355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Евгений Федосов » Полвека в авиации. Записки академика » Текст книги (страница 23)
Полвека в авиации. Записки академика
  • Текст добавлен: 3 октября 2016, 23:20

Текст книги "Полвека в авиации. Записки академика"


Автор книги: Евгений Федосов



сообщить о нарушении

Текущая страница: 23 (всего у книги 34 страниц)

Минрадиопром вначале принял в штыки наши предложения, говоря что подобная система обработки сигнала – дело невозможное, что это пахнет дезинформацией со стороны США… Этот вопрос рассматривался на ВПК. И тут, как ни странно, мы нашли поддержку в лице министра электронной промышленности Александра Ивановича Шокина, которому пришлась по душе идея создания БРЛС с обработкой сигналов на ПСП-процессорах. Для решения этой задачи, естественно, понадобилась бы новая элементная база, а это – шаг вперед в нашей электронике.

В это время на фрязинском «Истоке» генеральным конструктором работал Сергей Иванович Ребров. Электронщики наши умели уже делать многие микросхемы высокой интеграции, но не могли найти им применение – Радиопром просто не готов был их брать себе в разработки. Поэтому Ребров с энтузиазмом взялся за строительство радиолокационной станции на новой элементной базе. А. И. Шокин дал ему «добро» на то, чтобы он подключил к этой работе все нужные предприятия электронной промышленности для создания необходимого научно-технического задела по таким станциям. И наш институт вместе с Ребровым взялись за эту работу, которая вошла в историю авиапрома, как НИЭР «Союз» – научно-исследовательская экспериментальная работа «Союз». Наш институт создал летающую лабораторию на базе самолета Ту-134, и с ее помощью коллективы ГосНИИАС и «Истока» построили и отработали новую РЛС. Уже тогда, в середине 80-х, а это почти тридцать лет назад, она обладала теми же характеристиками, которыми обладает модернизированная станция, устанавливаемая сейчас на Су-30, и на ней мы получали те же режимы, к которым нынешние создатели РЛС подошли лишь в наше время.

Это была очень большая работа института – не бумажная, а экспериментально-доводочная, которая, к сожалению, не нашла в те годы своего логического завершения, поскольку началась «перестройка».

Должен сказать, что мы ощущали некое недоверие к идеям, которые воплощали в жизнь вместе с Ребровым, со стороны ряда заинтересованных лиц и даже В. К. Гришина. И только когда он на одной из выставок увидел станцию шведской фирмы «Эриксон», его неприятие нашей работы мгновенно испарилось. Шведы, в отличие от американцев, работавших на фирмах «Хьюз» и «Вестингауз» и секретивших свои изыскания по РЛС для F-16, F-18 и F-15, спокойно поделились с Гришиным своей информацией. По-моему, базируясь на ней, они создавали такую же станцию для «Вигтена», и не считали ее каким-то большим секретом.

Только после этого сопротивление, которое мы ощущали, было сломлено, и П. С. Плешаков, и многие другие нас поддержали и заложили новое поколение РЛС. Станции «Копье», «Жук», «Барс», а также РЛС для Су-30 построены на наших с Ребровым заделах того времени. Принципы, по которым действуют эти изделия, были отработаны еще в середине 80-х и отечественная планарная решетка для антенны БРЛС впервые была сделана С. И. Ребровым и коллективом «Истока». По тем временам ее изготовление потребовало применения сложнейших технологий, но наши электронщики с этой задачей справились блестяще.

В это же время – в начале 80-х годов – американская фирма «Хьюз эйркрафт» начала разрабатывать ракету класса «воздух – воздух» AMRAAM с активной головкой самонаведения. У нас же применялись полуактивные головки. Ракеты, оснащенные ими, были получше американских, но появление активной головки резко меняло ситуацию в их пользу. Такая головка как бы «развязывает» самолет: ему не нужно больше придерживаться сектора облучения цели и можно вести воздушный бой по принципу «пустил-забыл». Не имея такой ракеты, мы сразу попадали в ранг проигрывающих.

