Текст книги "Виролюция. Важнейшая книга об эволюции после «Эгоистичного гена» Ричарда Докинза"
Автор книги: Фрэнк Райан
сообщить о нарушении
Текущая страница: 10 (всего у книги 17 страниц)
Это пример того, как сложное взаимодействие между вирусом и бактерией развилось от «эгоизма» до мутуализма. А это, в свою очередь, подразумевает, что естественный отбор уже работает на уровне партнерства. Потому неудивительно обнаружить, что со временем вирусы-фаги становятся «дефективными», теряют заразность и становятся частью целого, бактериально-вирусного голобионта, развивающегося симбиотически. Здесь картина аналогична наблюдаемой при симбиотической эволюции митохондрий либо эндогенизации ретровирусов, превращающихся в HERV либо родственные им структуры. Содержащая «защитный» вирус бактерия защищена от инфицирования сходными вирусами, как это происходит временами с эндогенными вирусами. Начиная с этого первичного «иммунитета», подробно объясняя и анализируя каждый последующий шаг, Вильярреал описывает, как принцип «модуля аддикции» работает на каждой стадии эволюции иммунной системы, от простых и неадаптивных начальных версий ее до сложной высокоадаптивной системы, какая защищает сегодня людей. Процитирую Вильярреала: «Вся адаптивная иммунная система, которая на ранних стадиях развития должна „самообучиться“ различению своего и чужого, установить биологическую самоидентичность и не допускать саморазрушения (аутоиммунности), ведет себя как один огромный модуль аддикции».
Чтобы связать этот факт с уже известными данными о генетической подоплеке аутоиммунных заболеваний, нужно обсудить подробнее человеческий главный комплекс гистосовместимости (МНС) – а вернее, его совместно с прилегающими областями. Сейчас этот комплекс генов обозначается как хМНС. Выше уже писалось: он тесно связан и с аутоиммунностью, и с откликом на инфекцию. Приблизительно каждый пятый из четырехсот двадцати одного гена хМНС играет важную роль в работе нашей иммунной системы. В 1999 году Роджер Докинз с коллегами из Университета Западной Австралии провели глубокое и детальное изучение областей генома, соседствующих с МНС и включающих его, и установили: эти области произошли посредством дублирования простых древних генных структур, развившихся впоследствии в пять различаемых теперь классов МНС[71]71
Dawkins R., Leelayuwat C., Gaudieri S., et al. Genomics of the major histocompatibility complex: haplotypes, duplication, retroviruses and disease. Immunological Reviews 1999; 167: 275–304.
[Закрыть]. При дальнейших исследованиях австралийские ученые выяснили, что, например, блок генома, содержащий ген HLA-A – тот самый, который участвует в коэволюциии с ВИЧ-1, – содержит десять идентичных генных блоков и в каждом есть последовательности МНС первого класса, тесно ассоциированные с HERV-16.
Австралийские ученые предложили модель эволюции МНС, в которой важнейшую роль играют ретровирусы, – и это вполне согласуется с гипотезой Вильярреала о роли вирусов в эволюции биологической самости. Они также упомянули возможность полезной и даже защитной роли HERV для нашей иммунной системы и сделали вывод: если последовательности HERV в самом деле могут защищать организм, то открываются богатые возможности для терапии с их использованием.
Коль скоро человеческая хМНС содержит множество существенных для нашей иммунной системы генов, то неудивительна ее связь с десятками и сотнями разнообразных заболеваний. Но лишь малое их число связано с определенными генами. Например, анкилозирующий спондилоартрит связан с геном HLA В27, диабет первого типа – с генами DRB1, DQA1 и DQB1, а целиакия, или глютеновая болезнь, – с генами HLA-DQ2 и HLA-DQ8. Генетическая подоплека многих других заболеваний – таких, например, как волчанка, – более сложна. Вероятно, многие аутоиммунные заболевания – например, диабет первого типа, аутоиммунная тиреоидная болезнь, болезнь Аддисона, волчанка и миастения тяжелая псевдопаралитическая – связаны не с определенным геном (или генами), но с определенными комбинациями генов в областях, окружающих МНС.
