355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Игорь Адабашев » Мировые загадки сегодня » Текст книги (страница 6)
Мировые загадки сегодня
  • Текст добавлен: 29 июля 2019, 02:00

Текст книги "Мировые загадки сегодня"


Автор книги: Игорь Адабашев


Жанры:

   

История

,

сообщить о нарушении

Текущая страница: 6 (всего у книги 22 страниц)

Непостижимость бесконечного, как раньше, так и теперь, доказывается ссылками на конечность человеческого опыта и человеческого разума.

Но определенная ограниченность знаний зависит от познания ограниченного количества явлений в конечной, реально доступной области пространства и времени.

Все это так. Еще Козьма Прутков говаривал, что нельзя объять необъятное. Но ведь новые и новые знания, пусть и полученные в ограниченном объеме, являются основанием для отвлеченного абстрактного мышления, анализа и обобщения и, в конечном итоге, дают новое знание.

Ф. Энгельс указывал, что положение о познании конечных предметов нуждается «… в дополнении: „по существу мы можем познавать только бесконечное“. И в самом деле, всякое действительное, исчерпывающее познание заключается лишь в том, что мы в мыслях поднимаем единичное из единичности в особенность, а из этой последней во всеобщность; заключается в том, что мы находим и констатируем бесконечное в конечном, вечное – в преходящем»[11]11
  Маркс К. и Энгельс Ф. Соч. – T. 20.– С. 548.


[Закрыть]
.

Поражаться надо не тому, что человек, живущий на планете Земля, не может сказать, что было множество миллиардов лет назад или что находится в бесконечных далях. Поражаться надо тому, что человек уже смог в столь многом разобраться. Силой своего разума познав световые и радиолучи, он ознакомился со многими звездными процессами, раздвинул границы изучаемого на фантастические расстояния, превосходящие в миллиарды раз расстояние, отделяющее его родную планету от Солнца.

Среди земных веществ значится гелий. В переводе с греческого это означает – солнце. Легкий благородный газ, применяемый для наполнения оболочек дирижаблей, сперва был открыт в спектре Солнца и лишь значительно позднее – в земном минерале клевеите (из группы уранинитов). Это поистине классический пример достоверности и надежности человеческих знаний о звездном небе. Оперируя с чем-то почти неосязаемым – лучом света или чуть уловимым радиошумом, – ученые умудряются проводить сложнейшие анализы и, основываясь на общности и взаимосвязанности законов природы, познавать процессы, происходящие на других планетах и звездах.

Не только открытие гелия подтверждает реальность получаемых таким путем знаний. Достаточно сказать, что два ведущих направления в развитии современной науки имеют в своей основе «звездный» фундамент. Это, во-первых, общая теория относительности А. Эйнштейна, объясняющая причины смещения небесного пути Меркурия; во-вторых, современное познание термоядерных процессов, многие тайны которых были «подсмотрены» в солнечных и звездных превращениях.

Наглядный пример возможностей человеческого познания и достоверности научных данных – открытие тайн Венеры. Чудесная утренняя звезда богини красоты, не потеряв своей прелести, давно превратилась в прозаичную планету, расположенную на совершенно конкретном месте небосвода: вторая планетарная орбита от Солнца, после Меркурия, перед Землей. Это ближайшая к нам планета. Близость, конечно, относительная, ибо речь идет о космических масштабах. В процессе движения по своим орбитам каждые полтора года Земля и Венера сближаются, и между ними остается всего лишь… 40 миллионов километров!

К величайшей досаде астрономов, атмосфера Венеры насыщена непрозрачными облаками, которые полностью скрывают поверхность планеты. Мы не будем останавливаться на всех этапах постепенного приподнимания чадры таинственности с небесной красавицы. Хотя сами по себе эти этапы очень интересны и наглядно демонстрируют постепенный рост технических возможностей со все большей точностью изучать столь далекий материальный объект. Отметим лишь, что уже в 20-х годах нашего века была определена температура поверхностного слоя венерианских облаков, а немного позднее – наличие в ее атмосфере большого количества углекислого газа. В 50-х годах началось изучение дециметровых и сантиметровых радиоизлучений Венеры. Они принесли интересные сведения – поверхность соседней планеты оказалась раскаленной до 250–300 градусов! Олово на ней текло бы жидкими ручьями. Накопленные данные оптических и радиоастрономических наблюдений, анализ спектроскопических и других материалов, рассмотренные с точки зрения общих закономерностей природы, позволили ученым определить температуру поверхности планеты и атмосферы на различных уровнях, прийти к выводу о высокой плотности ее, установить химический состав атмосферы и высчитать ее истинный диаметр.