И вот здесь нужно еще раз отдать должное С. И. Реброву. Он, в рамках этой же НИЭР «Союз», работая над локатором, создал оригинальнейшую головку самонаведения и для наших ракет «воздух – воздух». В ней он тоже применил щелевую антенну, а излучающее устройство – клистрон – поставил прямо на нее. Ребров очень изящно сконструировал его, уложившись в малые размеры, чего американцы не смогли сделать на своей AMRAAM. Они поставили передатчик отдельно и на этом потеряли потенциал головки.

Принципиальным отличием между нашим и американским изделием явилось и то, что наш институт вместе с «Истоком» объединил такие понятия, как головка самонаведения и система управления ракеты. Первую он взял как чистый измеритель допплеровских характеристик цели, а выработку сигнала целеуказания, управление антенной и ракетой формировал единый вычислительный блок. В нем же был реализован и гироинерциальный режим. Ракета ведь имеет довольно продолжительный участок автономного полета, она должна идти по траектории, для чего и нужна бесплатформенная гироинерциальная система. На конечном этапе полета вступает в действие активная головка самонаведения, которая осуществляет захват цели в тот момент, когда приходит в зону ожидания самолета противника.

Вот этот вычислительный блок был объединен с автопилотом ракеты в НИИП под руководством главного конструктора Б. Н. Гаврилина.

Таким образом НИЭР «Союз» позволила нам создать и новый радиолокатор для модификации МиГ-29 и Су-27, и систему управления ракеты класса «воздух – воздух». Эти изделия были облетаны на нашей летающей лаборатории Ту-134, и мы получили «картинки»

земной поверхности, которые были ничем, на мой взгляд, не хуже, чем те, что выдают современные станции.

Еще одним важным шагом США в процессе модернизации их самолетов стал переход к концепции так называемой открытой архитектуры бортовой системы управления. Для связи всех элементов системы американцы применили единую цифровую линию связи – мультиплексную шину – и ввели на нее специальный стандарт MIL-1553, в последующем– MIL-1553B. Он был принят как основа в НАТО и позже распространился практически во всем мире – где бы ни строились новые самолеты, в них использовалась эта цифровая шина. Она позволяла отказаться от принципа, когда каждый сигнал от какого-то блока или системы идет на каждый прибор или индикатор. При этом фидер резко упрощается – по правому и левому бортам самолета идут как бы единые телефонные линии – шины из двух проводов, а от них через шлейфы идут сигналы к приборам, исполнительным механизмам, индикаторам и т. п. Каждый из них имеет свой код. Это и есть мультиплексная линия связи, она цифровая и работает на частоте 1 мГц. Все приборы на самолете «завязываются» на эти две шины со шлейфами. Это позволило уйти от толстых фидеров, где использовалась масса медных проводов, а если что-то нужно добавить или убрать с борта, то их приходилось «перешивать». К шине же нужно лишь подключить дополнительный шлейф и дать дополнительный код устройству, которое ставится на борт. И если на самолет устанавливаются новые ракеты или приборы, достаточно только поменять код. А в программе вычислительной машины, которая управляет всем бортом, есть «диспетчер», коммутирующий, то есть подключающий в нужные моменты времени необходимые приборы и оборудование, «завязанные» в контуре управления тех или иных систем самолета.

Это была еще одна крупная революция, которую совершили американцы в процессе модернизации F-15, F-16 и F-18. Для этого пришлось провести огромную научно-исследовательскую работу, сформировавшую идеологию открытых архитектур, что позволило им гибко модернизировать самолеты.

В общем, создание ПСП-процессоров, планарных антенных решеток и мультиплексных шин дало возможность США серьезно улучшить свои самолеты, находящиеся в строю.

