Текст книги "Полное руководство. С# 4.0"
Автор книги: Герберт Шилдт
Жанр:
Программирование
сообщить о нарушении
Текущая страница: 42 (всего у книги 58 страниц)
Объявленные методы расширения вызываются для объекта таким же образом, как и методы экземпляра. Главное отличие заключается в том, что вызывающий объект передается первому параметру метода расширения. Поэтому при выполнении выра жения val.AbsDivideBy(-2)
объект val передается параметру n метода расширения AbsDivideBy(), а значение -2 – параметру d.
Любопытно, что методы расширения Reciprocal() и AbsDivideBy() могут вполне законно вызываться и для литерала типа double, как показано ниже, посколь ку они определены для этого типа данных. 8.0.Reciprocal() 8.0.AbsDivideBy(-1)
Кроме того, метод расширения RevCase() может быть вызван следующим образом. "AbCDe".RevCase()
В данном случае возвращается строковый литерал с измененным на обратный регистром букв. PLINQ
В версии .NET Framework 4.0 внедрено новое дополнение LINQ под названием PLINQ. Это средство предназначено для поддержки параллельного программирова ния. Оно позволяет автоматически задействовать в запросе несколько доступных про цессоров. Подробнее о PLINQ и других средствах, связанных с параллельным програм мированием, речь пойдет в главе 24.
ГЛАВА 20. Небезопасный код, указатели, обнуляемые типы и разные ключевые слова
В этой главе рассматривается средство языка С#, ко торое обычно захватывает программистов врасплох. Это небезопасный код. В таком коде зачастую ис пользуются указатели. Совместно с небезопасным кодом указатели позволяют разрабатывать на C# приложения, которые обычно связываются с языком C++, высокой про изводительностью и системным кодом. Более того, благода ря включению небезопасного кода и указателей в состав C# в этом языке появились возможности, которые отсутствуют в Java.
В этой главе рассматриваются также обнуляемые типы, определения частичных классов и методов, буферы фикси рованного размера. И в заключение этой главы представ лен ряд ключевых слов, не упоминавшихся в предыдущих главах. Небезопасный код
В C# разрешается писать так называемый "небезопас ный" код. В этом странном на первый взгляд утвержде нии нет на самом деле ничего необычного. Небезопасным считается не плохо написанный код, а такой код, который не может быть выполнен под полным управлением в об щеязыковой исполняющей среде (CLR). Как пояснялось в главе 1, результатом программирования на C# обычно яв ляется управляемый код. Тем не менее этот язык програм мирования допускает написание кода, который не выпол няется под полным управлением в среде CLR. Такой неу правляемый код не подчиняется тем же самым средствам управления и ограничениям, что и управляемый код, и называется он небезопасным потому, что нельзя никак проверить, не выполняет ли он какое-нибудь опасное дей ствие. Следовательно, термин небезопасный совсем не означает, что коду присущи какие-то изъяны. Это просто означает, что код может выполнять действия, которые не подлежат контролю в управляемой среде.
Если небезопасный код может вызвать осложнения, то зачем вообще создавать та кой код? Дело в том, что управляемый код не позволяет использовать указатели. Если у вас имеется некоторый опыт программирования на С или C++, то вам должно быть известно, что указатели представляют собой переменные, предназначенные для хра нения адресов других объектов, т.е. они в какой-то степени похожи на ссылки в С#. Главное отличие указателя заключается в том, что он может указывать на любую об ласть памяти, тогда как ссылка всегда указывает на объект своего типа. Но поскольку указатель способен указывать практически на любую область памяти, то существует большая вероятность его неправильного использования. Кроме того, используя ука затели, легко допустить программные ошибки. Именно поэтому указатели не под держиваются при создании управляемого кода в С#. А поскольку указатели все-таки полезны и необходимы для некоторых видов программирования (например, утилит системного уровня), в C# разрешается создавать и использовать их. Но при этом все операции с указателями должны быть помечены как небезопасные, потому что они выполняются вне управляемой среды.