Уже известно: вирусы могут провоцировать аутоиммунность у животных. Некоторые исследователи полагают, что вирусы способны маскироваться под антигены животного, и потому, когда включается иммунная система, она повреждает и собственные ткани животного. В 1997 году ученые из Швейцарии и Италии, работающие над совместным проектом, сообщили: эндогенный ретровирус HERV-K10 кодирует суперантиген, могущий служить причиной диабета первого типа. Суперантигены – это токсины вирусного и бактериального происхождения, действующие на иммунную систему и провоцирующие ее преувеличенную и чрезмерную реакцию. Правда, оговоримся, что результаты этой группы были оспорены несколькими другими группами, сделавшими вывод о необходимости более тщательных экспериментов.
Другие ученые, исследовавшие проблему суперантигенов, обратили внимание на связанные с HERV-K последовательности, найденные в панкреатических островках диабетиков. Эти последовательности были недавно идентифицированы как env ген HERV-K18. Известно – этот ген кодирует суперантигены. Третьи ученые показали; производство суперантигенов HERV-K18 может быть спровоцировано химическим соединением интерфероном-альфа, тесно связанным с реакцией организма на воспалительные процессы. Это соединение вызывает быстрый рост числа Т-лимфоцитов того типа, который связан с вызванными инсулиновой недостаточностью диабетами. Интерфероны – главные регуляторы иммунного отклика на вирусную инфекцию. Потому корреляция между суперантигеном и интерфероном указывает на способ, которым прибывший извне чужеродный вирус может спровоцировать опосредованное HERV производство суперантигенов, приводя к чрезмерной реакции иммунной системы в определенных органах.
Мне хотелось бы сказать подробнее о двух распространенных болезнях – рассеянном склерозе и волчанке.
В 1997 году французский ученый Эрве Перро, в чью группу входили исследователи из Лондона и Гренобля, сообщил о молекулярной идентификации нового ретровируса, выделенного у больных, страдающих рассеянным склерозом[72]72
Perron H., Jouvin-Marche E., Ounanian-Paraz A., et al. Multiple sclerosis retrovirus particles and recombinant envelope trigger an abnormal immune response in vitro, by inducing polyclonal V 16-T-lymphocyte activation. Virology 2001; 287: 321–332.
[Закрыть]; его обозначили как «ретровирус, ассоциированный с рассеянным склерозом», или MSRV. Впоследствии этот вирус идентифицировали как эндогенный вирус, принадлежащий к семейству HERV-W – тому самому, что включает HERV, кодирующий синтицин 1 в плаценте. Простоты ради я буду называть его «MS-вирус». Четыре года спустя эта же группа авторов показала: env-ген этого вируса провоцирует мощный Т-лимфоцитный иммунный отклик, возможно весьма существенный для иммунопатологического действия MS-вируса. Тип отклика указывал на возможную роль env-гена как суперантигена. Год спустя эта же группа ввела найденный вирус в брюшную полость лабораторной мыши и спровоцировала обширный иммунный отклик. Мышь погибла от летального мозгового кровотечения. Но складывавшуюся ясную картину несколько затемнили результаты польских исследователей, показавших наличие MS-вирусов в крови пациентов с другими нервными заболеваниями и даже у здоровой контрольной группы. Картина еще более разупорядочилась, когда датские исследователи обнаружили связь между MS-вирусом и парой других эндогенных ретровирусов: HERV-H/RGH – одним из двух ретровирусов, еще способных производить вирусные частицы в тканях, и ERV-9.
По данным группы Перро, экспрессия MS-вируса гораздо выше в областях мозга, поврежденных склерозом, – так называемых «бляшках». В 2002 году группа итальянских исследователей подтвердила экспрессию генных транскриптов MS-вируса в здоровом мозге и показала усиленную в двадцать – двадцать пять раз экспрессию у пациентов с рассеянным склерозом вкупе с мощной иммунореактивностью к вирусу в поврежденных областях. Выяснилось, что экспрессия происходит не в самих нервных клетках, а в клетках воспомогательных, известных как «микроглии» и «астроциты». Наиболее интенсивное окрашивание было обнаружено у астроцитов в самом центре пораженных областей. Несомненно, это очень значимая находка – хотя и не окончательное доказательство того, что MS-вирус является причиной болезни[73]73
Dolei A., Serra С., Mameli G., et al. Multiple sclerosis-associated retrovirus (MSRV) in Sardinian MS patients. Neurology 2002; 58: 471–473.