Как вы знаете, наши ученые и специалисты США успешно запустили к Венере, а затем и на саму поверхность этой планеты очень надежные космические аппараты.

Качественно это был как бы старт нового этапа непосредственного изучения дальних космических тел. Но вот что интересно: полученные данные непосредственных измерений в общем-то подтвердили все то, что ученые смогли выяснить и предположить раньше, проводя исследования с Земли.

В 1982 году на новом, более высоком научно-техническом уровне планета была исследована советской автоматической станцией «Венера-13». Атмосферное давление на уровне грунта оказалось равным 89 атмосферам, а температура – плюс 457 градусов. Была успешно проведена передача цветных панорамных изображений окружающей местности. Станция произвела ювелирную работу по взятию проб грунта для определения его элементарного состава. Замечательный научный эксперимент с большой убедительностью и точностью еще раз показал принципиальное единство планет и явился новым подтверждением правильности теоретических прогнозов, достоверности наших представлений о процессах и явлениях, происходящих на других небесных телах.

Наглядным примером создания фантастически сложной исследовательской аппаратуры, работающей в чрезвычайно тяжелой обстановке, является советская космическая обсерватория «Астрон». На ее борту действует самый крупный орбитальный ультрафиолетовый телескоп. Его длина – пять метров, а диаметр трубы – около метра. Космическая обсерватория выведена на далекую орбиту, с удалением от Земли до 200 тысяч километров, таким образом, мощный инструмент науки занесен так далеко в космос, что практически достигнута полная изоляция от нашей планеты, в основном, от ее атмосферы.

Академик А. Северный объяснил в 1984 году, что космическая станция позволила совсем по-новому увидеть и, что более важно, точно зафиксировать многие объекты. При помощи «Астрона» произведены исследования двадцати галактик, многих двойных звезд, а также сверхдальних звезд и квазаров.

Подобная космическая аппаратура может открывать (и открывает) интересующие нас состояния вещества. Так, например, в созвездии Дракона обнаружена звезда с абсолютно невиданной ранее химической аномалией. В составе этой небольшой звездочки, которую ранее не удавалось увидеть с Земли, обнаружено очень много свинца и вольфрама, а урана – в сотни раз больше, чем в Солнце! Эти новые данные пока что трудно «увязать» с нашими сегодняшними представлениями о происхождении тяжелых элементов в космосе.

Внеатмосферные наблюдения двойных звезд показали, что второй компонент их (у двойных звезд первый компонент – холодная карликовая звезда) имеет температуру около ста тысяч градусов при диаметре в сто раз меньше солнечного. Тут также приоткрывается невиданное новое явление, ибо такая крошечная звездочка не может иметь столь высокую температуру (по крайней мере, длительное время).

Видимо, здесь мы имеем дело с аккрецией материи. Ее суть состоит в том, что вещество, выброшенное одной звездой, захватывается другой под действием силы гравитации. «Падая», вещество сталкивается с газами, окружающими звездочку-соседку, при этом сильно разогревается, – происходит преобразование гравитационной энергии в энергию излучения. Последние данные говорят о том, что процессы аккреции очень распространены во Вселенной и сопровождаются огромными энерговыделениями.

За год успешной работы «Астрона» (1983–1984) сделано много открытий, однако одно из них особо важно, ибо имеет прямое мировоззренческое значение. Наблюдения достоверно показали, что так называемые горячие звезды выбрасывают вещество с огромными скоростями, превышающими порой тысячу километров в секунду. За крошечный отрезок времени успевает истечь масса в несколько миллиардов тонн. При этом выброс тем больший, чем выше температура звезды. «Этот факт, – писал академик А. Северный, – представляется ключевым для понимания процесса образования газопылевых туманностей в нашей галактике. Из них затем вновь образуются звезды, что позволяет объяснить круговорот вещества во Вселенной».

