Текст книги "Виролюция. Важнейшая книга об эволюции после «Эгоистичного гена» Ричарда Докинза"
Автор книги: Фрэнк Райан
сообщить о нарушении
Текущая страница: 7 (всего у книги 17 страниц)
В то время, когда состоялся наш первый разговор с Вильярреалом, мы оба были заняты написанием книг по материалам наших исследований. В том же году была опубликована моя книга «Слепое пятно Дарвина»[35]35
Ryan F. Darwin’s Blind Spot. New York: Houghton Mifflin, 2002.
[Закрыть]. В ней я сравнивал симбиотическую эволюцию с воззрениями современного дарвинизма, основанного на синтезе эволюционных идей тридцатых годов. В книгу я включил и две главы о вирусах. В одной я рассуждал о симбиозе «с точки зрения вирусов» и строго определил такой симбиоз, а в другой описал известные на то время примеры симбиоза с вирусами. Вильярреал же свою книгу «Вирусы и эволюция жизни» опубликовал несколькими годами позже. В ней он описал роль вирусов в эволюции живого от самого начала жизни до нынешнего ее разнообразия[36]36
Villarreal L. P. Viruses and the Evolution of Life. Washington, DC: ASM Press 2005.
[Закрыть].
Вильярреал признался мне: у него есть трудности с формулировкой понятия симбиоза, когда речь заходит о вирусах. Я не слишком удивился. Моя предыдущая книга «Вирус X» заинтересовала некоторых вирусологов, но не убедила их в симбиотической природе вирусов. Среди же симбиологов книга вовсе не вызвала интереса. Так что, в сущности, трудности Вильярреала был следствием известного скептицизма, присущего и вирусологам, и симбиологам. Никто ранее не брался за разработку достаточно строгого и формального определения симбиоза с вирусами одновременно с симбиологической и вирусологической точек зрения, причем такого определения, чтобы оно было понятно и приемлемо для ученых из обеих этих областей. Тогда я объяснил Вильярреалу, что работаю над такой формулировкой, в частности, стараюсь определить вирусный симбиогенез с точки зрения генетики. Когда «Слепое пятно Дарвина» было опубликовано, я послал экземпляр Вильярреалу. Объяснение симбиоза с точки зрения вирусологии показалось ему полезным для исследователей, в особенности концепция «агрессивного симбиоза». Еще большее удовольствие доставило мне его приглашение провести серию семинаров на эту тему в его институте. Это было первым формальным признанием концепции вирусов как симбионтов в сообществе вирусологов.
С моей стороны я всецело приветствовал возможности, открывшиеся для меня вследствие редкого в научном мире плодотворного сотрудничества, основанного на взаимной симпатии, энтузиазме и бескорыстном интересе. Кроме того, мне многому можно было научиться у старшего – и выдающегося – коллеги.
Вильярреал обладает поразительно обширными и подробными знаниями о взаимодействии вирусов с их носителями. Одним из предметов его исследований были ретровирусы. Он предположил, что ретровирусы описали очень длинную эволюционную траекторию: от вирусов, селившихся в морских беспозвоночных, до вирусов морских предков позвоночных и, в конце концов, нынешнего человека. Исследования привели его к замечательному и многое объясняющему открытию: при каждом крупном эволюционном изменении – при возникновении хордовых, затем млекопитающих и приматов – возникало и множество новых видов ретровирусов. Это важная подсказка для задачи объяснения парадоксальной структуры человеческого генома. Вильярреал получил и еще один важный и позволяющий многое понять результат. Прежнее поколение генетиков-эволюционистов изучало странные элементы генома, известные как LINE и SINE, согласно принципам современного дарвинизма рассматривая их как отдельные, наличествующие у многих форм жизни сущности, произошедшие из генома и затем развивавшиеся в геноме. Но Вильярреал сопоставил и сравнил эти развивающиеся сущности с параллельной эволюцией ретровирусов, заразивших этих же носителей, и обнаружил значительную общность между тем и другим. Его данные и сделанные на их основе выводы позволили существенно углубить понимание того, как естественный отбор действует на ретровирусы в симбиозе с геномом, и понимание эволюционных истоков элементов LINE и SINE.