Поэтому наш институт забил тревогу. Но прежде мы решили сами для себя уяснить, что же это такое – мультиплексный канал: теоретически вроде все было логично, но нет ли в нем каких-то «подводных камней», тонкостей, которые американцы скрывают. Да и вопросы надежности работы этих шин оставались для нас открытыми. Поэтому по американскому стандарту, который был уже опубликован, мы смоделировали у себя в лаборатории такую шину и убедились, что она действительно, работает. Но при этом выяснилась одна тонкость – чтобы «войти» в эту шину, надо сигнал преобразовать в последовательный код. А вычислительные машины работают по параллельному коду. Значит, нужен соответствующий преобразователь. Американцы для этой цели использовали специальные микросхемы, по их терминологии «заказные». Не буду вдаваться в тонкости технологии их изготовления, скажу лишь, что в нашей стране делать их еще не могли.

Несколько центров, занимавшихся вопросами микроэлектроники, только подходили к созданию таких микросхем. Но наш институт сформировал ГОСТ на эти шины – абсолютную копию американских стандартов, и я везде настаивал, чтобы мы, не дай Бог, не внесли в него какие-то свои нюансы. Нам было очень важно, чтобы точно повторялась шина западного производства, потому что обговаривались варианты экспорта МиГ-29 и Су-27, и мы не исключали какого-то международного сотрудничества в этой области. И если западные стандарты уже опробованы на практике, зачем изобретать что-то свое.

Как ни странно, на этот ГОСТ откликнулись не авиационщики, а разработчики систем зенитных ракет в ПВО. Они впервые и внедрили эти шины. А в авиации у нас они вначале не пошли.

В общем, наш институт, внимательно отслеживая ход модернизации американских самолетов, пришел к выводу, что авиационной промышленности страны необходимо резко ускорить модернизацию Су-27 и МиГ-29 в области радиолокации, вычислительной техники, систем управления вооружением. Я подготовил доклад, плакаты, с которыми выступил на заседании НТС, а потом на совещании у Д. Ф. Устинова, где показал по годам снижение эффективности парка нашей истребительной авиации, если мы не будем его модернизировать. На графике четко виден был этот «провал» эффективности, который Устинов тут же окрестил «ямой Федосова». Этот термин так и пошел в жизнь.

И тогда родились новые требования к МиГ-29 и Су-27. Предусматривалась установка на них обновленной радиолокационной станции, мультиплексной цифровой шины, оснащение их ракетами класса «воздух – воздух» с активной головкой самонаведения и управляемое оружие класса «воздух – поверхность». Но этим уже намечался настолько революционный скачок, что в результате надо было значительно дорабатывать самолеты. Так родилось постановление правительства и ЦК партии, которым были заданы самолеты Су-27М и МиГ-29М. Работа над ними пошла довольно успешно, но наступило время «перестройки» и трагический 1991 год. Великий Советский Союз прекратил свое существование.

Экспорт самолетов МиГ-29 и Су-27

После того как были заложены линии модернизации Су-27 и МиГ-29, которые практически сводились к реализации режима стрельбы ракетами «воздух – поверхность» при поддержке со стороны нового многорежимного радиолокатора, мы стали задумываться над следующим поколением истребителей. Это совпало с появлением в печати статей, что и в США стали просматривать варианты модернизации и замены F-15 и F-16.

Первый постулат, который выдвинули наши военные в конце 80-х годов, заключался в том, что сохраняется концепция смешанного парка из двух истребителей – условно легкого и условно тяжелого. Так родились термины: МФИ – многофункциональный истребитель, который предполагалось строить как тяжелый самолет и ЛФИ – легкий фронтовой истребитель.

Над обликом этих самолетов большую научную работу провел наш институт, где основное внимание уделялось разработке концептуальных вопросов данного класса самолетов. В это время Су-27 стал все больше завоевывать признание в ВВС, и не только как тяжелый самолет воздушного боя, обладающий хорошей маневренностью. Поэтому как-то непроизвольно усилия всех причастных к разработке новых машин стали концентрироваться вокруг МФИ. При этом шло и переосмысление ряда подходов к его созданию.