В языке C# указатели объявляются и используются таким же образом, как и в C/C++. Если вы знаете, как пользоваться ими в C/C++, то вам нетрудно будет сделать это и в С#. Но не забывайте, что главное назначение C# – создание управляемого кода. А спо собность этого языка программирования поддерживать неуправляемый код следует использовать для решения лишь особого рода задач. Это, скорее, исключение, чем правило для программирования на С#. По существу, для компилирования неуправ ляемого кода следует использовать параметр компилятора /unsafe.
Указатели составляют основу небезопасного кода, поэтому мы начнем его рассмо трение именно с них. Основы применения указателей
Указатель представляет собой переменную, хранящую адрес какого-нибудь другого объекта, например другой переменной. Так, если в переменной х хранится адрес пере менной у, то говорят, что переменная х указывает на переменную у. Когда указатель указывает на переменную, то значение этой переменной может быть получено или изменено по указателю. Такие операции с указателями называют непрямой адресацией. Объявление указателя
Переменные-указатели должны быть объявлены как таковые. Ниже приведена об щая форма объявления переменной-указателя: тип* имя_переменной;
где тип обозначает соотносимый тип, который не должен быть ссылочным. Это озна чает, что в C# нельзя объявить указатель на объект определенного класса. Соотноси мый тип указателя иногда еще называют базовым. Обратите внимание на положение знака * в объявлении указателя. Он должен следовать после наименования типа. А имя_переменной обозначает конкретное имя указателя-переменной.
Обратимся к конкретному примеру. Для того чтобы сделать переменную ip указа телем на значение типа int, необходимо объявить ее следующим образом. int* ip;
А указатель типа float объявляется так, как показано ниже. float* fp;
Вообще говоря, если в операторе объявления после имени типа следует знак *, то это означает, что создается переменная типа указателя.
Тип данных, на которые будет указывать сам указатель, зависит от его соотносимого типа. Поэтому в приведенных выше примерах переменная ip может служить для ука зания на значение типа int, а переменная fp – для указания на значение типа float. Следует, однако, иметь в виду, что указателю ничто не мешает указывать на что угодно. Именно поэтому указатели потенциально небезопасны.
Если у вас есть опыт программирования на С/С++, то вы должны ясно понимать главное отличие в объявлении указателей в C# и C/C++. При объявлении указателя в C/C++ знак * не разделяет список переменных в объявлении. Поэтому в следующей строке кода: int* р, q;
объявляется указатель р типа int и переменная q типа int. Это равнозначно двум следующим объявлениям. int* р; int q;
А в C# знак * является разделительным, и поэтому в объявлении int* р, q;
создаются две переменные-указателя. Это равнозначно двум следующим объявлениям. int* р; int* q;
Это главное отличие следует иметь в виду при переносе кода C/C++ на С#. Операторы * и & в указателях
В указателях применяются два оператора: * и &. Оператор & является унарным и возвращает адрес памяти своего операнда. (Напомним, что для унарного оператора требуется единственный операнд.) Например, в следующем фрагменте кода: int* ip; int num = 10; ip = #
в переменной ip сохраняется адрес памяти переменной num. Это адрес расположения переменной num в оперативной памяти компьютера. Он не имеет никакого отноше ния к значению переменной num. Поэтому в переменной ip содержится не значение 10, являющееся исходным для переменной num, а конкретный адрес, по которому эта переменная хранится в оперативной памяти. Операцию & можно рассматривать как возврат адреса той переменной, перед которой она указывается. Таким образом, при веденное выше присваивание словами можно описать так: "Переменная ip получает адрес переменной num.
Второй оператор, *, является дополнением оператора &. Этот унарный оператор на ходит значение переменной, расположенной по адресу, на который указывает его опе ранд. Следовательно, этот оператор обращается к значению переменной, на которую указывает соответствующий указатель. Так, если переменная ip содержит адрес памяти переменной num, как показано в предыдущем примере, то в следующей строке кода: int val = *ip;
в переменной val сохраняется значение 10 переменной num, на которую указывает переменная ip. Операцию * можно рассматривать как получение значения по адресу. Поэтому приведенный выше оператор присваивания описывается словами следую щим образом: "Переменная val получает значение по адресу, хранящемуся в пере менной ip."