Линн Маргулис назвала внезапные и кардинальные изменения, происходящие вследствие симбиотического объединения геномов вируса и носителя, «эволюционным эквивалентом удара молнии». Но чтобы понять, каков будет эффект этого «удара молнии» в долгосрочной перспективе, и в особенности чтобы понять, каким образом это сыграло ключевую роль в формировании человеческого генома, нам следует изучить подробнее работу естественного отбора для ряда голобионтических партнерств вируса и носителя.
Можно узнать многое о механике подобного генетического союза на примере важнейшего симбиотического партнерства, способствовавшего созданию человеческого генома, – древнего эволюционного переворота, давшего нашим клеткам митохондрии, а нам – возможность дышать кислородом.
Цитируя Льюиса Томаса: «Нас сдают внаем, нас разделили и заняли. Внутри наших клеток живут, даруя энергию, позволяющую нам радоваться солнечному дню и стремиться к совершенству, сотни и тысячи созданий, в строгом смысле нам не принадлежащих, обитающих в цитоплазме – части клетки, лежащей между ядром и оболочкой»[37]37
Thomas L. The Lives of a Cell. London: Penguin Books, 1974: 4.
[Закрыть]. Большинство биологов принимают эволюционное объяснение их существования, впервые выдвинутое Маргулис в конце шестидесятых годов двадцатого века: более миллиарда лет назад дышащие кислородом бактерии вступили в голобионтическое партнерство с одноклеточным протистом (раньше их называли «протозоа»), который и стал предком всех животных, растений, грибов и дышащих кислородом протистов, населяющих сегодня Землю. Снова цитируя Томаса: «Они настолько же симбионты, насколько и ризобиальные бактерии, живущие в корневой системе бобовых и позволяющие накапливать азот. Без митохондрий мы бы не могли двинуть ни единым мускулом, не могли бы согнуть палец и думать не могли бы».
Чем же можно доказать подобное утверждение?
Доказательств известно несколько. Геном митохондрий составлен из типичных бактериальных генов, и они, в отличие от наших ядерных генов, соединены в кольцо, что характерно для бактерий. Размножаются митохондрии независимо от ядра, типичным для бактерий процессом почкования. Геномы митохондрий всех современных имеющих митохондрии форм жизни настолько генетически схожи, что они, несомненно, произошли от общего предка. Как ни удивительно, генетический анализ показывает: ближайший из современных родственников предка всех митохондрий – это бактерия Rickettsia prowazeki, возбудитель печально известного заболевания – разносимого вшами эпидемического тифа. Теперь нам известно: этот возбудитель тифа не может существовать самостоятельно, он чрезвычайно интенсивно (и зачастую агрессивно) взаимодействует с клетками носителя, геном его естественным отбором редуцирован и рудиментарен и не позволяет бактерии жить вне клеток-носителей.
Если изучить, как естественный отбор влиял на геном наших митохондрий в течение длящегося миллиард лет голобионтического симбиоза с ядерными клетками, обнаружится, что геном предка митохондрий претерпел радикальные изменения – был разрушен, упрощен. Большое число изначально присутствовавших генов исчезло, было выброшено за ненадобностью, а около трехсот генов переместились от митохондрии в ядро, где, в подобии уже обсуждавшегося здесь сожительства Elysia chlorotica с чужими хлоропластами, эти перенесенные гены продолжают работать согласованно с остатком генов митохондрии. Но не может не удивлять то, что за миллиард лет симбиоза геном митохондрии сохранил отчетливо бактериальный характер. Как мы увидим далее, понимание симбиотического происхождения человеческих митохондрий важно для изучения заболеваний, обусловленных нарушениями митохондриального генома.
Приведенный выше рисунок иллюстрирует структуру генома типичного ретровируса – такого, как вызывающий СПИД ВИЧ-1, или KoRV, вызывающий лейкемию у коал, или любой из 30–50 семейств HERV, входящих в обширную коллекцию вирусных компонентов человеческого генома.