[Закрыть].
Доказательная база весьма усилилась, когда Джозеф М. Энтони сообщил в 2004 году результаты совместного исследования канадских, американских, французских и британских исследователей, обнаруживших факт активной экспрессии синтицина-1, кодируемого env-геном MS-вируса, в микроглиях и астроцитах больных рассеянным склерозом[74]74
Anthony J. М., van Marie G., Opii W., et al. Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nature Neuroscience 2004; 7 (10): 1088–95.
[Закрыть]. Экспрессия синтицина-1 наблюдалась в областях активной демиелинизации. В роли синтицина-1 сомнений не было – именно он провоцировал выделение соединений, убивающих олигодендроциты – клетки, формирующие миелиновую оболочку. Подобные действия синтицина-1 озадачивают. С какой стати белку, вовлеченному в нормальный метаболизм мозга, провоцировать воспалительный процесс? Возник вопрос: быть может, существуют различные модификации синтицина-1? Или же его «сбивают с пути истинного» некие иные действующие лица?
В 2007 году группа итальянских исследователей сделала следующий шаг, показав: провоспалительные химические соединения цитокины, обеспечивающие мобилизацию воспалительного ответа, активно участвуют в регуляции экспрессии синтицина-1 в астроцитах. Этих исследователей, как и многих других, накопленные доказательства подтолкнули к однозначному выводу: MS-вирус – в особенности его env-ген – играет одну из главных ролей в патологии рассеянного склероза. Энтони даже предложил MS-вирус в качестве «мишени для терапевтического вмешательства». Тем не менее нужны дальнейшие исследования – ведь многое остается непонятным. Почему синтицины вовлечены в настолько разные процессы? Они способствуют развитию плаценты, они участвуют в нормальной работе здорового мозга – и вдруг провоцируют воспалительный процесс.
Несомненно, в будущем нас ожидают новые интересные результаты исследования очевидной тесной связи между MS-вирусом и рассеянным склерозом. Я же пока оставлю эту тему и перейду к результатам исследований связи HERV и их производных с одним из наиболее известных и распространенных аутоиммунных заболеваний – системной красной волчанкой.
На сегодняшний день ученые детально исследовали воспалительные процессы, происходящие при этой часто встречающейся болезни, и ее симптомы. Известно: она поражает женщин гораздо чаще, чем мужчин, сопровождается значительными иммунными расстройствами, касающимися белых кровяных телец, и выработкой антигенов, атакующих ядра клеток, и, в частности, двойные спирали ДНК. С этой болезнью связаны мутации нескольких генов хМНС, но непосредственного гена-«виновника» пока не нашли. Правда, недавно направление поиска, возможно, было указано экспериментами на мышах, у которых отсутствует фермент панкреатическая дезоксирибонуклеаза (ДНКаза), помогающий клетке избавиться от продуктов разрушения ДНК (гидролизирующий ДНК). У этих мышей наблюдались симптомы заболевания, весьма схожие с симптомами человеческой волчанки. Заметим: название энзима принято писать обычным прямым шрифтом, название же кодирующего энзим гена – курсивом. То есть кодирующий ДНКазу ген обозначается как «ДНКаза1». Полученные в экспериментах с мышами результаты побудили японских исследователей в поисках мутаций, возможно нарушающих нормальное функционирование гена, секвенировать[75]75
Секвенирование – определение последовательности нуклеотидов в гене. – Прим. ред.
[Закрыть] ген ДНКаза1 у двадцати страдающих волчанкой пациентов. Эти мутации были найдены у двух пациенток, тринадцати и семнадцати лет[76]76
Yasumoto K., Horiuchi T., Kagami S., et al. Mutation of DNASE1 in people with systemic lupus erythematosus. Nature Genetics 2001; 28: 313–314.