Оператор * можно использовать также в левой части оператора присваивания. В этом случае он задает значение, на которое указывает соответствующий указатель, как в приведенном ниже примере. *ip = 100;
В данном примере значение 100 присваивается переменной, на которую указывает переменная ip, т.е. переменной num. Поэтому приведенный выше оператор присваи вания описывается словами следующим образом: "Разместить значение 100 по адресу, хранящемуся в переменной ip." Применение ключевого слова unsafe
Любой код, в котором используются указатели, должен быть помечен как небезо пасный с помощью специального ключевого слова unsafe. Подобным образом мож но пометить конкретные типы данных (например, классы и структуры), члены класса (в том числе методы и операторы) или отдельные кодовые блоки как небезопасные. В качестве примера ниже приведена программа, где указатели используются в методе Main(), помеченном как небезопасный. // Продемонстрировать применение указателей и ключевого слова unsafe. using System; class UnsafeCode { // Пометить метод Main() как небезопасный. unsafe static void Main() { int count = 99; int* p; // создать указатель типа int p = &count; // поместить адрес переменной count в переменной р Console.WriteLine("Исходное значение переменной count: " + *р); *р = 10; // присвоить значение 10 переменной count, // на которую указывает переменная р Console.WriteLine("Новое значение переменной count: " + *р); } }
Эта программа дает следующий результат. Исходное значение переменной count: 99 Новое значение переменной count: 10 Применение модификатора fixed
В работе с указателями нередко используется модификатор fixed, который препят ствует удалению управляемой переменной средствами "сборки мусора". Потребность в этом возникает, например, в том случае, если указатель обращается к полю в объекте определенного класса. А поскольку указателю ничего не известно о действиях системы "сборки мусора", то он будет указывать не на тот объект, если удалить нужный объект. Ниже приведена общая форма модификатора fixed: fixed (тип* р = &фиксированный_объект) ( // использовать фиксированный объект }
где р обозначает указатель, которому присваивается адрес объекта. Этот объект будет оставаться на своем текущем месте в памяти до конца выполнения кодового блока. В качестве адресата оператора fixed может быть также указано единственное выраже ние, а не целый кодовый блок. Модификатор fixed допускается использовать только в коде, помеченном как небезопасный. Кроме того, несколько указателей с модифика тором fixed могут быть объявлены списком через запятую.
Ниже приведен пример применения модификатора fixed. // Продемонстрировать применение оператора fixed. using System; class Test { public int num; public Test(int i) { num = i; } } class FixedCode { // Пометить метод Main() как небезопасный. unsafe static void Main() { Test о = new Test(19); fixed (int* p = &o.num) { // использовать модификатор fixed для размещения // адреса переменной экземпляр о.num в переменной р Console.WriteLine("Исходное значение переменной о.num: " + *р); *р = 10; // присвоить значение 10 переменной count, // на которую указывает переменная р Console.WriteLine("Новое значение переменной о.num: " + *р); } } }
Вот к какому результату приводит выполнение этой программы. Исходное значение переменной о.num: 19 Новое значение переменной о.num: 10
В данном примере модификатор fixed препятствует удалению объекта о. А по скольку переменная р указывает на переменную экземпляра о.num, то она будет ука зывать на недостоверную область памяти, если удалить объект о. Доступ к членам структуры с помощью указателя
Указатель может указывать на объект типа структуры при условии, что структура не содержит ссылочные типы данных. Для доступа к члену структуры с помощью ука зателя следует использовать оператор-стрелку (->), а не оператор-точку (.). Напри мер, доступ к членам структуры struct MyStruct { public int a; public int b; public int Sum() { return a + b; } }
осуществляется следующим образом. MyStruct о = new MyStruct(); MyStruct* p; // объявить указатель p = &o; p->a = 10; // использовать оператор -> p->b = 20; // использовать оператор -> Console.WriteLine("Сумма равна " + p->Sum()); Арифметические операции над указателями
Над указателями можно выполнять только четыре арифметические операции: ++, –, + и -. Для того чтобы стало понятнее, что именно происходит в арифметических операциях над указателями, рассмотрим сначала простой пример. Допустим, что пе ременная p1 является указателем с текущим значением 2000, т.е. она содержит адрес
После выполнения выраженияp1++; переменная p1 будет содержать значение 2004, а не 2001! Дело в том, что после каждого инкрементирования переменная p1 указывает на следующее значение типа int. А по скольку тип int представлен в C# 4 байтами, то в результате инкрементирования зна чение переменной p1 увеличивается на 4. Справедливо и обратное: при каждом декре ментировании переменной p1 ее значение уменьшается на 4. Например выражениеp1–; приводит к тому, что значение переменной p1 становится равным 1996, если раньше оно было равно 2000!