При взгляде на этот рисунок видно: геном начинается и кончается с областей, обозначенных как «LTR» – это сокращение английского выражения «длинный концевой повтор» (long terminal repeat), и эти области – не гены как таковые, но «бюрократы» с чрезвычайно мощными «управленческими» способностями. Такие «бюрократы» встречаются только у вирусов, именно они несут способность манипулировать генетическим аппаратом носителя. Собственно вирусные гены, управляющие жизненным циклом ретровируса, содержатся в трех областях, обозначенных как gag, pol и env (эти обозначения принято писать курсивом). В области gag содержатся гены, кодирующие белки матрицы вируса (специфичные антигены), область pol кодирует важнейший для ретровируса энзим, обратную транскриптазу, и другие важные энзимы, включая «интегразу», позволяющую вирусной ДНК залезть в хозяйскую хромосому, область же env кодирует белки оболочки вируса.
С традиционной дарвиновской точки зрения, любое вторжение вируса в геном хозяина можно интерпретировать как «эгоистическое» действие с целью выживания этого вируса, и, вполне возможно, естественный отбор будет действовать во многом индивидуально для вируса и носителя. Однако, как мы уже видели на примере СПИДа, даже в разгар жесточайшей эпидемии можно наблюдать и отбор, работающий в значительной мере на уровне симбиоза. Во время активного распространения эпидемии логично ожидать неприятных последствий агрессивного симбиоза и «выбраковки» значительной части вида-носителя. Но, судя по эпидемии у коал, эта стадия может длиться не так уж много времени. «Выбраковка» приводит к созданию нового партнерства между вирусом и носителем, остатки вида размножаются снова, и эти остатки, активно взаимодействующие с вирусом, будут иметь эволюционное преимущество. Если экзогенная инфекция летальна для носителя, то совокупление носителя эндогенного вируса с теми, кто не носит эндогенный вирус, приведет к их гибели. А носители эндогенного вируса останутся заразными в течение очень долгого времени. Вирусные же элементы в геноме размножатся, внедрив себя в хромосомы, предоставив геному носителя уже готовые гены и мощные средства управления ими, – и это способно радикально изменить эволюционную траекторию новой сущности, нового голобионтического организма.
Вполне логично ожидать, что за сотню миллионов лет голобионтического партнерства млекопитающих и вирусов естественный отбор сделает с эндогенными вирусами то же, что и с митохондриями: выбросит ненужные вирусные гены и «бюрократические» управляющие элементы – но вирусов в геноме так много, что некое активное меньшинство будет присутствовать всегда. Оно всегда будет играть важную роль в голобионтической эволюции. Следует также ожидать, что вирусы даже после внедрения в наш геном и превращения в его часть по-прежнему останутся в сути своей вирусами. Если принять во внимание, что такое голобионтическое партнерство и естественный отбор у человека и его предков происходили с сотнями вирусов (в процессе чего и был создан человеческий геном), то понятной становится структура произошедших от вирусов частей человеческого генома.
Вильярреал полагает, что LINE и SINE, вместе составляющие тридцать четыре процента человеческого генома, либо являются производными ретровирусов, либо контролируются ими. Вывод обескураживающий и поразительный. Это значит: вирусы вместе с их производными и тесно связанными структурами составляют как минимум сорок три процента человеческого генома – и со временем, по мере дальнейшего исследования еще не расшифрованных частей генома, этот процент, скорее всего, увеличится. Скептики вполне резонно могут потребовать доказательств. И как же доказать столь созидательную роль симбиоза с вирусами в происхождении нашего генома? Для этого нужно искать доказательства естественного отбора на голобионтическом уровне при взаимодействии вируса с носителем. Более того, нужно продемонстрировать и важность геномных ретровирусов и их производных в человеческой генетике, развитии эмбриона, физиологии – и, конечно же, в возникновении человеческих заболеваний.