[Закрыть].
При более детальном обследовании этих пациенток выяснилось: уровень антиядерных антител в их крови в семь – восемь раз выше, чем у пациентов, не имеющих данной мутации, и в семьдесят – восемьдесят раз выше, чем у людей, не страдающих волчанкой. Уровень направленных против ДНК антител у этих пациенток был также намного выше. Ученые заключили: мутации гена ДНКаза1 мешали нормальному лизированию ДНК в клетках и это, в свою очередь, способствовало развитию болезни.
В 2003 году Секигава с коллегами из Токио опубликовал очень интересные результаты, касающиеся связи с волчанкой вируса HERV клон 4–1, который принадлежит к семейству HERV-E[77]77
Sekigawa l., Ogasawara H., Naito T., et al. Systemic lupus erythematosus and human endogenous retroviruses. Modern Rheumatology 2003; 13:107–113.
[Закрыть]. Это целиком сохранившийся эндогенный ретровирус, способный к экспрессии протеинов, с целыми и невредимыми генными областями gag, env и pol. Этот вирус размножился до такой степени, что по нашим хромосомам разбросано восемьдесят пять его копий. Секигава, во-первых, показал, что количество несущих gag-последовательности транспортных РНК – то есть РНК, переносящих код из ядра к производящим белки частям клетки, – в лимфоцитах больных волчанкой существенно увеличивается по сравнению с лимфоцитами здоровых людей. И во-вторых, что лекарства, используемые для лечения болезненных проявлений волчанки, стероиды и иммунодепрессанты, подавляют экспрессию этого вируса. Результаты очень интересные – но и они, как мне кажется, не могут служить доказательством безусловной виновности HERV в развитии аутоиммунных заболеваний.
В 2008 году Д. Стетсон от имени целой группы коллег из Йеля в США и Вильжю во Франции доложил об открытии нового механизма, посредством которого эндогенные ретровирусы могут способствовать развитию аутоиммунности[78]78
Stetson D.B., Ko J.S., Heidmann T., et al. Trex 1 prevents cellintrinsic initiation of autoimmunity. Cell 2008; 134: 587–598.
[Закрыть]. Читатели уже знают о способности клеток крови реагировать на присутствие вируса. Но и в клетках тканей есть структуры, способные обнаруживать чужеродную ДНК. Эта внутриклеточная сигнальная система также способна включить мощный антивирусный отклик. Хотя механизм его функционирования пока не очень понят, известно, что он координируется особыми интерферонами. Они регулируют выполнение многосторонней реакции отклика на вирус: ограничивают его размножение в пораженных клетках, сигнализируют соседним клеткам о присутствии инфекции и дают сигнал к увеличению популяции лимфоцитов, предназначенных защитить клетки от агрессора. К сожалению, эта внутриклеточная система не всегда способна различить человеческую и вирусную ДНК либо РНК – чаще всего сбой происходит тогда, когда клетку заполняют неубираемые продукты распада своих ДНК и РНК. Таким образом провоцируется мощная, опосредованная интерферонами аутоиммунность.
Изучая иммунную систему тканевых клеток, Стетсон с коллегами идентифицировали принципиально важный энзим Trex 1, удалявший продукты распада ДНК из клеток. Известно, что мутации гена Trex 1 приводят к синдрому Айкарди, который влечет за собой задержки в умственном и физическом развитии. Другие мутации гена Trex 1 приводят к разновидности волчанки – волчанке Хатчинсона. Стетсон с соавторами в экспериментах на мышах выяснили: неадекватное функционирование Trex 1 ведет к накоплению продуктов распад ДНК внутри клетки, что провоцирует аутоиммунный отклик и летальное поражение сердца.
Следующая находка оказалась еще более интригующей. При анализе накопления продуктов распада ДНК в клетке выяснилось: большая их часть происходит из областей LINE-1, LTR и SINE. То есть из эндогенных ретровирусов. В полной мере значение этой находки до конца не осознано. Больше похоже на то, что разрушение и последующее удаление ретровирусных ДНК – часть нормального метаболизма клетки. В нормальных условиях энзим Trex 1 удаляет эти продукты распада из клетки. Но при дефиците Trex 1 продукты накапливаются и провоцируют опосредованный интерферонами отклик, ведущий к аутоиммунности.
