины и телевизоры. Эти телевизоры, хотя и именовались черно-белыми, картинку давали серую, точно отображая унылую советскую действительность.

В общем, жизнь текла медленно. Гаральд Натансон продолжал преподавать в пединституте, перенаселенном и обшарпанном, когда Люба снова пришла на кафедру. Она состарилась и отяжелела. Люба рассказала, что за годы своего отсутствия она родила сына. Теперь ее Гриша подрос, пошел в школу и выказывает явные способности к математике. Он даже победил в районной математической олимпиаде в Купчине – районе новостроек, где они жили.

Следуя давней традиции математической преемственности, Гриша был готов начать с того места, где остановилась его мать. Эта история произвела на Натансона сильное впечатление: он и сам был из династии математиков. Его отец, Исидор Натансон, был автором канонического учебника высшей математики и преподавал в том же пединституте до самой смерти в 1963 году.

Сын Любы перешел в пятый класс, то есть уже мог начать серьезно заниматься. У Натансона уже был на примете преподаватель для Гриши. К нему профессор и отправил мальчика и его мать.

Так началось обучение Григория Перельмана.

Олимпиадная математика похожа на спорт куда больше, чем многие полагают. Здесь тоже есть клубы – математические кружки, есть тренеры – преподаватели математики, есть тренировки и, разумеется, состязания. Одних способностей для успеха мало: талантливому ученику нужен хороший наставник, команда, поддержка семьи и, разумеется, воля к победе. Невозможно сразу выделить будущих звезд.

Гриша Перельман пришел в математический кружок Ленинградского дворца пионеров осенью 1976 года. Он оказался гадким утенком среди других гадких утят. Гриша был полноват и неловок. Он играл на скрипке (его мать, которая обучалась не только математике, но и играла в детстве на скрипке, приглашала к сыну частного преподавателя). Когда Гриша пытался объяснить решение математической задачи, слов оказывалось так много, а речь текла так быстро, что понять почти ничего было нельзя. Он был на год младше других детей (только один мальчик в кружке был еще младше), но развит не по годам.

Гришин товарищ по кружку Александр Голованов одолевал программу двух классов за год и собирался закончить школу в тринадцать лет. Трое других мальчиков обходили Гришу на соревнованиях в первые годы его занятий. По крайней мере еще один из них – Борис Судаков, любознательный, энергичный мальчик (его родители, как выяснилось, были знакомы с семьей Перельманов), выказывал способности большие, нежели Гриша.

Как Судаков, так и Голованов были отмечены признаками одаренности. Они всегда были возбуждены. Они боролись за первенство всегда и повсюду, и математика была лишь одной из многих вещей, приводивших их в восторг, одним из способов блеснуть умом и доказать свою уникальность. Гриша был любознателен, но молчалив, и для этих двоих истинным наслаждением было делиться с ним идеями. Сам же он подобное желание обнаруживал редко. Он водил дружбу с математическими задачами – крепкую, но глубоко интимную. Говорил

Гриша в основном о математике, да и то чаще с самим собой. Случайный посетитель занятий маткружка не выделил бы Гришу среди других мальчиков. В самом деле, среди множества знакомых Перельмана (даже тех, кто встречался с ним позднее) я не нашла ни одного, который описал бы его как яркую личность. Никому не приходило в голову, что он может блистать. Перельмана описывали как чрезвычайно умного мальчика, предельно точного в словах и мыслях.

Природа мышления до сих пор остается во многом таинственной. Математиков можно разделить на две категории: алгебраистов, тех, кому проще справиться с любой задачей, сведя ее к числам и переменным, и геометров, которые воспринимают мир как совокупность фигур. То есть когда один математик видит формулу:

другой видит геометрические фигуры:

Александр Голованов, более десяти лет проучившийся с Гришей и иногда с ним состязавшийся, отзывался об однокашнике как о незаурядном геометре: пока Голованов вникал в суть геометрической задачи, у Перельмана уже было наготове ее решение. Дело в том, что Голованов был алгебраистом. Напротив, Борис Судаков, который проучился с Перельманом шесть лет, рассказывал, что тот мог свести любую проблему к формуле. Судаков был геометром; его любимым доказательством приведенной выше классической теоремы было графическое, не требующее ни формул, ни устных объяснений. Иными словами, каждый из этих двоих думал, что стиль мышления Перельмана радикально отличается от их собственного.