6. Как вирусы помогли нам стать людьми
Вирусы долгое время рассматривали как чистейший пример эволюции путем естественного отбора. Я же утверждаю: вирусы являются также мощнейшей эволюционной силой, действующей посредством симбиогенеза. Вы спросите: отчего же потребовалось столько времени, чтобы прийти к пониманию этого? Ответ на этот вопрос сложен и во многом коренится в истории нашего знакомства с вирусами. Мы познакомились с ними, распознав в них возбудителей болезней, в том числе ужаснейших эпидемий, какие только знала человеческая история, – и смотрели на них лишь как на агрессивных и эгоистичных паразитов. Есть и другие, менее явные причины, и не в последней степени – распространенные заблуждения насчет сложности устройства вирусов, их эволюции и поведения. Многие из больших вирусов – например, вирусы оспы, вызывающие целый ряд болезней, от ветрянки у людей до бородавок у моллюсков, – на генетическом уровне гораздо сложнее, чем представляет большинство биологов. Еще более удивительна и сложна генетическая структура недавно найденного в океане гиганта среди вирусов, известного как вирус «Мими», – по сложности она не уступает малым бактериям. Но даже в этом случае вирус с бактерией не спутаешь, даже самые большие вирусы по строению очень отличаются от бактерий. Вирусы заключены в белковую оболочку, сильно отличающуюся от клеточной, их гены, как у нас, линейны, а не замкнуты в кольцо, как у бактерий. Все без исключений вирусы – клеточные паразиты, а бактерии (хотя и не все) способны жить самостоятельно. Если вы, читатель, еще не можете принять самую возможность рассматривать вирус как симбионта, позвольте мне помочь вам, предложив весьма иллюстративную аналогию.
Философы многих обществ древности, включая досократовских греков, японцев, индусов, полагали: все в мире состоит из четырех основных элементов, земли, воды, огня и воздуха. И если включение в состав основных элементов воды, земли и воздуха понятно – это же составляющие видимой материи, то огонь – исключение. Огонь принципиально враждебен материи, он – уничтожитель ее, он несет бедствие, он – следствие войн и стихийных бедствий, он вырывается из жерл вулканов, фантастически мощных и страшных. Он – насилие и гибель. Так почему же древние люди столь различных культур включали его в число основных элементов природы? Возможно, из-за его алхимической роли в сотворении нового. Ведь огнем извлекается металл из руды, добываются медь, железо и золото. Свойства огня дуалистичны, он может разрушать, но может и созидать.
С эволюционной точки зрения вирусы обладают такой же дуальностью.
С 1994 года, когда рассказ Терри Йетса о совместной эволюции хантавируса и его носителей-грызунов подтолкнул меня к мысли о возможной симбиотической роли вирусов, идея симбиоза с вирусами стала фокусом моих исследований. Как говорят биологи, это стало моей экологической нишей в научном мире. Я сосредоточился на рассмотрении вклада вирусов в человеческий геном с симбиотической точки зрения. С ортодоксально дарвиновской точки зрения человеческие эндогенные вирусы – всего лишь интервенты-паразиты, преследующие лишь свои цели и эволюционирующие независимо. Не спорю, многие взаимодействия вирусов с носителями начинаются именно так. Также вполне логично предположить, что вирусы, пусть даже и включенные в человеческий геном, могут подвергаться индивидуальному, «эгоистическому» отбору. Я не собираюсь противоречить эволюционной механике современного дарвинизма – я считаю себя дарвинистом в той же степени, что и симбиологом. Однако настаиваю: невозможно понять столь обширное присутствие вирусных элементов в человеческом геноме, если не рассматривать сосуществование человека и вирусов одновременно как с ортодоксально дарвиновской, так и с симбиотической точек зрения. Конечно, поначалу, когда ретровирус заражает не знакомого дотоле с этим вирусом носителя, доминировать будет «эгоистическая» эволюционная динамика. Но она быстро изменится в сторону партнерства, в особенности когда вирус персистентный. Долговременное выживание вируса становится тесно связанным с выживанием части вида, сумевшей пережить агрессивную начальную стадию симбиоза. При этом начинается новая эволюционная динамика, начинается активный симбиоз вируса и носителя, и отбор происходит уже симбиотическим образом.