Уже сегодня мы заглянули чрезвычайно далеко, хотя сами не представляем, насколько далеко. Ведь только в своем «квартале» – в нашей Галактике луч света, пролетая от одного ее края до другого, затрачивает ровно тысячу веков. Теперь попробуйте представить себе размеры Галактики, сопоставив величественную тысячу веков с одним крошечным часом, в течение которого свет успевает преодолеть круглым счетом миллиард километров!

Если трудно наглядно представить себе размеры «родной» Галактики, то как же быть с Метагалактикой, в которую чуть ли не на правах крошечной песчинки входит вся наша Галактика?

Но ведь ранее известные границы нашей Метагалактики не предел. Уже сегодня приборы и научные методы, разработанные людьми, позволяют уловить свет от крошечных голубеньких звездочек, каждая из которых по мощности и массе превышает несколько галактик. Свет от них идет к нам многие миллиарды лет.

Сто тысяч и десятки миллиардов световых лет – вот соотношение расстояний, определяющих размеры нашей Галактики и всего участка Вселенной, который пока удалось увидеть человеку. Кстати, свет далеких галактик идет так долго, что за все время существования человечества он успел преодолеть не более 0,1 процента общего расстояния.

Сверхдальние крошечные звездочки, обнаруженные пока что на «самых глухих окраинах» Вселенной, получили название «квазаров», или, точнее, «квазизвездных источников». Термин расшифровывается в том смысле, что имеется дело с точечным источником радиоволн и световых излучений, похожим на звезды, но не являющимся звездой.

Довольно яркие голубенькие звездочки, примерно 13-й астрономической величины (по этой условной шкале наиболее слабые звезды, видимые невооруженным глазом, имеют 6-ю величину), можно рассмотреть даже в самодельные телескопы. Звезда как звезда – ничего о ней не скажешь.

Гром научной сенсации разразился весной 1963 года, когда голландский астроном М. Шмидт установил чрезвычайно сильное смещение спектральных линий водорода и других элементов подобной звездочки в «красную сторону», то есть в сторону длинных волн. Вы, наверное, помните хорошо известный «эффект Допплера», показавший, что у любого источника, удаляющегося от наблюдателя, происходит смещение спектральных линий в красную сторону. При этом смещение тем значительнее, чем быстрее удаляется источник излучения.

Так вот, у квазара это смещение было столь большим, что его мог дать лишь небесный источник, удаляющийся от нас с огромной скоростью, превышающей 50 тысяч километров в секунду! Но ведь звездочка хорошо видна даже в слабенький телескоп. Выход прост: квазары находятся от нас на огромных расстояниях, и то, что кажется крошечной звездочкой, по-видимому, является скоплением массы, равной миллиардам звезд. Светимость квазаров достигает 1048 эрг/с, и это самая большая светимость, наблюдаемая в природе. Она в 10 тысяч раз больше, чем светимость всей нашей Галактики. Лишь невероятная отдаленность от Земли превращает для нас этот источник излучения в слабую точку.

Видимая часть Вселенной сразу увеличилась на чрезвычайно большой объем. Но гром научной сенсации был не только в этом. Человечество столкнулось с неподдающимся воображению сверхгигантским скоплением вещества, удаленным от нас на фантастически далекие расстояния. Именно сверхгигантские объемы позволяют вообще увидеть эти объекты.

Все дальнейшие исследования (а сейчас уже известно более 400 квазаров) подтвердили первые предположения. Расстояние до этих странных тел достигают многих миллиардов световых лет.

Теперь складывается впечатление, что мы имеем дело с ядрами, образующимися в центрах некоторых галактик, то есть в совокупности огромного количества звезд и газа. Эти ядра фантастически огромны – их диаметр достигает 1017 сантиметра (для сравнения – диаметр Земной орбиты равен «всего лишь» 3·1013 см), а общая масса равна 108– 109 массы Солнца. Это всего в тысячу раз меньше, чем масса всей Галактики.

Но вот новая загадка. Интенсивность блеска квазаров меняется в течение месяцев, а порою даже и дней. В чем дело? Если каждый квазар – огромное скопление звезд в необычном для нашей Галактики состоянии, то вряд ли они могли бы все одновременно, словно по команде, мерцать. Но если это не скопление звезд, то получается, что квазар какое-то единое, ранее людям неведомое небесное тело с массой, в миллиарды раз больше солнечной.