Обобщая полученные результаты, Стетсон и его коллеги сделали вывод, что, учитывая активное участие эндогенных ретровирусов и их последовательностей в нормальном метаболизме, возможно, Trex 1 был создан эволюцией как защитный механизм против аутоиммунности и, вероятно, он связан с широким спектром аутоиммунных заболеваний. Таким образом, мы подходим к мысли, что при исследованиях адаптивного иммунитета и аутоиммунных заболеваний нельзя не учитывать возможное влияние человеческих эндогенных ретровирусов.
9. Рак
Развертывание событий в жизненном цикле организма обнаруживает удивительную регулярность и упорядоченность, не имеющих себе равных среди всего, наблюдаемого в неживой природе. Организм контролируется великолепно упорядоченной группой атомов…
Эрвин Шрёдингер
Это цитата из знаменитой книги Эрвина Шрёдингера «Что такое жизнь?». Именно она вдохновила Крика и Уотсона и многих их современников на поиск структуры ДНК. Шрёдингер удивляется тому, что произошедшее от мутации перемещение всего нескольких атомов из группы упорядоченных управляющих атомов половых клеток может привести к крупномасштабным изменениям наследственности организма. Увы, мутации, в особенности действующие на онкогены либо гены, подавляющие развитие опухолей, могут привести к изменениям в тканях и органах и сделать человека предрасположенным к развитию рака этих тканей и органов. Но «перемещение всего нескольких атомов» из их прежде упорядоченного состояния хотя и очень важный, но далеко не единственный механизм генетических и геномных изменений и не единственный двигатель эволюции – равно как и не единственная причина рака.
Причина рака коренится в нас самих, ведь рак фундаментально отличается от бактериальных заболеваний, таких, как туберкулез, и от вирусных, таких, как СПИД. При раке наши собственные клетки вдруг начинают себя вести самым ужасающим образом. Вдруг группа клеток перестает взаимодействовать с остальными клетками тела и начинает агрессивно и «эгоистично» делиться, будто подчиняясь внутреннему приказу обессмертить себя. Пониманию происходящего может помочь то, что многие простейшие формы жизни, не знающие полового размножения, ведут себя подобным же образом. В некотором роде они бессмертны. Рак словно обращает вспять один из главнейших шагов эволюции живого – шаг, после которого простейшие организмы вроде амеб развились в более сложные живые образования: в животных, растения и грибы со сложным половым размножением, со специализированными органами, такими, как листья, или плодовые тела грибов, или головной мозг животных, и эти органы работают согласованно друг с другом, обеспечивая жизнь существа.
Принимая во внимание способность вирусов внедряться в геном животных и их способность вносить в этот геном изменения, неудивительно, что вирусы могу быть причиной рака. По крайней мере двадцать процентов раковых заболеваний человека вызываются вирусами, и еще многие виды рака, по мнению вирусолога и специалиста по раку Робина А. Вайса, могут оказаться связанными с вирусами[79]79
Weiss R. А. Retroviruses and cancer. Current Science 2001; 81 (5): 528–534.
[Закрыть]. Типичный пример – вирус человеческой папилломы, или HPV. В 2008 году немецкий патолог Харальд цур Хаузен был награжден Нобелевской премией в области медицины за открытие того факта, что именно вирус человеческой папилломы вызывает рак шейки матки – второй по частоте рак, встречающийся у женщин[80]80
http://en.wikipedia.org/wiki/Harald_zur_Hausen.
[Закрыть]. Понимание значения этого открытия пришло с запозданием, и лишь в последнее время были развернуты программы вакцинирования молодых женщин, нацеленные на предотвращение инфицирования вирусом папилломы. Этот вирус также увеличивает риск заболевания анального отверстия, пениса, рта и горла, что указывает на возможность в будущем более широкого применения вакцины. Заражение другими вирусами также может быть связано с раком. Например, вирусы гепатита В и С повышают риск рака печени, а вирус Эпштейна-Барр, причиняющий мультигландулярный аденоз, бывает связан с раком крови и носовых проходов.