Все сказанное выше можно обобщить: после каждого инкрементирования указа тель будет указывать на область памяти, где хранится следующий элемент его соот носимого типа, а после каждого декрементирования указатель будет указывать на об ласть памяти, где хранится предыдущий элемент его соотносимого типа. Арифметические операции над указателями не ограничиваются только инкремен тированием и декрементированием. К указателям можно добавлять и вычитать из них целые значения. Так, после вычисления следующего выражения: p1 = p1 + 9;
переменная p1 будет указывать на девятый элемент ее соотносимого типа по отноше нию к элементу, на который она указывает в настоящий момент.
Если складывать указатели нельзя, то разрешается вычитать один указатель из дру гого, при условии, что оба указателя имеют один и тот же соотносимый тип. Резуль татом такой операции окажется количество элементов соотносимого типа, которые разделяют оба указателя.
Кроме сложения и вычитания целого числа из указателя, а также вычитания двух указателей, другие арифметические операции над указателями не разрешаются. В част ности, к указателям нельзя добавлять или вычитать из них значения типа float или double. Не допускаются также арифметические операции над указателями типа void*.
Для того чтобы проверить на практике результаты арифметических операций над указателями, выполните приведенную ниже короткую программу, где выводятся фи зические адреса, на которые указывает целочисленный указатель (ip) и указатель с пла вающей точкой одинарной точности (fp). Понаблюдайте за изменениями каждого из этих указателей по отношению к их соотносимым типам на каждом шаге цикла. // Продемонстрировать результаты арифметических операций над указателями. using System; class PtrArithDemo { unsafe static void Main() { int x; int i; double d; int* ip = &i; double* fp = &d; Console.WriteLine("int doublen"); for(x=0; x < 10; x++) { Console.WriteLine((uint) (ip) + " " + (uint) (fp)); ip++; fp++; } } }
Ниже приведен примерный результат выполнения данной программы. У вас он может оказаться иным, хотя промежутки между выводимыми значения должны быть такими же самыми. int double 1243464 1243468 1243468 1243476 1243472 1243484 1243476 1243492 1243480 1243500 1243484 1243508 1243488 1243516 1243492 1243524 1243496 1243532 1243500 1243540
Как следует из приведенного выше результата, арифметические операции выпол няются над указателями относительно их соотносимого типа. Так, значения типа int занимают в памяти 4 байта, а значения типа double – 8 байтов, и поэтому их адреса изменяются с приращением именно на эти величины. Сравнение указателей
Указатели можно сравнивать с помощью таких операторов отношения, как ==, < и >. Но для того чтобы результат сравнения указателей оказался содержательным, оба указателя должны быть каким-то образом связаны друг с другом. Так, если перемен ные p1 и р2 являются указателями на две разные и не связанные вместе переменные, то любое их сравнение, как правило, не имеет никакого смысла. Но если переменные p1 и р2 указывают на связанные вместе переменные, например на элементы одного массива, то их сравнение может иметь определенный смысл. Указатели и массивы
В C# указатели и массивы связаны друг с другом. Например, при указании имени массива без индекса в операторе с модификатором fixed формируется указатель на начало массива. В качестве примера рассмотрим следующую программу. /* Указание имени массива без индекса приводит к формированию указателя на начало массива. */ using System; class PtrArray { unsafe static void Main() { int[] nums = new int [10]; fixed(int* p = &nums[0], p2 = nums) { if(p == p2) Console.WriteLine("Указатели p и p2 содержат " + "один и тот же адрес."); } } }
Ниже приведен результат выполнения этой программы. Указатели р и р2 содержат один и тот же адрес
Как следует из приведенного выше результата, выражения &nums[0]
и nums