С точки зрения симбиоза пандемия СПИДа представляет собой все еще первую стадию симбиотической динамики, названной мною «агрессивным симбиозом». Вирусная же эпидемия среди коал, насчитывающая, должно быть, чуть более сотни лет, уже вступила во вторую стадию агрессивного симбиоза. Большая часть представителей вида заражена, вирус активно отсеивает не способные ужиться с ним генотипы, с устрашающей скоростью происходит эндогенизация. Чрезвычайное разнообразие способов внедрения вируса в геном коал вполне логично на ранней стадии голобионтической эволюции, когда отбор уже активно работает на уровне генетического взаимодействия вируса с носителем. В постигшем коал бедствии мы наблюдаем эволюционную динамику, которая, несомненно, происходила не раз и не два в истории позвоночных, в особенности млекопитающих, чьи геномы ныне изобилуют внедренными и передающимися по наследству ретровирусами.
Насколько мне известно, ни один геном млекопитающих не колонизирован ретровирусами столь обширно, как наш. Я допускаю, что интерпретация этого обширного присутствия в духе современного дарвинизма вполне возможна, но настаиваю на значительном влиянии симбиоза на образование вирусной части нашего генома. Принципиально важно то, что мы, люди, представляем собой голобионтическое единство вирусов и млекопитающих. Доказать это либо опровергнуть можно исследованиями вклада ретровирусов в наш геном и их роли в нем. На практике это значит – обнаружить активно действующие вирусные гены и контрольные последовательности, сохраненные в геноме на протяжении долгого времени естественным отбором, действующим на уровне партнерства между вирусами и позвоночными. Признаки действия этих генов и последовательностей должны обнаруживаться на каждом уровне нашего существования: и в работе генома, и в эмбриональном развитии, и в повседневной работе биохимии нашего тела.
Здесь логично вспомнить еще одного нобелевского лауреата – занимавшуюся цитогенетикой американку Барбару Мак-Клинток, которая изучала геном кукурузы[39]39
http://en.wikipedia.org/wiki/Barbara_McClintock.
[Закрыть]. В двадцатых годах двадцатого столетия она разработала технику слежения за хромосомами растений и изучения их изменения в процессе размножения растений. Ее работа стала революционной для нескольких отраслей генетики. Например, она открыла, что в процессе соединения мужских и женских половых клеток (деление на полы столь же характерно для растений, как и для животных) родительские хромосомы выстраиваются в так называемом «танце хромосом», или мейозе, и обмениваются частями. Теперь мы называем это явление «половой генетической рекомбинацией» – и это объясняет, почему отличаются разные дети одних и тех же родителей. В течение сороковых и пятидесятых годов прошлого столетия Мак-Клинток открыла транспозоны – гены, способные перепрыгивать из одной хромосомы в другую. Она обнаружила первых представителей огромной армии мобильных элементов генома, найденных с тех пор в геномах каждого из изученных когда-либо растений либо животных. Как это случается со многими, опередившими свое время, работы Мак-Клинток были встречены с изрядной долей скепсиса. Потому она прекратила публикацию своих результатов в 1953 году. Если бы она понимала принципы вирусного симбиоза, возможно, она бы нашла поддержку среди симбиологов своего времени. Понадобилось целых тридцать лет, чтобы научный мир принял и понял ее пионерские идеи – Нобелевскую премию ей дали всего лишь в 1983 году. Транспозоны, открытые Мак-Клинток, – это ДНК-транспозоны, которые, по нынешним представлениям, с ретровирусами не связаны. Насчет их происхождения существует несколько противоречащих друг другу теорий, но симбиотический подход подводит к заключению об их вирусном происхождении – или, по крайней мере, что они происходят от ДНК-содержащих вирусов.