Мы стали понимать, что самолет, который попадает в зону ближнего воздушного боя, практически не выживает. Маневренность противника, а самое главное – ракеты ближнего боя класса «воздух – воздух», обеспечивали почти гарантированную зону поражения, и если самолет попадал в нее, то вероятность выхода оттуда была практически нулевой. Стало ясно, что летчик просто не будет входить в эту зону, и ближние маневренные бои тем самым исключаются. Эти выводы стали подтверждаться и из информации, которая стала приходить, когда американцы хорошо изучили МиГ-29, который мы показывали на авиашоу и поставляли в страны Восточной Европы, Индию, на Ближний Восток… Американцы издали инструкцию, которая запрещала их летчикам вступать в ближний бой с МиГ-29. Они тоже пришли к выводу, что выжить в такой схватке истребителю невозможно.

Но если она становится маловероятным событием, то надо думать, как организовать дальний воздушный бой.

Поэтому мы решили, что на истребителе нужно попробовать внедрить режим противоракетной обороны и научиться сбивать ракетами класса «воздух – воздух» ракеты противника, атакующие нашу машину. Это очень сложная задача, поскольку выполняться должна автоматически от момента обнаружения ракеты противника до момента стрельбы и поражения. Обусловлена она тем, что времени на все про все отпускается так мало, что летчик просто не успеет среагировать на угрозу. К тому же ракету очень сложно обнаружить. Факел ее существует лишь в момент старта, а потом она летит уже без работающего двигателя, тепловая информация от нее не идет и «увидеть» ее можно только с помощью радиолокатора. Но поскольку она малоразмерна, с ограниченными отражающими свойствами, то дальность обнаружения такой ракеты, как правило, небольшая, а сбивать ее надо на определенном расстоянии от нашего истребителя, потому что осколки даже разрушенной ракеты могут его повредить. Для этого надо иметь рубежи перехвата больше километра, а еще лучше – двух-трех, но и диапазон обнаружения таких ракет лежит в этих же пределах. Так что задача, которую мы поставили перед собой, была архисложная, но тем не менее мы стали ее решать (забегая вперед, скажу, что никому в мире пока справиться с ней не удалось, но исследования в этом направлении продолжаются).

В процессе этой работы появилось понятие «всенаправленности» для ракет класса «воздух – воздух», поскольку противник может атаковать нашу машину с любого направления. Поэтому наша ракета должна уметь развернуться и сбить ракету противника, даже когда та заходит сзади. Тем самым рождалась некая новая концепция применения этого вида оружия, отличная от принятой до сих пор.

Вторая проблема заключалась в том, как бороться с противником, если он стреляет по нашей машине не одной, а несколькими ракетами одновременно. Ведь одиночных воздушных боев становится все меньше, это показали уже первые арабо-израильские конфликты, где борьбу в воздухе стали вести группировки истребителей, вступающие между собой в настоящие сражения. Тактика их стала уже совсем иной, чем в годы Второй мировой войны, когда даже в групповых сражениях противники разбивались на пары «ведущий – ведомый» и вели бой между собой. К 80-м годам логика воздушных боев сильно усложнилась, а это резко повысило требования как к информационным средствам на борту истребителей, так и к самим машинам. Кстати, понимание той истины, что ближний бой становится вырождающимся режимом, отнюдь не снизило требований к их маневренности, поскольку острыми оставались вопросы уклонения от оружия противника, реагирования на другие угрозы, и обеспечение высокой маневренности осталось одним из основных требований к самолету.

Наряду с этим много думали о том, какими скоростями должны обладать новые самолеты? Четвертое их поколение, которое было создано как у нас так и в Америке, вело бои в основном на дозвуковых скоростях. Если они даже начинались на трансзвуковых, то скоро переходили на дозвуковые: устойчивых боев на сверхзвуке практически не было.

Поэтому, естественно, встал вопрос: можно ли все-таки вести схватку на сверхзвуке, стоит ли драться за эти скорости? Очень скоро мы стали понимать, что ее выгодно иметь на крейсерском режиме, потому что это позволяет истребителю быстро выходить на нужные рубежи и эшелоны. В воздушном бою ведь очень важно обладать суммарно большей кинетической энергией, чем противник, и эта логика энергетического превосходства очень важна, поскольку каждая из сторон стремится всегда занять более выгодную позицию. Поэтому сверхзвуковая крейсерская скорость давала возможность получить необходимый энергетический запас плюс выход на нужные рубежи. Так мы пришли к выводу: за сверхзвук стоит бороться и нужно попробовать на нем вести бой. Это еще больше повышало требования к радиолокатору, к быстроте реакций всего оборудования, связанного с боевым применением и т. д.