Но тогда мы не должны… видеть квазары! Дело в том, что, согласно общей теории относительности, небесное тело с массой, в сто и больше раз превышающей солнечную, должно испытывать такое огромное взаимное притяжение своей материи, что вся ее масса должна стремительно сжаться к центру, как бы «сплющиться» – должен произойти взрыв «обратно». При этом гравитационное поле должно стать столь мощным, что из его «объятий» не сможет вырваться никакое излучение.

Как же вырывается свет квазаров? Почему мы их видим и отчего происходит эта странная пульсация? Может быть, именно в ней-то и разгадка… Может быть, именно в те моменты, когда гравитация разжимает свои объятия, вырывается световой луч? Тогда, возможно, вместо «взрыва к центру» происходят обычные взрывы, разбрасывающие массу квазара.

А может быть, «там» вообще нет гравитации, действуют неизвестные нам закономерности природы и вообще материя находится совсем в ином виде: и не поле и не вещество?..

Впрочем, возможны и другие объяснения. Так, известный советский ученый академик В. Л. Гинзбург считает квазары колоссальными скоплениями раскаленного газа, пронизанными магнитными полями. Ядро квазара – «магнитоид» – более плотная раскаленная плазма, в которой в строго определенных магнитных «берегах» циркулируют упорядоченные гигантские реки плазмы.

Сочетание регулярных течений и порождаемых ими хаотических движений плазмы возбуждает колоссальное количество необычайно ускоренных элементарных частиц, резкое торможение которых в магнитных полях как раз и рождает столь фантастические по мощности излучения квазаров. При этом становятся понятными и периодические мерцания: они связаны с течениями плазменных рек. Гипотеза интересна, хотя и при этой модели остается много нерешенных вопросов.

Во-первых, откуда взялось сверхгигантское скопление плазмы и почему она в форме квазаров, подобно всем галактикам, стремительно удаляется от некоего первичного пункта? Впрочем, признает сам академик В. Гинзбург, возможно, квазары – это гигантские своеобразные черные дыры, порожденные заканчивающими свою эволюцию сверхгигантскими звездами (а возможно, и отдельными галактиками).

Напомним читателям, что под черными дырами подразумеваются огромные массы вещества, сжавшиеся настолько сильно, что в их возросшем поле тяготения вторая космическая скорость (которая способна, преодолев силу тяготения, вывести любое тело и дать ему улететь в бесконечность) превышает скорость света. Но поскольку ничто в природе не может двигаться быстрее света, то из черной дыры ничто и не может вырваться.

Теперь главное состоит в том, чтобы выяснить природу «кернов» – сердцевин квазаров различными путями наблюдений, в частности, изучая изменения интенсивности излучения. Наука вооружается все более совершенными способами и методами. Например, развивающаяся нейтринная астрономия с ее высокими энергиями. Уже сегодня потоки нейтрино, идущие из центральных областей некоторых звезд, доступны наблюдениям и работают подземные нейтринные телескопы.

Так или иначе мы столкнулись с принципиально новыми явлениями, наглядно подтверждающими всю правоту ученых-материалистов о неисчерпаемости форм превращения материи и их положения о бесконечности Вселенной, которую нельзя свести к чему-то ограниченному.

Если у читателя сложилось представление, что квазары находятся вне пределов Метагалактики, то это не так. Эти сверхдалекие небесные образования все же, видимо, находятся внутри нее, хотя границы самой Метагалактики еще не определены.

Общая теория относительности в определенной мере позволяет представить и другие теоретически возможные миры. При этом в различных условиях объективного существования будут выявляться различные неведомые пока закономерности проявления материального мира. Согласно принципу Дирака, все, что не противоречит законам природы, существует где-нибудь во Вселенной.

Человеческий разум шагнул так далеко, что, используя закономерности Вселенной, нашедшие отражение в общей теории относительности А. Эйнштейна, в частности познав закономерность кривизны пространства, смог даже примерно определить границы и объем той части Вселенной, в которой материя проявляет свои основные свойства в известных нам формах поля и вещества. Так, по расчетам советского ученого Н. С. Кардашева, радиус «нашей Вселенной равен примерно 15 миллиардам световых лет, а ее полная масса – 1056 грамма». Иными словами, радиус равен 13 460 миллиардам километров, а общий вес 100 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 тонн!