ДНК-транспозоны составляют половину генома кукурузы. Их находят у всех живых существ, и их способность модифицировать хромосомы дает начало эволюционным изменениям, хотя и таит в себе опасность возникновения болезней. Аналогичные ДНК-транспозоны составляют три процента человеческого генома, и до недавнего времени их значение для эволюции человека оставалось непонятым. Недостаток этот был исправлен в 2007 году, когда Пэйс и Фешо проанализировали активность подобных человеческим ДНК-транспозон в процессе эволюции приматов. Результаты они получили в высшей степени интригующие – но и обескураживающие. По их оценке, человеческий геном содержит по меньшей мере сорок различных семейств ДНК-транспозон, включающих более девяноста восьми тысяч членов. И они должны были проявлять большую активность на ранней стадии эволюции приматов. Но их активность прекратилась около тридцати семи миллионов лет назад[40]40
Расе II J.K., Feschotte C. The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Research 2007; 17: 422–432.
[Закрыть]. Цитирую Пэйса и Фешо: «Эти данные указывают на большую активность ДНК-транспозон в эволюции млекопитающих предков приматов и ранних приматов и на последующее почти полное прекращение их активности у антропоидного предка нынешних приматов».
Два других – и гораздо больших – транспозонных элемента человеческого генома – LINE и SINE – по происхождению отличаются от ДНК-транспозонов. Отличаются они и тем, как реплицируются и вставляют свои копии в хромосомы: им приходится транслировать свою ДНК назад в РНК, а та должна снова превратиться в ДНК, чтобы внедриться в геном. Это типичное для ретровирусов поведение, зависящее от ретровирусного энзима обратной транскриптазы; поэтому LINE и SINE и зависящие от них Alu-повторы объединены в одной группе, названной «ретротранспозоны».
Читая интригующие заключение работы Пэйса и Фешо, я вспомнил замечание Вильярреала о том, что массовое заселение человеческого генома ретровирусами пришлось как раз на то время, когда прекратилась активность ДНК-транспозон. Вильярреал назвал это явление «великой колонизацией человека эндогенными ретровирусами»[41]41
Villarreal L. The source of self: genetic parasites and the origin of adaptive immunity. Annals of the New York Academy of Sciences (in press).
[Закрыть]. В особенности массово заселило дочеловеческий геном семейство эндогенных ретровирусов, известное как «HERV-K». Ретровирусы этого семейства эндогенизировались позже прочих вирусов, присутствующих в нынешнем человеческом геноме, они специфичны именно для человека. Вильярреал также подозревал, что эти новые вирусы заменили старые, присутствовавшие в геноме ранее. Хотя это не более чем гипотеза, она заставляет задуматься: быть может, огромная транспозонная часть нашего генома, по числу ДНК вдвое превышающая часть генома, доставшуюся нам от позвоночных предков, – это кладбище древней генетической войны между вирусами, войну эту выиграли HERV-K.
Первые эндогенные вирусы были открыты в конце шестидесятых – начале семидесятых, и не в человеческом геноме. К их открытию привело изучение вызывающих лейкемию вирусов у кур и мышей. В то время открытие внедряющихся в геном вирусных генов было с трудом воспринято научной общественностью. По словам первооткрывателя эндогенных вирусов кур Робина А. Вайса, «менделевский перенос генома, интегрировавшего в себя вызывающий рак вирус, в половые клетки здоровых животных, был расценен как нечто противоестественное»[42]42
Weiss R. A. The discovery of endogenous retroviruses. Retrovirology 2006; 3:67 Online at doi: 10.1186/1742–4690-3–67.
[Закрыть]. Когда Вайс, в те времена работавший в Университетском колледже Лондона, послал в печать статью, где показывалось, как «нормальная» куриная клетка с эндогенизированным в геноме вирусом птичьей лейкемии может передать вирусный env-ген другому вирусу и тем самым сделать его активным и заразным, – статью отвергли с порога, рецензент объявил подобное невозможным.
В начале семидесятых годов прошлого века ученые были очень удивлены, обнаружив под электронным микроскопом, что ретровирусы присутствуют в плаценте бабуинов. Впоследствии аналогичные вирусы были обнаружены в плацентах здоровых кошек, мышей, морских свинок и человека. Это подвигло их на поиски вирусных генов в хромосомах приматов, и они в самом деле были найдены в конце семидесятых[43]43
Harris J. R. Placental endogenous retrovirus (ERV): structural, functional and evolutionary significance. Bioessays 1998; 20: 307–316.