Концепция сложного группового боя подтолкнула нас к использованию такого экзотического режима, как передача оружия в процессе полета: ракета, пущенная с одного самолета может быть «подхвачена» другим и уже им перенацеливаться на новую цель. Для этого пришлось применить так называемое сопровождение цели на проходе, когда луч радиолокатора сканирует пространство, «обшаривая» его до тех пор, пока не наткнется на ракету. В этот момент происходит измерение ее координат и выработка корректирующей команды. Это довольно сложная логика управления тоже прорабатывалась у нас в институте в виде ряда концепций.

В конце концов объем работ над МФИ, которые мы вели с «микояновцами», стал заметно превышать объемы работ над ЛФИ, который стали рассматривать как очередную модернизацию МиГ-29, плавно «перетекающий» в экспортный вариант. Су-27 в то время особенно широко не продавались за рубеж и, в основном, поступали в наши ВВС.

«Суховцы» в тот же период заложили самолет с обратной стреловидностью крыла, знакомый нам сейчас как С-37 «Беркут».

Все эти работы велись в конце 80-х годов, особых ограничений по их финансированию мы не имели, поэтому были уверены в успехе. Министром авиационной промышленности в то время работал Иван Степанович Силаев, который, активно проводил линию на переоснащение всей авиации СССР – как боевой, так и гражданской, – самолетами следующего поколения. В тот же период закладывались Ил-96, Ту-204, Ил-114 и ряд других самолетов и вертолетов.

В общем, мы все были полны оптимизма. В ОКБ им. А. И. Микояна работа над новой машиной перешла в стадию опытно-конструкторской разработки. А в ОКБ им. П. О. Сухого продолжали вести научно-экспериментальную работу над самолетом с обратной стреловидностью крыла. «Суховцы» пошли по этому пути, потому что тогда американцы тоже работали над такой конфигурацией самолета и даже показали в полете маленькую машину с обратной стреловидностью крыла, размерностью, по-моему, не более 9 тонн. Симонов же сразу заложил боевую машину весом за 20 тонн…

Таким образом, к началу 90-х годов вырисовались два самолета концепции МФИ, хотя обе машины имели разную конфигурацию. И тот и другой самолеты получились весом более 30 тонн, что, конечно же, на мой взгляд, лишает их «титулов» легкого истребителя, но легче они просто не получались.

Вот на этих стадиях работ нас и настиг разгар перестройки, начало экономических реформ, борьба за внедрение конверсии и наконец – развал блока стран Варшавского Договора, а затем и СССР.

Резкое сокращение финансирования в 1992 году «подрубило» обе программы модернизации: ВВС отказалось финансировать работы по Су-27М и МиГ-29М. Но работа, проделанная промышленностью в прошедшие годы, не пропала, поскольку начался процесс подготовки экспортных вариантов обеих машин. И то, что мы продали сегодня, в начале XXI века в Индию, Китай, Малайзию и другие страны, – это уже наработки «эмовских» проектов. В РЛС «Жук», «Копье» и «Барс» и их модификациях реализованы те же режимы, которые закладывались в самолетах МиГ-29М и Су-27М в 80-е годы. Выполнено это на более высоком уровне, поскольку отечественная микроэлектроника все же развивалась, а главное – мы стали приобретать импортные комплектующие, которые позволили России выйти со своими машинами на международные уровни. Мы ведь по своим умственным способностям ничем не отличаемся от западных разработчиков авиатехники, а кое в чем их и превосходим, но «бег» нашей мысли сдерживался технологическими возможностями в области компьютерных технологий. Но как только эти различия стерлись, наши машины тут же привлекли внимание зарубежных покупателей.