Судя по всему, Гриша Перельман работал над решением в уме, не прибегая к черновику. У него и так было чем заняться: он напевал про себя что-то, кряхтел, стучал об стол шариком для пинг-понга, раскачивался взад-вперед, выбивал карандашом ритм, водил ладонями по бедрам, пока брюки не начинали лосниться, – и, наконец, потирал руки. Последнее означало, что решение найдено и его осталось только записать.

Впоследствии, даже когда Перельман стал заниматься топологией, он никогда не смущал коллег блеском своего геометрического воображения, однако неизменно производил на них впечатление глубокой сосредоточенностью, с которой он перемалывал задачи. Его разум походил на универсальный прибор, способный схватить суть проблемы. Дети в маткружке называли это свойство "дубинкой Перельмана" – это было воображаемое увесистое орудие, которое Гриша держал в уме до тех пор, пока не приходило время нанести решающий удар по задаче, всегда неотразимый.

Занятия в математических кружках по всему миру выглядят почти одинаково. Дети получают заранее подготовленные задания – они написаны на доске или раздаются на листочках – и пытаются их решить. Учитель чаще всего сидит молча. Его ассистенты время от времени проверяют, как у учеников идут дела, и иногда направляют течение их мысли в нужном направлении.

Для советского ребенка посещения маткружка после уроков были сродни чуду. Это была не вполне школа. Каждое утро в начале девятого все дети Страны Советов выходили из своих одинаковых бетонных многоэтажек, шли в одинаковые бетонные школы и заполняли одинаковые классные комнаты.

Там на стенах, выкрашенных в желтый цвет, висели портреты знаменитых бородатых покойников: в кабинете литературы и русского языка – Достоевского и Толстого, в химическом – Менделеева, повсеместно – Ленина. Учителя проводили перекличку, отмечая явившихся в одинаковых классных журналах, и извлекали из портфелей одинаковые учебники, чтобы привить своим подопечным строго единообразный способ мыслить.

Моя первая учительница (я ходила в школу на окраине Москвы, выглядевшую приблизительно так же, как школа в пригороде Ленинграда, которую посещал Гриша Перельман) заставляла меня притворяться, что я читаю так же плохо, как остальные дети. Это отвечало ее пониманию школьного равноправия.

Когда я впервые попала на занятие маткружка и корпела над задачами (примерно то же самое делал Гриша Перельман, находясь севернее километров на семьсот), я, кажется, потратила целую вечность, рисуя какую-то фигуру. Не помню, каким было задание, но для решения задачи нужно было преобразовать фигуру. Я сидела, будучи не в силах прикоснуться карандашом к бумаге, пока ассистент преподавателя не подошел и не задал какой-то простой вопрос наподобие: "Что здесь можно сделать?»

"Преобразовать фигуру – вот так", – показала я.

"Ну так сделай это", – сказал он. Маткружок, решила я, – это место, где я могу думать самостоятельно. Меня охватило замешательство. Я склонилась над листком и за пару минут решила задачу. И тогда я почувствовала такое облегчение, что в ту же секунду превратилась в человека, который жить не может без математики. Зависимость не оставляла до поступления в институт, где меня поймали на незаконной замене обязательного гуманитарного курса расширенным исчислением. Этот интеллектуальный кайф – поиски математического решения и его открытие – был настолько силен, что заставлял чувствовать разом влюбленность, надежду, истину, торжество справедливости.

Математический кружок, где занимался Гриша Перельман, был чистым экспериментом. Преподаватель, которому профессор Натансон решил доверить своего протеже, был высокий, веснушчатый, светловолосый, горластый человек по имени Сергей Рукшин. Ему было всего девятнадцать. У него не было опыта ведения маткружка. У него не было ассистентов. Зато у него были непомерные амбиции и страх оказаться не на высоте. Днем Рукшин был старшекурсником Ленинградского госуниверситета. Дважды в неделю он надевал пиджак и галстук, преображаясь во взрослого, и шел на занятия во Дворец пионеров.