Вызывающие рак вирусы называются «онковирусами». Ретровирусы также способны вызывать рак, хотя происходящие при этом процессы весьма отличаются от тех, посредством каких, например, причиняет рак вирус HPV. Надо сказать, экспериментальное изучение ретровирусов человека и животных весьма способствовало пониманию рака как явления в целом, а в частности – пониманию роли вирусов в возникновении рака.
Типичная картина жизни вируса такова: он проникает в геном клетки-носителя, добивается контроля над ним и заставляет производить вирусы. Как и прочие вирусы, ретровирусы вторгаются в хромосомы некоторых клеток, внедряя в геном провирусы, служащие для производства дочерних ретровирусов. Иногда при проникновении в геном вирус внедряется слишком близко от ключевых участков генома, контролирующих процесс нормального деления и размножения клеток. Эти влиятельные гены обычно под строжайшим генетическим и эпигенетическим контролем, но вирус перехватывает контроль, и гены эти становятся «протоонкогенами». Они могут быть «включены» контролирующей вирусной LTR и заставить клетку делиться и размножаться неконтролируемым бесконечным образом. Это самый частый случай причинения ретровирусом рака у животных. Другой подобный механизм срабатывает, когда провирус подхватывает группу генов клетки, контролирующих процесс ее деления, и вставляет в геном самого вируса. Провирус при этом повреждается, поскольку целостность его генома нарушена, но тем не менее он остается способным включать онкогены и вызывать неконтролируемое деление клетки. Есть и третий механизм причинения ретровирусом рака. У клетки есть гены, называемые «генами-супрессорами», в нормальной ситуации не допускающие чрезмерного деления клетки, но, если провирус внедрился близко к гену-супрессору, вирусная LTR может взять контроль над ним и отключить его в то время, когда ему следовало бы включиться.
Теперь известно: вирусы – весьма частая причина рака во всем царстве животных. Они вызывают рак и у моллюсков церастодерм, и у бирманских питонов (вероятно), и у лососей, домашних кур, мышей, коал, кошек, крупного рогатого скота, лошадей, овец, мартышек, человекообразных обезьян и, конечно, у человека. Вирусы действуют жестоким и беспощадным образом, вызывая эпидемии и эндемии, со всеми ужасающими последствиями, какие влечет за собой уже обсуждавшийся в этой книге агрессивный симбиоз.
Чрезвычайно интересный вирус с уникальными и необычными свойствами был изучен профессором Массимо Пальмарини из Института сравнительной медицины при университете в Глазго. Я давно знал о выдающихся исследованиях Пальмарини в области ретровирусологии, а узнав, насколько удивителен исследуемый им вирус и коэволюция этого вируса со своими носителями овцами[81]81
Dunlap К. А., Palmarini M., Varela М., et al. Endogenous retroviruses regulate periimplantation placental growth and differentiation. Proceedings of the National Academy of Sciences 2006; 103 (39): 14 390-5.
[Закрыть], я нанес визит в лабораторию профессора.
Вирус этот, известный под названием «джакзикте», или JSRV, вызывает бронхиально-альвеолярную аденокарциному у овец. На африкаанас «джакзикте» (Jaagsietke) означает «болезнь погони», поскольку при аденокарциноме овцы дышат так, будто их только что загнала собака. Существуют две почти идентичные разновидности вируса (их так и подмывает назвать «эго» и «альтер эго» разновидностями). «Эго»-разновидность – это эндогенный, одомашненный вирус, обозначаемый как enJSRV, а «альтер эго»-разновидность – это собственно JSRV, свирепый заразный экзогенный вирус, вызывающий рак легких у овец и распространенный во всех странах с развитым овцеводством. В особенности большие проблемы с ним в Великобритании[82]82
Cousens C., Bishop J.V., Philbey A.W., et al. Analysis of Integration sites of Jaagsietke sheep retrovirus in ovine pulmonary adenocarcinoma. Journal of Virology 2004; 78 (16): 8506–12.