оказываются одинаковыми. Но поскольку вторая форма более лаконична, то она чаще используется в программировании, когда требуется указатель на начало массива. Индексирование указателей
Когда указатель обращается к массиву, его можно индексировать как сам массив. Такой синтаксис служит более удобной в некоторых случаях альтернативой арифмети ческим операциям над указателями. Рассмотрим следующий пример программы. // Проиндексировать указатель как массив. using System; class PtrlndexDemo { unsafe static void Main() { int[] nums = new int[10]; // Проиндексировать указатель. Console.WriteLine("Индексирование указателя как массива."); fixed (int* p = nums) { for(int i=0; i < 10; i++) p[i] = i; // индексировать указатель как массив for(int i=0; i < 10; i++) Console.WriteLine("p[{0}]: {1} ", i, p[i]); } // Использовать арифметические операции над указателями. Console.WriteLine("ХпПрименение арифметических " + "операций над указателями."); fixed (int* р = nums) { for(int i=0; i < 10; i++) *(p+i) = i; // использовать арифметическую операцию над указателем for(int i=0; i < 10; i++) Console.WriteLine("*(p+(0)): {1} ", i, *(p+i)); } } }
Ниже приведен результат выполнения этой программы. Индексирование указателя как массива. р[0]: 0 p[1]: 1 p[2]: 2 p[3]: 3 p[4]: 4 p[5]: 5 p[6]: 6 p[7]: 7 Р[8]: 8 р[9]: 9 Применение арифметических операций над указателями. *(р+0) : 0 *(р+1) : 1 *(р+2) : 2 *(р+3) : 3 *(р+4) : 4 *(р+5) : 5 *(р+6) : 6 *(р+7) : 7 *(р+8) : 8 *(р+9) : 9
Как следует из результата выполнения приведенной выше программы, общая фор ма выражения с указателем *(ptr + i)
может быть заменена следующим синтаксисом индексирования массива. ptr[i]
Что касается индексирования указателей, то необходимо иметь в виду следующее. Во-первых, при таком индексировании контроль границ массива не осуществляется. Поэтому указатель может обращаться к элементу вне границ массива. И во-вторых, для указателя не предусмотрено свойство Length, определяющее длину массива. Поэ тому, если используется указатель, длина массива заранее неизвестна. Указатели и строки
Символьные строки реализованы в C# в виде объектов. Тем не менее отдельные сим волы в строке могут быть доступны по указателю. Для этого указателю типа char* присваивается адрес начала символьной строки в следующем операторе с модифика тором fixed. fixed(char* р = str) { // ...
После выполнения оператора с модификатором fixed переменная р будет указы вать на начало массива символов, составляющих строку. Этот массив оканчивается символом конца строки, т.е. нулевым символом. Поэтому данное обстоятельство мож но использовать для проверки конца массива. В С/С++ строки реализуются в виде мас сивов, оканчивающихся символом конца строки, а следовательно, получив указатель типа char* на строку, ею можно манипулировать таким же образом, как и в C/C++.
Ниже приведена программа, демонстрирующая доступ к символьной строке по указателю типа char*. // Использовать модификатор fixed для получения // указателя на начало строки. using System; class FixedString { unsafe static void Main() { string str = "это тест"; // Получить указатель р на начало строки str. fixed(char* р = str) { // Вывести содержимое строки str по указателю р. for(int i=0; p[i] != 0; i++) Console.Write(p[i]); } Console.WriteLine(); } }
Эта программа дает следующий результат. это тест Многоуровневая непрямая адресация
Один указатель может указывать на другой, а тот, свою очередь, – на целевое зна чение. Это так называемая многоуровневая непрямая адресация, или применение указа телей на указатели. Такое применение указателей может показаться, на первый взгляд, запутанным. Для прояснения принципа многоуровневой непрямой адресации обра тимся за помощью к рис. 20.1. Как видите, значением обычного указателя является адрес переменной, содержащей требуемое значение. Если же применяется указатель на указатель, то первый из них содержит адрес второго, указывающего на переменную, содержащую требуемое значение.