В среде смирных и чинных ленинградских математиков Сергей Рукшин был аутсайдером. Он вырос в Пушкине неподалеку от Ленинграда и был трудным ребенком. Когда Сергею было пятнадцать, он совершил несколько незначительных правонарушений. Тогда единственным привлекательным занятием ему казался бокс. Жизненный путь его просматривался вполне отчетливо: учеба в ПТУ, армейская служба и короткая из-за алкоголя и драк жизнь, – путь, который прошли многие советские мужчины того поколения.

Эта перспектива так испугала родителей Сергея, что они мольбами (а возможно, и взяткой) добились невозможного: их сын поступил в математическую спецшколу. Потом произошло еще одно чудо: Рукшин влюбился в математику и полностью отдался ей. Он участвовал в олимпиадах, но проигрывал соперникам, которые готовились к состязаниям годами. Тем не менее ему казалось, что он знает способ победить, просто не может добиться этого сам. Поэтому он сколотил команду из школьников всего на год младше, начал заниматься с ними – и они достигли успеха. Потом он занялся подготовкой старшеклассников по всему Ленинграду. Затем Рукшин сделался ассистентом во Дворце пионеров, а год спустя, когда преподаватель, которому он ассистировал, получил работу в другом городе, Сергей сам начал преподавать.

Как любой начинающий педагог, Рукшин слегка побаивался своих учеников. В его первую группу попали Перельман, Голованов, Судаков, еще несколько мальчиков всего на несколько лет младше Рукшина, которые хотели побеждать на математических соревнованиях. И Рукшин мог доказать свое право обучать их, только сделавшись лучшим на свете тренером-математиком.

Именно это он и сделал. В следующие десятилетия подопечные Сергея Рукшина получили на международных математических олимпиадах более семидесяти медалей (около сорока – золотых). В последние двадцать лет примерно половина российских участников соревнований прошли выучку у Рукшина либо у одного из его учеников, усвоивших методы учителя.

Не вполне ясно, что делает метод Рукшина уникальным.

Я до сих пор не понимаю, как он это делает, – признается мне Судаков – полный, лысеющий человек, специалист в области теории вычислительных машин из Иерусалима, – несмотря на то что я знаю кое-что о психологии. Мы приходили, рассаживались, нам давали задачи. Мы их решали. Рукшин сидел за своим столом. Когда кому-нибудь из нас удавалось решить задачу, он шел к Рукшину и объяснял свое решение. Может быть, обсуждал его с наставником. Вот и все. Каково? – Судаков смотрит на меня с видом победителя через стол в кафе.

– Но ведь так все делают, – произношу я то, чего от меня, по всей видимости, ждут.

– Вот именно! Об этом и речь, – заключает радостно ерзающий на стуле Судаков.

Я видела, как проходят занятия в Петербургском математическом центре для одаренных детей – так теперь называется разросшийся кружок Сергея Рукшина, который посещают примерно двести детей в возрасте одиннадцати лет и старше. Как и группа Перельмана, они приходят на занятия дважды в неделю после школы. В конце каждого занятия (двухчасового для младших школьников, долгого, иногда до ночи – для старшеклассников) ученики получают домашнее задание. Рукшин утверждает, что один из его уникальных методов заключается в том, чтобы правильно подобрать задания. Наставник должен изучить несколько списков заданий и выбрать те, которые помогут ученикам достичь прогресса в течение следующих нескольких часов. Через три дня ученики приносят собственные решения, которые они объясняют ассистентам в течение первого часа занятий. На втором часу наставник записывает правильные решения на доске и объясняет их. С течением времени ученики начинают самостоятельно объяснять свои решения остальной группе.