Огромная масса материи, проявляющаяся в определенных закономерностях, образующая туманности, звезды, планеты, жизнь и нас с вами – людей! Ближе к окраинам этого многотысячемиллиардного шара мы начинаем уже открывать все большее количество странных процессов – квазары тому пример. Кстати, квазарами далеко не исчерпываются загадочные явления, открывающиеся людям по мере их проникновения в более отдаленные части космоса. Например, установлено, что среди объектов, находящихся в очень отдаленных районах пространства, есть «странные» галактики, сильно отличающиеся по своим физическим свойствам от уже известных. В честь советского ученого, открывшего их в Бюраканской обсерватории, они называются галактиками Маркаряна. В последние годы удалось установить, что мощные потоки радиоизлучений от галактик Маркаряна «прорисовывают» не только их «центры-сгустки», но и «ветви», расположенные по обеим сторонам от центральной части. А это свидетельствует о мощных выбросах вещества из сверхплотной ядерной области.

Первый вывод состоит в том, что обнаруженные сгустки – это и есть сверхгигантские области ионизированного водорода, очаги первичного возникновения звезд в невиданных доселе масштабах. Эти образования, по космическим понятиям, совсем молоды. В «галактиках со сгустками» должны появиться новые звезды с массой, в 10 и более раз превышающей массу Солнца. Такие звезды неустойчивы.

В конце 60-х годов были, наконец, открыты (теоретически предсказанные еще в 1934 году) пульсары – космические источники импульсного электромагнитного излучения. Импульсы от них продолжаются в периоде от сотых долей до сотен секунд. Сейчас (1985 год) известно несколько сот различных пульсаров.

Радиопульсары отождествляются с быстро вращающимися нейтронными звездами. У них имеется активная область излучения, появляющаяся через точные промежутки времени, равные периоду вращения звезды.

Интересным является изучение самих нейтронных звезд, в первую очередь – вещества, из которого они состоят. Нейтрон (от латинского – ни тот ни другой!) – тяжелая нейтральная элементарная частица, образующая вместе с положительно заряженным протоном атомные ядра.

Если бы удалось, приложив невероятно большие усилия, «раздавить» ядра и образовать вещество, состоящее в основном из одних нейтронов, то плотность такого вещества составила бы 100 тысяч тонн в одном кубическом миллиметре.

Средний радиус нейтронной звезды – 20 километров. В этом суперплотном шаре впрессована процессом гравитационного коллапса масса вещества, равная Солнцу, а иногда и более крупных звезд.

Изучение нерегулярности пульсаций позволило ученым-теоретикам «проникнуть» в недра нейтронных звезд. Здесь открывается много загадок Вселенной, но, пожалуй, самым заманчивым является дальнейшее познание аккреции гравитационного захвата вещества и падения его на космическое тело под действием гравитационных сил. С этим явлением связаны большие успехи в изучении черных дыр, пожалуй, самых экзотичных небесных тел. Они долго не поддавались изучению, и, как вы знаете, тому были веские причины: черная дыра потому и черная, что цепко держит у своей поверхности любое излучение. Вот тут-то и приходит на выручку познание аккреции. Ведь «падение» вещества на черную дыру может быть обнаружено по излучению самого приближающегося вещества, конечно, на определенном, довольно большом расстоянии. Поведение этих потоков, в сочетании с различными другими явлениями в космосе, имеет важное значение для разгадки небесных тайн.

Вспомним, что вблизи черных дыр гравитационное поле очень сильно, и это полностью соответствует общей теории относительности А. Эйнштейна. Действительно, черная дыра образуется при неограниченном гравитационном сжатии массивных космических тел.

В обычном, так сказать, бытовом понимании черные дыры, по крайней мере, некоторые из них, оказались и не совсем «черными». На предыдущих страницах мы попытались кратко рассказать, как в полном соответствии с общей теорией относительности происходит поглощение вещества. Черная дыра действительно должна поглощать все приближающееся к ней. Давно известно, что полное поглощение возможно только при температуре абсолютного нуля, а на практике (установлено в 1974 году) по ряду причин, в которые мы не будем углубляться, температура всегда и всюду несколько выше – поэтому в «дырах» нет абсолютного поглощения.