В нашем Министерстве обороны, кстати, до сих пор утверждается идея технологической безопасности и независимости. Согласно ей мы должны применять только отечественную либо импортнозамещаемую электронику, вместо которой рано или поздно будет создана отечественная. Но это соревнование мне кажется безнадежным – в области микроэлектроники прогресс идет настолько быстро, что мы никогда, на мой взгляд, уже не догоним лидеров. А если мы и дальше будем придерживаться избранной политики, то загоним себя в ситуацию планируемого отставания от мирового уровня. Сегодня производство микроэлектронных схем очень широко распространено во всем мире, оно не является монополией США, уже нет эмбарго на эту технику, нет КОКОМа, рынок открыт, и на нем хорошо чувствуют себя и Малайзия, и Сингапур, и Япония, и частично Европа… И с него надо собирать все, что нам нужно, в конце концов, можно просто создать стратегические запасы этих микроэлектронных элементов. А бояться, что в них скрыты какие-то «шпионские закладки», вряд ли стоит. Я, честно говоря, в них даже поверить не могу. И вот почему.

Микросхема – это очень дорогой в разработке продукт. Дешевым он становится, когда идет в производство, где микросхему изготавливают миллионами штук. И вот представим себе, что на рынке, где господствуют такие гиганты, как «Моторола», «Интел», «Сан» и другие, проходит информация о такой «закладке». Да от этой продукции тут же откажутся все потенциальные покупатели, а не только Россия. Никто не будет закладывать какие-то сюрпризы в топологию микросхемы только для России – ведь невозможно же спрогнозировать, где и что мы будем закупать. А мы видим врага там, где не надо… Но пока Министерство обороны ведет ту политику, о которой я рассказал, чем тормозится наше движение вперед.

К тому же когда машина идет на экспорт, зарубежный заказчик очень часто настаивает, чтобы в ней была установлена электроника, легко доступная для него и быстро заменяемая.

Но вернемся в Россию. Ситуация, возникшая в результате разрушения СССР и обвального отказа государства от оборонного заказа, сразу сбросила нас в ситуацию застоя. Сложнейшие технические системы создавать сегодня «на коленке» с помощью бумаги и шариковой ручки невозможно. Поэтому с прекращением финансирования линия Су-27 и МиГ-29 прервалась, и стала медленно и трудно возрождаться, когда начали формироваться экспортные заказы, прежде всего индийские и китайские. И вот, как ни парадоксально, мы поставляем сегодня за рубеж самолеты поколения «четыре с плюсом», превосходящие по своим возможностям те, что стоят на вооружении отечественных ВВС. Последние по сути дела «заморозились» на уровне 80-х годов, времен СССР.

Трагично ли такое положение?

В какой-то мере да. Но мы, ученые и производственники, готовы быстро ликвидировать это отставание – вопрос опять же упирается в финансирование нужных работ. Технологические цепочки «обузились», многие организации «похудели» из-за ухода в коммерцию или отъезда за рубеж молодежи и специалистов среднего возраста, но костяк авиапрома все же сохранился. Благодаря ему и держится вся экспортная авиационная программа, которая составляет более половины того, что получает Россия от поставок военной техники за рубеж. Если сейчас страна получает от ее продаж более 3,5 млрд долларов в год, то 1,5–1,7 млрд долларов приходится на авиационную составляющую. Это случилось потому, что планеры машин были сделаны очень хорошо, и мы сумели модернизировать оборудование. В оружие тоже был заложен определенный «запас прочности»… Все это позволило Су-27 и МиГ-29 удержаться на рынке и не уступать тем разработкам, которые проводятся на Западе – в США и Европе. Там ведь уже переходят к новому поколению самолетов, в то время как база наших машин сохранялась на уровне самолетов четвертого поколения – настолько удачно она была заложена в 80-е годы, используя задел, который был создан в Советском Союзе. Его наследство оказалось настолько мощным, что, по моим прогнозам, Су-27 и МиГ-29 в разных модификациях останутся конкурентоспособными еще лет пять – семь. За эти годы мы должны начать серьезно работать над самолетами следующего поколения, а если этого не сделаем, то нас ждет еще более серьезное отставание от лидирующих государств в области авиации, чем это случилось при Хрущеве. Тогда Россия потеряет статус авиационной державы и нам просто придется покупать самолеты за рубежом. А пока линия Су-27 и МиГ-29 дает нам счастливую возможность не скатиться в эту «пропасть» и выйти из этой очень тяжелой ситуации, в которую завели авиационную промышленность экономические реформы.