Рис. 20.1. Одно– и многоуровневая непрямая адресация
Многоуровневая непрямая адресация может быть продолжена до любого предела, но потребность более чем в двух уровнях адресации по указателям возникает крайне редко. На самом деле чрезмерная непрямая адресация очень трудно прослеживается и чревата ошибками.
Переменная, являющаяся указателем на указатель, должна быть объявлена как та ковая. Для этого достаточно указать дополнительный знак * после имени типа пере менной. Например, в следующем объявлении компилятор уведомляется о том, что переменная q является указателем на указатель и относится к типу int. int** q;
Следует, однако, иметь в виду, что переменная q является указателем не на целое значение, а на указатель типа int.
Для доступа к целевому значению, косвенно адресуемому по указателю на указа тель, следует дважды применить оператор *, как в приведенном ниже примере. using System; class MultipleIndirect { unsafe static void Main() { int x; // содержит значение типа int int* p; // содержит указатель типа int int** q; // содержит указатель на указатель типа int х = 10; р = &х; // поместить адрес переменной х в переменной р q = &р; // поместить адрес переменной р в переменной q Console.WriteLine(**q); // вывести значение переменной х } }
Результатом выполнения этой программы будет выведенное на экран значение 10 переменной х. В данной программе переменная р объявляется как указатель на значе ние типа int, а переменная q – как указатель на указатель типа int.
И последнее замечание: не путайте многоуровневую непрямую адресацию со структурами данных высокого уровня, в том числе связными списками, так как это со вершенно разные понятия. Массивы указателей
Указатели могут быть организованы в массивы, как и любой другой тип данных. Ниже приведен пример объявления массива указателей типа int длиной в три эле мента. int * [] ptrs = new int * [3];
Для того чтобы присвоить адрес переменной var типа int третьему элементу мас сива указателей, достаточно написать следующую строку кода. ptrs[2] = Svar;
А для того чтобы обнаружить значение переменной var, достаточно написать при веденную ниже строку кода. *ptrs[2] Оператор sizeof
Во время работы с небезопасным кодом иногда полезно знать размер в байтах одного из встроенных в C# типов значений. Для получения этой информации служит оператор sizeof. Ниже приведена его общая форма: sizeof(тип)
где тип обозначает тот тип, размер которого требуется получить. Вообще говоря, опе ратор sizeof предназначен главным образом для особых случаев и, в частности, для работы со смешанным кодом: управляемым и неуправляемым. Оператор stackalloc
Для распределения памяти, выделенной под стек, служит оператор stackalloc. Им можно пользоваться лишь при инициализации локальных переменных. Ниже приведена общая форма этого оператора: тип *р = stackalloc тип[размер]
где р обозначает указатель, получающий адрес области памяти, достаточной для хра нения объектов, имеющих указанный тип, в количестве, которое обозначает размер. Если же в стеке недостаточно места для распределения памяти, то генерируется ис ключение System.StackOverflowException. И наконец, оператор stackalloc мож но использовать только в небезопасном коде.
Как правило, память для объектов выделяется из кучи – динамически распределя емой свободной области памяти. А выделение памяти из стека является исключением. Ведь переменные, располагаемые в стеке, не удаляются средствами "сборки мусора", а существуют только в течение времени выполнения метода, в котором они объявляют ся. После возврата из метода выделенная память освобождается. Преимущество при менения оператора stackalloc заключается, в частности, в том, что в этом случае не нужно беспокоиться об очистке памяти средствами "сборки мусора".
Ниже приведен пример применения оператора stackalloc. // Продемонстрировать применение оператора stackalloc. using System; class UseStackAlloc { unsafe static void Main() { int* ptrs = stackalloc int[3]; ptrs[0] = 1; ptrs[1] = 2; ptrs[2] = 3; for(int i=0; i < 3; i++) Console.WriteLine(ptrs[i]); } }
Вот к какому результату приводит выполнение кода из данного примера. 1 2 3 Создание буферов фиксированного размера
Ключевое слово fixed находит еще одно применение при создании одномерных массивов фиксированного размера. В документации на C# такие массивы называются буферами фиксированного размера. Такие буферы всегда являются членами структуры. Они предназначены для создания структуры, в которой содержатся элементы массива, образующие буфер. Когда элемент массива включается в состав структуры, в ней, как правило, хранится лишь ссылка на этот массив. Используя буфер фиксированного раз мера, в структуре можно разместить весь массив. В итоге получается структура, при годная в тех случаях, когда важен ее размер, как, например, в многоязыковом програм мировании, при согласовании данных, созданных вне программы на С#, или же когда требуется неуправляемая структура, содержащая массив. Но буферы фиксированного размера можно использовать только в небезопасном коде.