Наше время не без оснований называют «золотым веком» или «второй астрономической революцией» – после коперниканско-галилеевской. Выдающиеся открытия существенно изменили представления о Вселенной. Квазары и пульсары, черные дыры, «взрывающиеся» ядра галактик, реликтовое излучение – это лишь некоторые из «новостей» об окружающем нас безграничном космосе, во многом познанные в последние 10–15 лет.

Практически граница известной людям Вселенной все время расширялась. Когда-то это была плоская, неподвижная, маленькая земля, кончающаяся у горизонта, от которого, словно край голубого колпака, начиналось твердое небо – «небесная твердь». Вы, конечно, помните известную по многочисленным публикациям иллюстрацию, составленную по рассказу благочестивого средневекового монаха, которого будто бы бог сподобил найти «край земли», причем ему даже было позволено просунуть голову в «трещину небесной тверди» и посмотреть, что находится за нею. Мало того, монах даже проткнул небо своим посохом! При этом монах уверял, что за твердым хрустальным небом он якобы лично увидел «воды неба», которые периодически, когда «разверзаются хляби небесные», выливаются в виде дождя через ситообразные или окнообразные отверстия в небе. На внутренней же поверхности твердого неба подвешены, словно фонарики, звезды. По небу движутся для дневного освещения земли Солнце, для ночного Луна. Таким образом, Вселенная, все ее галактики, метагалактики и сверхдальние таинственные квазары, по библейским представлениям, должны вместиться в крошечное расстояние от горизонта до горизонта…

Прочитайте этот кусочек современному священнику – тот рассмеется.

«Ну что вы хотите от безграмотного монаха, жившего доброе тысячелетие до нас, – так примерно начнет он. – Это все выдумки, суеверия людей, плохо знавших окружающий мир. В священных текстах Библии, написанных святыми по божьему внушению, ничего подобного нет…»

Да, конечно, монах был неграмотным. Его представления о мире, как и его современников, были самыми элементарными, исходившими из непосредственных ощущений. Люди невольно должны были когда-то прийти и в действительности пришли к простой мысли – о двойственности мира, разделении его на небо вверху и землю внизу. Они не могли представить, что что-то, будь то камень или Солнце, может не падать, а висеть просто так – ни на чем! И придумали – твердое небо. Они знали, что вода льется через отверстия, решили, что в твердом небе должны быть для этого окна.

Так что не надо смеяться над неизвестным монахом. Он лишь повторял то, что долгие века было общепризнанным и казалось неопровержимым. Правда, он расцветил эту картину мира художественными деталями вроде трещины в небесной тверди или посоха, проткнувшего небо.

Понятно, что в Библии мир изображен именно таким, как он представлялся людям, а представлялся он, в большинстве случаев, искаженно, с большой дозой фантазии. Поскольку Библия ставила перед собой определенные цели, сводила все и вся к сверхъестественным божественным силам, к защите определенных политических и связанных с ними нравственно-этических принципов, то и воспринимали авторы Библии господствовавшие в их времена многочисленные эмпирические представления через определенную призму взглядов. Отсюда туманность, искажения, противоречия, так часто встречающиеся в этих «святых книгах».

Конечно, туманности и противоречия, которыми полна Библия, объясняются и многими другими причинами. Тут и различие древних мифов и сказаний многих народов, тут и противоречивый подход к важнейшим вопросам жизни и миропонимания, объясняемый тем, что Библия создавалась не один год, а на протяжении веков. Наконец, и просто ошибки, бессмысленные места, вызванные неточными переводами и переписками. Именно путаница, туманность формулировок – тот спасительный якорь, всячески используя который современные богословы пытаются спасти от полной катастрофы обветшалые религиозные догмы.

Эти уловки удаются далеко не всегда. Кроме туманностей и абсурдных фраз, в библейских книгах много совершенно ясных и четких формулировок, в которых отражено мировоззрение наших далеких предков. Так, в частности, вопреки широко пропагандируемому современными священниками мнению, обстоит дело с «творением мира» и устройством Вселенной. Посудите сами.