Су-27УБ, Су-30МКК, Су-30МКИ, МиГ-29СМТ и другие модификации сейчас ничем не уступают, а то и превосходят такие самолеты, как «Мираж-2000-5», «Еврофайтер», «Рафаль», F-18. За счет отличных пилотажных свойств, энерговооруженности, дальности полетов, хорошей боевой нагрузки.

Чем мы еще занимались в конце 80-х годов? Наряду с работами над будущими Су-27М и МиГ-29М шла модернизация МиГ-31 и превращение его в МиГ-31М. На нем тоже стали широко применять допплеровскую обработку сигналов от цели, но в основном мы занимались увеличением дальности стрельбы ракет, развитием режимов группового применения этих машин в бою и многоканального обстрела. Это режимы, которыми и по сей день не владеет ни один самолет в мире. А наш МиГ может одновременно обстреливать группу целей, перенацеливать оружие в ходе стрельбы. Такие сложные режимы до сих пор нигде в мире не реализованы, так же, как и интегрированная система целеуказания от РЛС, оптического визира и прицела на шлеме летчика, применяемая на Су-27 и МиГ-29. Это тоже в какой то мере заслуга нашего института.

На одной из выставок мы увидели, что израильтяне и американцы начали работы в этой области, потому что поняли те преимущества, которые дает интегрированная система прицеливания. Ведь существовавшие оптические прицелы резко ограничивали сектор обстрела, и летчику приходилось путем разворота самолета выходить на цель, «загоняя» ее в весьма узкое поле зрения, после чего возможен захват цели головкой самонаведения ракеты ближнего боя или стрельба из пушки. Локатор же позволяет «качать» сектор обстрела в пределах 60–70°, но он дает грубое целеуказание и не позволяет достичь угловой точности, необходимой для головки самонаведения. А нашлемный прицел лишен многих этих недостатков и позволяет получать оптическое измерение угла визирования в большом секторе. В основном заслуга создания такого прицела принадлежит ЦКБ «Геофизика», а самого шлема – ОКБ «Звезда», где руководитель академик Гай Ильич Северин. Но проблема возникла в том, что шлем дополнительно может нести разбалансированный вес не более 200 граммов, потому что при перегрузках, возникающих в воздушном бою или при катапультировании более тяжелая конструкция способна просто сломать летчику шею. И пришлось серьезно поработать, чтобы сделать нашлемный прицел легким и малогабаритным. Нашему же институту удалось «скомплексировать» локатор, нашлемный прицел и оптический визир самолета в единую систему. Это позволило разгрузить летчика, поскольку его маневр головой и самолетом стали интегрироваться в вычислительной части, а дальше идет целеуказание головкам самонаведения, которые ведут захват цели в довольно широком диапазоне углов обстрела. Для иностранных специалистов, и в первую очередь американцев, это наше интегральное решение оказалось неожиданным: до сих пор ни один самолет в мире не обладает такими возможностями. Ко мне не раз «подъезжали» с разных сторон представители многих фирм, предлагали совместные работы в этом направлении, потому что мы первыми совершили некий качественный прорыв в области автоматизации режимов ближнего воздушного боя. Когда в 90-е годы было проведено несколько учебных схваток наших истребителей МиГ-29 с «натовскими», то все их выиграли самолеты России. Речь идет, подчеркиваю, о ближнем бое…

К сожалению, работы над МиГ-31М также были закрыты вместе с Су-27М и МиГ-29М. Но несмотря на все эти трудности, на мой взгляд, МиГ-31 еще долго будет служить России, поскольку этому самолету нет равных в мире, и наряду с Су-27 он устойчиво держит ПВО страны.


    Ваша оценка произведения:

Популярные книги за неделю