[Закрыть]. В 1981 году американцы Малколм А. Мартин, работавший в Национальном институте здравоохранения в Вифезде, и Морис Коэн, работавший в Национальном институте исследования рака во Фредерике, сообщили об обнаружении первых ретровирусных последовательностей в человеческом геноме[44]44
Martin M. A., Bryan T., Rasheed S., Khan A. S. Identification and cloning of endogenous retroviral sequences present in human DNA. Proceedings of the National Academy of Sciences 1981; 78 (8): 4892–6. Cohen M., Rein A., Stephens R. M., et al. Baboon endogenous virus genome: molecular cloning and structural characterisation of nondefective viral genomes from DNA of a baboon cell strain. Proceedings of the National Academy of Sciences 1981; 78 (8): 5207–11.
[Закрыть]. Коэн обозначил находку как «ERV1» – это была единичная копия вируса, встроенная в восемнадцатую хромосому. Причем копия дефективная, не имеющая части 5’LTR, так что превратиться в полноценный вирус она не могла. Мартин с Коэном также обнаружили, что область ДНК рядом с фрагментом 3’LTR практически идентична аналогичной по расположению области ДНК у шимпанзе, что указывает на присутствие ERV1 в хромосоме на этом же месте у общего предка шимпанзе и человека.
В 1984 году группа Коэна открыла более интересный эндогенный вирус – полноценный вирусный геном, внедренный в седьмую хромосому. Находку назвали «ERV3»[45]45
O’Connell C., O’Brien S., Nash W. G., Cohen M. ERV3, a full-length human endogenous provirus: chromosomal localization and evolutionary relationships. Virology 1984; 138: 225–235.
[Закрыть]. Как и в случае ERV1, изучение последовательностей показало, что интеграция вируса произошла на заре эволюции приматов, поскольку он присутствовал в геномах всех исследованных обезьян Старого Света, от мартышек до человекообразных. Сейчас полагают, что это голобионтическое партнерство установилось от сорока до тридцати миллионов лет назад. Группа Коэна обнаружила и еще один любопытный и важный факт: области gag и pol генома ERV3 содержали стоп-кодоны – мутации, предотвращавшие активацию генома. То есть хотя вирус и сохранился почти в целости, способность размножаться и заражать потерял. Исследователи также установили, что области, ответственные за регулирование деятельности вируса и способные контролировать работу генома носителя – env и две области LTR, – сохранились целиком. Сохранение таких деталей вирусного генома в процессе эволюции подтверждает работу эволюции именно на голобионтическом уровне, то есть симбиотическую ее динамику. Результаты указывают на возможную существенную роль ERV3 в эволюции приматов – причем как в прошлом, так и, возможно, в настоящем. Влияние ERV3 сможет сказываться на работе генетического аппарата человека.
После открытия эндогенных ретровирусов человека они получили общее обозначение «HERV». Новооткрытым HERV дают наименования по первой транспортной РНК.
Поясним, что такое «первая транспортная РНК». ДНК транслируется в белки при посредничестве РНК, и эта РНК создается как точная половинка ДНК, содержащая ту же генетическую информацию. Затем созданная РНК отделяется от ДНК и отправляется в рибосомы, синтезирующие белки органоиды в цитоплазме. После РНК другого типа, известная как «транспортная РНК», или «тРНК», подтаскивает нужные аминокислоты, чтобы в рибосоме синтезировался белок – по одной аминокислоте за раз. Для каждой из двадцати составляющих белки аминокислот есть своя РНК, обозначенная своей буквой алфавита. Первая аминокислота в собираемом белке приносится первой транспортной РНК.
В 1986 году японский исследователь Macao Оно, работающий в университете Китасато, обнаружил ретровирус человека в геноме клеток печени зародыша. Он определил: в его случае первой транспортной РНК была РНК для аминокислоты лизина. Лизин обозначается буквой «К»[46]46
Ono M. Molecular cloning and long terminal repeat sequences of human endogenous retrovirus genes related to types A and В retrovirus genes. Journal of Virology 1986; 58 (3): 937–944.