Я наблюдала, как младшие ученики сражались со следующей задачей: "В классной комнате находятся шесть человек. Докажите, что среди них должны быть по меньшей мере трое, ни один из которых не знает другого, или же трое, знакомые друг с другом". Ассистенты советуют детям нарисовать следующую схему:

Двое из шести детей, корпевших над задачей, поняли, что рисунок можно дополнить одним из трех способов:

или:

Задача, с которой успешно справились эти двое, заключалась в том, чтобы графическим, а потому неопровержимым путем показать, что должно быть по крайней мере трое людей, ни один из которых не знает другого, или же, напротив, знакомых друг с другом. Слушать детей, впервые пытавшихся артикулировать свои мысли, было мучительно.

Математикам эта задача известна как головоломка о вечеринке. В более общем виде она выглядит так: сколько людей следует пригласить на вечеринку, чтобы по крайней мере т гостей оказались знакомы друг с другом или по крайней мере п гостей не были знакомы друг с другом. Эта головоломка является частным случаем теории Рамсея – системы теорем,сформулированных английским математиком Фрэнком Рамсеем. Большинство подобных задач касаются числа элементов, нужного, чтобы удовлетворять определенным условиям. Сколько детей должно быть у женщины, чтобы двое из них наверняка оказались одного пола? Трое. Сколько людей должно прийти на вечеринку, чтобы по крайней мере трое из них не знали (или, напротив, знали) друг друга? Шестеро. Сколько голубей нужно, чтобы по меньшей мере в одном гнезде оказались два или более голубей? На одного больше, чем число гнезд.

Дети – по крайней мере некоторые – со временем узнают о теории Рамсея. Сейчас же они учатся смотреть на мир так, чтобы заинтересоваться этой теорией и вообще увидеть порядок в неупорядоченном мире. Для подавляющего большинства школьники или гости вечеринки – только люди. Математики же видят в них элементы структуры, а в их взаимоотношениях – закономерности. Большинство учителей математики, кажется, верят в то, что некоторые дети изначально предрасположены к поиску взаимосвязей. Выделив этих детей, их нужно обучать и развивать их странную способность видеть треугольники и шестиугольники там, где все остальные видят просто вечеринку.

"Это мое ноу-хау, – заявил мне Рукшин. – Я понял тридцать лет назад, что необходимо выслушивать каждого ребенка, который считает, что сумел решить задачу". В других маткружках дети рассказывали о своих вариантах решения у доски, и дискуссия заканчивалась после первого же правильного ответа. Тактика же Рукшина заключается в том, чтобы каждый ребенок рассказал о своем варианте решения, о своих удачах, трудностях и ошибках.

Это, возможно, наиболее трудоемкий метод обучения из существующих: ни один ученик и ни один наставник не может остаться в стороне. "Мы учим детей говорить, а преподавателей – понимать их невнятную речь и невнятные мысли".

Пока я слушала Рукшина и наблюдала за его учениками, я пыталась сформулировать свое впечатление от этих занятий. Дети увлечены сильнее, чем я когда-либо видела на занятиях других математических, шахматных, спортивных секций, но и отношения между ними напряженней. Я потратила много месяцев на то, чтобы подобрать аналогию: занятия по методу Рукшина походят на сеансы групповой терапии.

Фокус в том, чтобы в конце концов каждый ребенок объяснил свое решение задачи всей группе. Математика для этих детей – самая увлекательная на свете вещь (иного Рукшин, похоже, и не приемлет). Они проводят большую часть своего свободного времени, размышляя над задачами, вкладывая в их решение всю свою энергию, все силы – совсем как добросовестный член анонимной группы взаимопомощи, который в перерывах между собраниями выполняет предписания тренера. На занятиях кружка дети открывают душу людям, которые так много значат для них, рассказывая о том, как они пришли к решению.

Не в этом ли кроется причина преподавательского успеха Сергея Рукшина? Как многие неуверенные в себе люди, он страдает то самоуничижением, то манией величия. Рукшин, только что уверявший меня, что он – посредственный математик, вдруг принимается рассказывать (в пятый раз за три дня), что ему предлагали пост в Министерстве образования в Москве и что он отказался. Он заявил мне несколько раз, что его методом вполне могут воспользоваться – и успешно пользуются – другие. По словам Рукшина, его ученики зарабатывают большие деньги, готовя участников математических олимпиад во всех постсоветских странах.