Для создания буфера фиксированного размера служит следующая общая форма: fixed тип имя_буфера[размер];
где тип обозначает тип данных массива; имя_буфера – конкретное имя буфера фик сированного размера; размер – количество элементов, образующих буфер. Буферы фиксированного размера могут указываться только в структуре.
Для того чтобы стала очевиднее польза от буферов фиксированного размера, рас смотрим ситуацию, в которой программе ведения счетов, написанной на C++, тре буется передать информацию о банковском счете. Допустим также, что учетная запись каждого счета организована так, как показано ниже. Name Строка длиной 80 байтов, состоящая из 8-разрядных символов в коде ASCII Balance Числовое значение типа double длиной 8 байтов ID Числовое значение типа long длиной 8 байтов
В программе на C++ каждая структура содержит массив Name, тогда как в програм ме на C# в такой структуре хранится лишь ссылка на массив. Поэтому для правильного представления данных из этой структуры в C# требуется буфер фиксированного раз мера, как показано ниже. // Использовать буфер фиксированного размера. unsafe struct FixedBankRecord { public fixed byte Name[80]; // создать буфер фиксированного размера public double Balance; public long ID; }
Когда буфер фиксированного размера используется вместо массива Name, каждый экземпляр структуры FixedBankRecord будет содержать все 80 байтов массива Name. Именно таким образом структура и организована в программе на C++. Следовательно, общий размер структуры FixedBankRecord окажется равным 96, т.е. сумме ее членов. Ниже приведена программа, демонстрирующая этот факт. // Продемонстрировать применение буфера фиксированного размера. using System; // Создать буфер фиксированного размера. unsafe struct FixedBankRecord { public fixed byte Name[80]; public double Balance; public long ID; } class FixedSizeBuffer { // Пометить метод Main() как небезопасный. unsafe static void Main() { Console.WriteLine("Размер структуры FixedBankRecord: " + sizeof(FixedBankRecord)); } }
Эта программа дает следующий результат. Размер структуры FixedBankRecord: 96
Размер структуры FixedBankRecord оказывается в точности равным сумме ее чле нов, но так бывает далеко не всегда со структурами, содержащими буферы фиксиро ванного размера. Ради повышения эффективности кода общая длина структуры мо жет быть увеличена для выравнивания по четной границе, например по границе слова. Поэтому общая длина структуры может оказаться на несколько байтов больше, чем сумма ее членов, даже если в ней содержатся буферы фиксированного размера. Как правило, аналогичное выравнивание длины структуры происходит и в C++. Следует, однако, иметь в виду возможные отличия в этом отношении.
И наконец, обратите внимание на то, как в данной программе создается буфер фик сированного размера вместо массива Name. public fixed byte Name[80]; // создать буфер фиксированного размера
Как видите, размер массива указывается после его имени. Такое обозначение обычно принято в C++ и отличается в объявлениях массивов в С#. В данном операторе распре деляется по 80 байтов памяти в пределах каждого объекта типа FixedBankRecord. Обнуляемые типы
Начиная с версии 2.0, в C# внедрено средство, обеспечивающее изящное решение типичной и не очень приятной задачи распознавания и обработки полей, не содержа щих значения, т.е. неинициализированных полей. Это средство называется обнуляемым типом. Для того чтобы стала более понятной суть данной задачи, рассмотрим пример простой базы данных заказчиков, в которой хранится запись с именем, адресом, иден тификационным номером заказчика, номером счета-фактуры и текущим остатком на счету. В подобной ситуации может быть вполне создан элемент данных заказчика, в ко тором одно или несколько полей не инициализированы. Например, заказчик может просто запросить каталог продукции, и в этом случае номер счета-фактуры не потре буется, а значит, его поле окажется неиспользованным.