[Закрыть].
«Эго» и «альтер эго» очень схожи, более девяноста процентов их генетических последовательностей совпадают. В далеком прошлом экзогенная форма вируса заражала общего предка нынешних овец и коз. Заражение происходило через половой контакт, как это обычно для ретровирусов, после чего вирус эндогенизировался в геноме. Дальнейшая его эволюция чрезвычайно интересна и сложна.
Во время моего визита в марте 2009 года среди сотрудников профессора Пальмарини царило здоровое оживление. Результаты их работ были приняты в печать в престижнейший американский журнал «Сайнс». Они выяснили, каким образом эндогенный вирус внедрялся в хромосомы, картографировали эти включения и использовали их в качестве генетического маркера, позволяющего получить информацию о том, как распространялись по миру домашние овцы в процессе истории. Люди первыми одомашнили именно овец и коз, поначалу – лишь как источник мяса. Приблизительно в пятом тысячелетии до нашей эры их стали использовать и как источник шерсти. Исследование Пальмарини с коллегами оказалось первым, в котором эндогенные ретровирусы использовались для получения исторических сведений и изучения культуры скотоводческих обществ древности.
Результаты оказались замечательными во многих отношениях. Но меня в особенности заинтересовал временной фактор, и я спросил профессора, когда же «джакзикте» впервые заразил овец.
– Думаю, до эволюционного расхождения овец и коз, что случилось от семи до пяти миллионов лет назад, – ответил профессор.
– Так вы находите эти вирусы и у коз?
– Только старейшие провирусы. Только они общие у овец и коз. И овцы, и козы носят сейчас различные вирусы.
– Но это похожие вирусы?
– Да, они очень схожи.
– Но они принадлежат к разным семействам вирусов?
– Нет, они просто по-разному интегрировались в геном.
В опубликованной работе профессор уделил большое внимание тому, как именно интегрировался вирус в хромосомы, и объединил определенные виды интеграции в кластеры, разделив места интеграции по областям генома. Мне захотелось узнать, почему это важно.
– Я думаю, – сказал Пальмарини, – что интерес тут отчасти практического свойства, поскольку оказывается, что эндогенные вирусы могут со временем служить генетическими маркерами. Зная, когда и куда они интегрировались, и соотнося это с резкими изменениями численности овец, можно узнать много любопытного.
Лишь после этих слов до меня кое-что дошло! Каждый случай интеграции в разное место на хромосоме, пусть даже внедренные последовательности были идентичными, соответствовал своему предку, отдельной овце, чей геном по-своему интегрировал вирус. И каждая из этих овец дала начало своей линии овец-потомков, сохранивших интегрированный вирус на прежнем месте. Я вдруг понял, насколько ошибался в предыдущих моих суждениях, полагая, что эндогенные ретровирусы могут размножаться уже после интеграции в геном носителя. До меня дошло: размножаться могут производные вируса, LINE и SINE, – но не полноценный эндогенный ретровирус. Полноценные эндогенные ретровирусы наподобие JSRV остаются там, где и произошла интеграция вируса с геномом у предка нынешних носителей. Потому внедрение вируса в хромосому, попадание его в определенный кластер может служить генетическим маркером и дает возможность исторических выводов. Я вдруг осознал: это же может дать нам мощнейший инструмент для понимания эволюции человеческого генома! Но я хотел удостовериться, что правильно понимаю результаты Пальмарини и его коллег. Я спросил, приложимы ли полученные результаты к другим ретровирусам – например, к разнообразным включениям ретровируса в геном коалы. Станет ли каждый индивидуальный случай внедрения ретровируса в геном коалы историческим генетическим маркером наподобие того, как это произошло с овцами?
– Я уверен в этом, – ответил профессор.