Но иногда Рукшин называет себя волшебником – и, похоже, всерьез в это верит: "Есть несколько стадий обучения. Сначала ты – ученик, подмастерье, как в средневековых цехах, потом – ремесленник, мастер. Потом идет стадия искусства. Но за ней есть и более высокая ступень, которую объяснить никак нельзя. Это стадия колдовства, некая магия".

Возможно, дело в том, что Рукшин всегда был больше увлечен своей работой, чем любой другой преподаватель. Да, он занимался кое-какими математическими исследованиями, но математика, кажется, всего лишь побочный продукт его главного дела – воспитания участников математических соревнований мирового уровня. Эта всепоглощающая страсть и в самом деле может выглядеть и ощущаться как магия.

Волшебникам для их ремесла нужен подходящий материал: податливый, пластичный. Рукшин, у которого по многим причинам не сложилась карьера преподавателя математики, брал под свою опеку не только потенциальных вундеркиндов, но и обычных детей, чтобы доказать – он может сделать из них математиков. Неудивительно, что его внимание привлек Гриша – не самый шумный или сообразительный, не стремящийся сильнее других к соперничеству, а самый восприимчивый.

Рукшин вспоминает, что далеко не сразу оценил мощь интеллекта Перельмана. Рукшин помогал работе жюри на некоторых районных математических олимпиадах в Ленинграде в 1976 году – просматривал листки с ответами 11 – 12– летних участников. В то время он искал детей со способностями к математике. Неписаные правила маткружков позволяли принимать учеников, но запрещали их переманивать. Поэтому начинающим тренерам, каким был Сергей Рукшин, приходилось искать себе учеников заблаговременно и интенсивно. Рукшину попали в руки ответы Перельмана. Они были правильными, и автор пришел к ним не всегда обычным путем. Рукшин решил, что олимпиадные задания оказались для Перельмана слишком простыми, и предположил, что у мальчика есть будущее. Поэтому когда профессор Натансон назвал в телефонном разговоре имя своего протеже, Рукшин вспомнил его. А увидев самого Перельмана, Рукшин убедился, что в мальчике есть нечто большее, чем математическое будущее. Он увидел залог исполнения собственной мечты стать лучшим преподавателем, которого когда-либо видел свет. Рукшин сделал ставку на Перельмана – наудачу, но в случае выигрыша его ждала особая награда: а что, если ребенок, который кажется не более талантливым, чем десятки других, превзойдет их всех?

"Когда дети изучают математику и у одного из них это получается лучше, чем у остальных, этот ребенок получает заметно больше внимания", – Александр Голованов знает, о чем говорит. Он не только провел почти все детство рядом с Перельманом, но и большую часть своей взрослой жизни отдал подготовке детей и подростков к математическим олимпиадам. Он – законный наследник Рукшина. Он объяснял мне, что это значит – иметь любимого ученика или быть таковым. Как и в обычных человеческих отношениях, любовь порождает преданность, преданность – отдачу, отдача – еще большую преданность и еще большую любовь: "Гриша был любимым учеником. Любимый ученик – это тот, с кем занимались больше других. На него потрачено больше сил".

Еще один важный аспект, по словам Голованова, заключается в том, что у любого тренера, готовящего участников математических олимпиад, есть "четкое понимание того, что он сделал, за что его стоит, а за что не стоит благодарить". "Скажем, есть дети, которые участвовали во Всероссийской математической олимпиаде три или четыре раза, и я могу сказать, что если бы не я их тренировал, то они съездили бы туда не три раза, а два. То есть моя помощь – не главная причина их успеха. А есть ученики, о которых я могу сказать: да, они добились победы благодаря мне. Это не означает, разумеется, что они были убогими, а я вложил им мозги в голову. Это означает – любовь. Это то, я думаю, что Рукшин испытывал к Грише", – объясняет Голованов.


    Ваша оценка произведения:

Популярные книги за неделю