Откроем первую страницу книги Бытие и прочтем 7-й и 8-й стихи: «И создал бог твердь, и отделил воду, которая над твердью, от воды, которая под твердью. И стало так. И назвал бог твердь небом. И был вечер, и было утро; день второй».

Как видите, монах ничего не придумал. Для своего времени он был вполне образованным человеком и верил в ту же твердь и те же небесные воды, что и авторы Библии.

Но может быть, «твердь» – это все-таки не твердое небо? Логика всего описания совершенно ясно говорит за то, что под твердью подразумевается непроницаемое небо – перегородка вроде дна чана, в котором хранится вода, «которая над твердью». И все же в наши дни нашлись спасители религии, утверждающие, что якобы понимание тверди, как непроницаемого твердого неба, неправильно и не соответствует «смыслу» Библии. Ну что же, мы можем их отправить к другому тексту Библии, к книге Иова: «…небеса, твердые, как литое зеркало…» (Иов, 37, 18).

Согласно Библии, и это, как и в случае с твердью, записано ясно и четко, бог на четвертый день творения поместил на твердом небе Солнце, «чтобы светить на Землю», и Луну, и звезды «для управления ночью». При этом, правда, получается небольшой конфуз. Дело в том, что по Библии уже трижды «и был вечер, и было утро» и в первый день творения бог сказал известную крылатую фразу: «Да будет свет. И стал свет». Но по рассеянности бог только на четвертый день установил на тверди звезды, Луну и Солнце. Подчеркиваем еще раз, по Библии они установлены именно для того… чтобы светить на Землю.

Что светило первые три дня? Откуда брались утра и вечера, неизвестно.

Итак, «вот происхождение неба и земли, при сотворении их, в то время, когда господь бог создал землю и небо» (Бытие, 2, 4). Конечно, сегодня, когда границы научно познаваемой Вселенной расширяются до миллиардов световых лет, когда в век космических ракет, современной физики и химии, оснащенных мощнейшими и точнейшими приборами, человек располагает неопровержимыми знаниями устройства земной атмосферы, солнечной системы и звездного неба, защитникам религии приходится трудно сохранять свои позиции.

Церковники и не пытаются теперь оспаривать неопровержимые данные науки. Они, вопреки порой даже совершенно четким формулировкам Библии и других «священных книг», стремятся извратить смысл священного писания, произвольно истолковывать библейские тексты применительно к новым открытиям. Характерна в этом смысле книга «Честность по отношению к Богу», изданная в 1964 году. Она принадлежит перу английского епископа Джона Робинсона. В этой книге высокообразованный и умный защитник религии пытается приспособить ее к современному уровню мышления культурных людей, понятно, не верящих в божественное творение Земли, непорочное зачатие, загробную жизнь или «твердое небо». В своей книге епископ вынужден констатировать: «Мы стоим на пороге эры, когда будет все труднее защищать христианскую веру. Особенно в век космических исследований, разрушающих представление о боге, сидящем „где-то там, наверху“».

Мы заглянули краешком глаза в самые запутанные «научные дебри», в центре которых вырастают, кустясь ветвями новых представлений и вновь открытых законов, человеческие знания о материи и энергии – двух первых, якобы непознаваемых, мировых загадках. Мы увидели, что человеческий разум, преодолев бурелом препятствий и сотни ложных путей, постиг ту великую истину, что в мире нет ничего, кроме материи и ее свойств, что материя – единая первооснова всего мира, порождающая все конкретные вещи и явления, никем и ничем не сотворенная, вечная и неуничтожимая.

Великие завоевания науки позволяют надеяться, что со временем человеческий разум поймет наиболее существенные линии развития и главные закономерности всей Вселенной в целом. Это знание постепенно складывается из достижений конкретных наук, изучающих Землю и воспринимаемую нами часть Вселенной, ибо нельзя понять и познать общего, не изучив его проявлений в отдельном. Но, с другой стороны, постепенное раскрытие наиболее общих закономерностей материи будет помогать людям правильно познавать любые конкретные проблемы.

Все, что существует, рано или поздно может быть познано.




    Ваша оценка произведения:

Популярные книги за неделю