Пальмарини исследовал лишь одно семейство овечьих ретровирусов. А я задумался над тем, что же значат его выводы для людей, с их десятками семейств и двумястами подсемействами эндогенных ретровирусов, интегрировавшимися в самых разных местах. Один только вирус HERV клон 4–1, принадлежащий к семейству HERV-E (он изучался Секигавой с коллегами в связи с исследованиями волчанки), дублирован в геноме восемьдесят пять раз, причем в разных местах на разных хромосомах. Я полагал, что эти копии возникли из-за свойства вирусных последовательностей дублировать себя. Но по-видимому, каждая копия может соответствовать отдельной особи, в геном которой внедрился вирус. То есть, изучая распределение вирусов по местам интеграции, можно изучать историю человека и его предков. А как насчет недавно эндогенизировавшегося HERV-K113? Что, если посмотреть на распределение мест его интеграции по геномам людей разных народов? Открытие Пальмарини можно использовать, чтобы приоткрыть темнейшие страницы человеческой истории, отобразить миграции и демографические изменения, заглянуть в невероятное прошлое. Посмотреть далеко вниз, на предков-приматов, и на млекопитающих, и на существовавших до них позвоночных… моя голова закружилась от открывающихся перспектив.
Позднее, когда профессор показывал мне свою лабораторию, половина которой занималась изучением рака и где была сделана предварительная работа по созданию вакцины против вируса человеческой папилломы, я перевел разговор на рак. Пальмарини обладает обширными знаниями о ретровирусах и раке, и мне хорошо было известно, что исследования профессора показали уникальность ретровируса «джакзикте» в его прямой связи с раком. Когда мы пошли в центр Глазго пообедать в итальянском ресторане, весьма уместно называвшемся «Массимо», я заметил:
– Если не ошибаюсь, вы особо подчеркнули: вирус «джакзикте» – единственный, обладающий непосредственным онкогенным действием.
– Это единственный ретровирус, онкогенный в силу кодирования им особого протеина.
– Не могли бы вы пояснить?
– Большинство обладающих непосредственным онкогенным действием вирусов – это ДНК-вирусы, но не ретровирусы. Эти ДНК-вирусы содержат онкогены, внедряемые вирусом прямо в ДНК носителя. При экспрессии вирусных генов клетка становится раковой.
– Именно так вирус папилломы вызывает рак?
– Не совсем. В этом случае вирус не кодирует онкогенные протеины, но они могут провоцировать онкогенез. Деление клетки регулируется двумя протеинами, Rb и р53. Два гена вируса папилломы – Е6 и Е7 – кодируют протеины, способные присоединятся к Rb и р53 и блокировать их регуляторную функцию. Когда регуляция деления клетки нарушена таким образом, клетка начинает бесконтрольно делиться. Вирус служит лишь тем камнем, который начинает обвал, – в дальнейшем генетическая структура делящейся клетки изменяется, и новые клетки уже делятся бесконтрольно и без помощи вируса.
Я повернул разговор назад, к ретровирусам:
– Насколько мне известно, все ретровирусы оказывают онкогенное действие, внедряясь в геном носителя и активируя онкоген либо взаимодействуя с геном-супрессором онкогенеза.
– Большей частью они активируют онкогены. А может случиться и транскрипция, при которой эти онкогены комбинируются с вирусами. В результате вирус принимает онкоген в состав своего генома – и делается способным к быстрому инициированию онкогенеза.
Этот разговор вернул меня к изначальной цели моего визита, вирусу «джакзикте». В прошлом, где-то от четырехсот тысяч до миллиона трехсот тысяч лет назад, этот вирус нашел способ, как предотвратить вторжение своего экзогенного «альтер эго» обычным половым путем. Поэтому экзогенный вирус изменил тактику и стал заражать через легкие, а там «понял», как вызывать у носителя рак. Я спросил Пальмарини, как именно это произошло.
– В случае «джакзикте» есть структурные протеины, образующие оболочку и обладающие прямым онкогенным действием.
– То есть оболочка вируса содержит онкогенные белки?
– Из них оболочка и состоит.
– Вся?
– Именно! Потому этот вирус способен своим непосредственным действием вызывать рак у носителя. Он попросту заражает, производит рак и убивает. По мне, в этом нет никакого смысла.
Палмарини имел в виду следующее: поведенческая стратегия, подразумевающая развитие рака у носителя и его гибель, выглядит бессмысленной с «точки зрения» вируса, поскольку убивает источник его существования.