[Закрыть]. Поэтому Оно назвал открытый эндогенный вирус HERV-K – и этот вирус стал первым в ряду тех, которые, как мы сейчас знаем, наиболее тесно связаны с человеческой эволюцией.
Сходным образом вирус ERV3 теперь обозначается как «HERV-R», хотя для удобства изложения я буду и в дальнейшем упоминать о нем как о ERV3, поскольку в ранних работах по его исследованию он обозначается именно так. Открытия ERV3 и HERV-K стали предвестниками большого исследовательского интереса к эндогенным ретровирусам человека, поначалу растущего медленно, но резко усилившегося в начале нового тысячелетия.
Теперь мы понимаем: ретровирусная часть нашего генома состоит из множества копий эндогенных ретро-вирусов, или HERV, подвергавшихся интенсивному эволюционному прессингу со времени их первого вторжения в человеческий геном. Эти вирусы и действующий на них естественный отбор, ранее привлекавшие лишь спорадический интерес, теперь – важнейший объект исследований в лабораториях всего мира. В зависимости от того, как определять семейства вирусов, все HERV можно распределить на 30–50 семейств, а семейства эти разделить на 200 с лишним групп и подгрупп, каждая из которых имеет свою четко определенную эволюционную траекторию. Такое изобилие вирусов в геноме указывает на то, что за сотню с лишним миллионов лет эволюции млекопитающих они много раз подвергались вирусному заражению и экспансии вирусов в геном. Поскольку у всех нас один и тот же набор HERV, это значит – все наши прямые предки были заражены. И хотя нельзя с уверенностью сказать, что каждая группа HERV прибывала в наш геном одинаковым образом, свидетельства пандемии СПИДа и в особенности эпидемии лейкемии у коал заставляют предположить: жестокая выбраковка вирусом не раз происходила и у предков человека и сопровождалась вымиранием значительной части популяции. Мы, современные люди, – наследники переживших безжалостный эволюционный процесс. Не слишком воодушевляющая мысль, правда?
Хотя большая часть этих «выбраковок» произошла более десяти миллионов лет назад, значительная доля их пришлась на прямых предков человека – восемь из десяти полноразмерных подгрупп HERV-K присущи только людям. Они – исключительно наши вирусные партнеры. Весьма примечательно и то, что одна из LTR этих подгрупп HERV-K кодирует последовательность ДНК, встречающуюся также и у ВИЧ-1, – что подталкивает к предположению об эволюционной связи между этими семействами вирусов.
И какие же из этого всего следуют выводы?
В 1996 году Рой Дж. Бриттен из Калифорнийского технологического института смог привести десять примеров того, как эндогенные вирусные последовательности в геноме помогают регулировать экспрессию полезных генов[47]47
Britten R. J. DNA sequence insertion and evolutionary variation in gene regulation. Proceedings of the National Academy of Sciences 1996; 93: 9374–7.
[Закрыть]. Семь из десяти примеров относились к человеку, два – к морскому ежу и один – к мыши. Относящиеся к человеку примеры включали ген, ответственный за производство кератина, важного компонента нашей кожи и глаз, гены, связанные с иммунитетом, гены, отвечающие за производство паратиреоидного гормона, ген BRCA-1, ответственный за возникновение рака молочной железы у людей, ген, ответственный за выработку энзима амилазы, позволяющего переваривать крахмал, и ген, связанный с возникновением аденомиосаркомы почки у детей (опухоли Вильмса). Цитирую Бриттена: «Эти примеры демонстрируют, что повторяющиеся сегменты ДНК или мобильные элементы генома, внедрившиеся в человеческий геном в прошлом, сохранившиеся либо модифицированные отбором, теперь контролируют процесс экспрессии соседних генов». Уместно подчеркнуть: выражение «сохранившиеся либо модифицированные отбором» есть фактическое признание симбиогенетического характера динамики естественного отбора, действующего на уровне голобионтического генома.